xref: /openbmc/linux/lib/scatterlist.c (revision cc958441)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 #include <linux/bvec.h>
13 #include <linux/uio.h>
14 
15 /**
16  * sg_next - return the next scatterlist entry in a list
17  * @sg:		The current sg entry
18  *
19  * Description:
20  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
21  *   of a chained scatterlist, it could jump to the start of a new
22  *   scatterlist array.
23  *
24  **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27 	if (sg_is_last(sg))
28 		return NULL;
29 
30 	sg++;
31 	if (unlikely(sg_is_chain(sg)))
32 		sg = sg_chain_ptr(sg);
33 
34 	return sg;
35 }
36 EXPORT_SYMBOL(sg_next);
37 
38 /**
39  * sg_nents - return total count of entries in scatterlist
40  * @sg:		The scatterlist
41  *
42  * Description:
43  * Allows to know how many entries are in sg, taking into account
44  * chaining as well
45  *
46  **/
47 int sg_nents(struct scatterlist *sg)
48 {
49 	int nents;
50 	for (nents = 0; sg; sg = sg_next(sg))
51 		nents++;
52 	return nents;
53 }
54 EXPORT_SYMBOL(sg_nents);
55 
56 /**
57  * sg_nents_for_len - return total count of entries in scatterlist
58  *                    needed to satisfy the supplied length
59  * @sg:		The scatterlist
60  * @len:	The total required length
61  *
62  * Description:
63  * Determines the number of entries in sg that are required to meet
64  * the supplied length, taking into account chaining as well
65  *
66  * Returns:
67  *   the number of sg entries needed, negative error on failure
68  *
69  **/
70 int sg_nents_for_len(struct scatterlist *sg, u64 len)
71 {
72 	int nents;
73 	u64 total;
74 
75 	if (!len)
76 		return 0;
77 
78 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
79 		nents++;
80 		total += sg->length;
81 		if (total >= len)
82 			return nents;
83 	}
84 
85 	return -EINVAL;
86 }
87 EXPORT_SYMBOL(sg_nents_for_len);
88 
89 /**
90  * sg_last - return the last scatterlist entry in a list
91  * @sgl:	First entry in the scatterlist
92  * @nents:	Number of entries in the scatterlist
93  *
94  * Description:
95  *   Should only be used casually, it (currently) scans the entire list
96  *   to get the last entry.
97  *
98  *   Note that the @sgl@ pointer passed in need not be the first one,
99  *   the important bit is that @nents@ denotes the number of entries that
100  *   exist from @sgl@.
101  *
102  **/
103 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
104 {
105 	struct scatterlist *sg, *ret = NULL;
106 	unsigned int i;
107 
108 	for_each_sg(sgl, sg, nents, i)
109 		ret = sg;
110 
111 	BUG_ON(!sg_is_last(ret));
112 	return ret;
113 }
114 EXPORT_SYMBOL(sg_last);
115 
116 /**
117  * sg_init_table - Initialize SG table
118  * @sgl:	   The SG table
119  * @nents:	   Number of entries in table
120  *
121  * Notes:
122  *   If this is part of a chained sg table, sg_mark_end() should be
123  *   used only on the last table part.
124  *
125  **/
126 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
127 {
128 	memset(sgl, 0, sizeof(*sgl) * nents);
129 	sg_init_marker(sgl, nents);
130 }
131 EXPORT_SYMBOL(sg_init_table);
132 
133 /**
134  * sg_init_one - Initialize a single entry sg list
135  * @sg:		 SG entry
136  * @buf:	 Virtual address for IO
137  * @buflen:	 IO length
138  *
139  **/
140 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
141 {
142 	sg_init_table(sg, 1);
143 	sg_set_buf(sg, buf, buflen);
144 }
145 EXPORT_SYMBOL(sg_init_one);
146 
147 /*
148  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
149  * helpers.
150  */
151 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
152 {
153 	if (nents == SG_MAX_SINGLE_ALLOC) {
154 		/*
155 		 * Kmemleak doesn't track page allocations as they are not
156 		 * commonly used (in a raw form) for kernel data structures.
157 		 * As we chain together a list of pages and then a normal
158 		 * kmalloc (tracked by kmemleak), in order to for that last
159 		 * allocation not to become decoupled (and thus a
160 		 * false-positive) we need to inform kmemleak of all the
161 		 * intermediate allocations.
162 		 */
163 		void *ptr = (void *) __get_free_page(gfp_mask);
164 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
165 		return ptr;
166 	} else
167 		return kmalloc_array(nents, sizeof(struct scatterlist),
168 				     gfp_mask);
169 }
170 
171 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
172 {
173 	if (nents == SG_MAX_SINGLE_ALLOC) {
174 		kmemleak_free(sg);
175 		free_page((unsigned long) sg);
176 	} else
177 		kfree(sg);
178 }
179 
180 /**
181  * __sg_free_table - Free a previously mapped sg table
182  * @table:	The sg table header to use
183  * @max_ents:	The maximum number of entries per single scatterlist
184  * @nents_first_chunk: Number of entries int the (preallocated) first
185  * 	scatterlist chunk, 0 means no such preallocated first chunk
186  * @free_fn:	Free function
187  * @num_ents:	Number of entries in the table
188  *
189  *  Description:
190  *    Free an sg table previously allocated and setup with
191  *    __sg_alloc_table().  The @max_ents value must be identical to
192  *    that previously used with __sg_alloc_table().
193  *
194  **/
195 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
196 		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
197 		     unsigned int num_ents)
198 {
199 	struct scatterlist *sgl, *next;
200 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
201 
202 	if (unlikely(!table->sgl))
203 		return;
204 
205 	sgl = table->sgl;
206 	while (num_ents) {
207 		unsigned int alloc_size = num_ents;
208 		unsigned int sg_size;
209 
210 		/*
211 		 * If we have more than max_ents segments left,
212 		 * then assign 'next' to the sg table after the current one.
213 		 * sg_size is then one less than alloc size, since the last
214 		 * element is the chain pointer.
215 		 */
216 		if (alloc_size > curr_max_ents) {
217 			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
218 			alloc_size = curr_max_ents;
219 			sg_size = alloc_size - 1;
220 		} else {
221 			sg_size = alloc_size;
222 			next = NULL;
223 		}
224 
225 		num_ents -= sg_size;
226 		if (nents_first_chunk)
227 			nents_first_chunk = 0;
228 		else
229 			free_fn(sgl, alloc_size);
230 		sgl = next;
231 		curr_max_ents = max_ents;
232 	}
233 
234 	table->sgl = NULL;
235 }
236 EXPORT_SYMBOL(__sg_free_table);
237 
238 /**
239  * sg_free_append_table - Free a previously allocated append sg table.
240  * @table:	 The mapped sg append table header
241  *
242  **/
243 void sg_free_append_table(struct sg_append_table *table)
244 {
245 	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
246 			table->total_nents);
247 }
248 EXPORT_SYMBOL(sg_free_append_table);
249 
250 
251 /**
252  * sg_free_table - Free a previously allocated sg table
253  * @table:	The mapped sg table header
254  *
255  **/
256 void sg_free_table(struct sg_table *table)
257 {
258 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
259 			table->orig_nents);
260 }
261 EXPORT_SYMBOL(sg_free_table);
262 
263 /**
264  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
265  * @table:	The sg table header to use
266  * @nents:	Number of entries in sg list
267  * @max_ents:	The maximum number of entries the allocator returns per call
268  * @nents_first_chunk: Number of entries int the (preallocated) first
269  * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
270  * @gfp_mask:	GFP allocation mask
271  * @alloc_fn:	Allocator to use
272  *
273  * Description:
274  *   This function returns a @table @nents long. The allocator is
275  *   defined to return scatterlist chunks of maximum size @max_ents.
276  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
277  *   chained in units of @max_ents.
278  *
279  * Notes:
280  *   If this function returns non-0 (eg failure), the caller must call
281  *   __sg_free_table() to cleanup any leftover allocations.
282  *
283  **/
284 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
285 		     unsigned int max_ents, struct scatterlist *first_chunk,
286 		     unsigned int nents_first_chunk, gfp_t gfp_mask,
287 		     sg_alloc_fn *alloc_fn)
288 {
289 	struct scatterlist *sg, *prv;
290 	unsigned int left;
291 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
292 	unsigned prv_max_ents;
293 
294 	memset(table, 0, sizeof(*table));
295 
296 	if (nents == 0)
297 		return -EINVAL;
298 #ifdef CONFIG_ARCH_NO_SG_CHAIN
299 	if (WARN_ON_ONCE(nents > max_ents))
300 		return -EINVAL;
301 #endif
302 
303 	left = nents;
304 	prv = NULL;
305 	do {
306 		unsigned int sg_size, alloc_size = left;
307 
308 		if (alloc_size > curr_max_ents) {
309 			alloc_size = curr_max_ents;
310 			sg_size = alloc_size - 1;
311 		} else
312 			sg_size = alloc_size;
313 
314 		left -= sg_size;
315 
316 		if (first_chunk) {
317 			sg = first_chunk;
318 			first_chunk = NULL;
319 		} else {
320 			sg = alloc_fn(alloc_size, gfp_mask);
321 		}
322 		if (unlikely(!sg)) {
323 			/*
324 			 * Adjust entry count to reflect that the last
325 			 * entry of the previous table won't be used for
326 			 * linkage.  Without this, sg_kfree() may get
327 			 * confused.
328 			 */
329 			if (prv)
330 				table->nents = ++table->orig_nents;
331 
332 			return -ENOMEM;
333 		}
334 
335 		sg_init_table(sg, alloc_size);
336 		table->nents = table->orig_nents += sg_size;
337 
338 		/*
339 		 * If this is the first mapping, assign the sg table header.
340 		 * If this is not the first mapping, chain previous part.
341 		 */
342 		if (prv)
343 			sg_chain(prv, prv_max_ents, sg);
344 		else
345 			table->sgl = sg;
346 
347 		/*
348 		 * If no more entries after this one, mark the end
349 		 */
350 		if (!left)
351 			sg_mark_end(&sg[sg_size - 1]);
352 
353 		prv = sg;
354 		prv_max_ents = curr_max_ents;
355 		curr_max_ents = max_ents;
356 	} while (left);
357 
358 	return 0;
359 }
360 EXPORT_SYMBOL(__sg_alloc_table);
361 
362 /**
363  * sg_alloc_table - Allocate and initialize an sg table
364  * @table:	The sg table header to use
365  * @nents:	Number of entries in sg list
366  * @gfp_mask:	GFP allocation mask
367  *
368  *  Description:
369  *    Allocate and initialize an sg table. If @nents@ is larger than
370  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
371  *
372  **/
373 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
374 {
375 	int ret;
376 
377 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
378 			       NULL, 0, gfp_mask, sg_kmalloc);
379 	if (unlikely(ret))
380 		sg_free_table(table);
381 	return ret;
382 }
383 EXPORT_SYMBOL(sg_alloc_table);
384 
385 static struct scatterlist *get_next_sg(struct sg_append_table *table,
386 				       struct scatterlist *cur,
387 				       unsigned long needed_sges,
388 				       gfp_t gfp_mask)
389 {
390 	struct scatterlist *new_sg, *next_sg;
391 	unsigned int alloc_size;
392 
393 	if (cur) {
394 		next_sg = sg_next(cur);
395 		/* Check if last entry should be keeped for chainning */
396 		if (!sg_is_last(next_sg) || needed_sges == 1)
397 			return next_sg;
398 	}
399 
400 	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
401 	new_sg = sg_kmalloc(alloc_size, gfp_mask);
402 	if (!new_sg)
403 		return ERR_PTR(-ENOMEM);
404 	sg_init_table(new_sg, alloc_size);
405 	if (cur) {
406 		table->total_nents += alloc_size - 1;
407 		__sg_chain(next_sg, new_sg);
408 	} else {
409 		table->sgt.sgl = new_sg;
410 		table->total_nents = alloc_size;
411 	}
412 	return new_sg;
413 }
414 
415 static bool pages_are_mergeable(struct page *a, struct page *b)
416 {
417 	if (page_to_pfn(a) != page_to_pfn(b) + 1)
418 		return false;
419 	if (!zone_device_pages_have_same_pgmap(a, b))
420 		return false;
421 	return true;
422 }
423 
424 /**
425  * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
426  *                                    table from an array of pages
427  * @sgt_append:  The sg append table to use
428  * @pages:       Pointer to an array of page pointers
429  * @n_pages:     Number of pages in the pages array
430  * @offset:      Offset from start of the first page to the start of a buffer
431  * @size:        Number of valid bytes in the buffer (after offset)
432  * @max_segment: Maximum size of a scatterlist element in bytes
433  * @left_pages:  Left pages caller have to set after this call
434  * @gfp_mask:	 GFP allocation mask
435  *
436  * Description:
437  *    In the first call it allocate and initialize an sg table from a list of
438  *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
439  *    the pages are squashed into a single scatterlist entry up to the maximum
440  *    size specified in @max_segment.  A user may provide an offset at a start
441  *    and a size of valid data in a buffer specified by the page array. The
442  *    returned sg table is released by sg_free_append_table
443  *
444  * Returns:
445  *   0 on success, negative error on failure
446  *
447  * Notes:
448  *   If this function returns non-0 (eg failure), the caller must call
449  *   sg_free_append_table() to cleanup any leftover allocations.
450  *
451  *   In the fist call, sgt_append must by initialized.
452  */
453 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
454 		struct page **pages, unsigned int n_pages, unsigned int offset,
455 		unsigned long size, unsigned int max_segment,
456 		unsigned int left_pages, gfp_t gfp_mask)
457 {
458 	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
459 	unsigned int added_nents = 0;
460 	struct scatterlist *s = sgt_append->prv;
461 	struct page *last_pg;
462 
463 	/*
464 	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
465 	 * otherwise it can overshoot.
466 	 */
467 	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
468 	if (WARN_ON(max_segment < PAGE_SIZE))
469 		return -EINVAL;
470 
471 	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
472 		return -EOPNOTSUPP;
473 
474 	if (sgt_append->prv) {
475 		unsigned long next_pfn = (page_to_phys(sg_page(sgt_append->prv)) +
476 			sgt_append->prv->offset + sgt_append->prv->length) / PAGE_SIZE;
477 
478 		if (WARN_ON(offset))
479 			return -EINVAL;
480 
481 		/* Merge contiguous pages into the last SG */
482 		prv_len = sgt_append->prv->length;
483 		if (page_to_pfn(pages[0]) == next_pfn) {
484 			last_pg = pfn_to_page(next_pfn - 1);
485 			while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
486 				if (sgt_append->prv->length + PAGE_SIZE > max_segment)
487 					break;
488 				sgt_append->prv->length += PAGE_SIZE;
489 				last_pg = pages[0];
490 				pages++;
491 				n_pages--;
492 			}
493 			if (!n_pages)
494 				goto out;
495 		}
496 	}
497 
498 	/* compute number of contiguous chunks */
499 	chunks = 1;
500 	seg_len = 0;
501 	for (i = 1; i < n_pages; i++) {
502 		seg_len += PAGE_SIZE;
503 		if (seg_len >= max_segment ||
504 		    !pages_are_mergeable(pages[i], pages[i - 1])) {
505 			chunks++;
506 			seg_len = 0;
507 		}
508 	}
509 
510 	/* merging chunks and putting them into the scatterlist */
511 	cur_page = 0;
512 	for (i = 0; i < chunks; i++) {
513 		unsigned int j, chunk_size;
514 
515 		/* look for the end of the current chunk */
516 		seg_len = 0;
517 		for (j = cur_page + 1; j < n_pages; j++) {
518 			seg_len += PAGE_SIZE;
519 			if (seg_len >= max_segment ||
520 			    !pages_are_mergeable(pages[j], pages[j - 1]))
521 				break;
522 		}
523 
524 		/* Pass how many chunks might be left */
525 		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
526 				gfp_mask);
527 		if (IS_ERR(s)) {
528 			/*
529 			 * Adjust entry length to be as before function was
530 			 * called.
531 			 */
532 			if (sgt_append->prv)
533 				sgt_append->prv->length = prv_len;
534 			return PTR_ERR(s);
535 		}
536 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
537 		sg_set_page(s, pages[cur_page],
538 			    min_t(unsigned long, size, chunk_size), offset);
539 		added_nents++;
540 		size -= chunk_size;
541 		offset = 0;
542 		cur_page = j;
543 	}
544 	sgt_append->sgt.nents += added_nents;
545 	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
546 	sgt_append->prv = s;
547 out:
548 	if (!left_pages)
549 		sg_mark_end(s);
550 	return 0;
551 }
552 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
553 
554 /**
555  * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
556  *                                     an array of pages and given maximum
557  *                                     segment.
558  * @sgt:	 The sg table header to use
559  * @pages:	 Pointer to an array of page pointers
560  * @n_pages:	 Number of pages in the pages array
561  * @offset:      Offset from start of the first page to the start of a buffer
562  * @size:        Number of valid bytes in the buffer (after offset)
563  * @max_segment: Maximum size of a scatterlist element in bytes
564  * @gfp_mask:	 GFP allocation mask
565  *
566  *  Description:
567  *    Allocate and initialize an sg table from a list of pages. Contiguous
568  *    ranges of the pages are squashed into a single scatterlist node up to the
569  *    maximum size specified in @max_segment. A user may provide an offset at a
570  *    start and a size of valid data in a buffer specified by the page array.
571  *
572  *    The returned sg table is released by sg_free_table.
573  *
574  *  Returns:
575  *   0 on success, negative error on failure
576  */
577 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
578 				unsigned int n_pages, unsigned int offset,
579 				unsigned long size, unsigned int max_segment,
580 				gfp_t gfp_mask)
581 {
582 	struct sg_append_table append = {};
583 	int err;
584 
585 	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
586 					       size, max_segment, 0, gfp_mask);
587 	if (err) {
588 		sg_free_append_table(&append);
589 		return err;
590 	}
591 	memcpy(sgt, &append.sgt, sizeof(*sgt));
592 	WARN_ON(append.total_nents != sgt->orig_nents);
593 	return 0;
594 }
595 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
596 
597 #ifdef CONFIG_SGL_ALLOC
598 
599 /**
600  * sgl_alloc_order - allocate a scatterlist and its pages
601  * @length: Length in bytes of the scatterlist. Must be at least one
602  * @order: Second argument for alloc_pages()
603  * @chainable: Whether or not to allocate an extra element in the scatterlist
604  *	for scatterlist chaining purposes
605  * @gfp: Memory allocation flags
606  * @nent_p: [out] Number of entries in the scatterlist that have pages
607  *
608  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
609  */
610 struct scatterlist *sgl_alloc_order(unsigned long long length,
611 				    unsigned int order, bool chainable,
612 				    gfp_t gfp, unsigned int *nent_p)
613 {
614 	struct scatterlist *sgl, *sg;
615 	struct page *page;
616 	unsigned int nent, nalloc;
617 	u32 elem_len;
618 
619 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
620 	/* Check for integer overflow */
621 	if (length > (nent << (PAGE_SHIFT + order)))
622 		return NULL;
623 	nalloc = nent;
624 	if (chainable) {
625 		/* Check for integer overflow */
626 		if (nalloc + 1 < nalloc)
627 			return NULL;
628 		nalloc++;
629 	}
630 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
631 			    gfp & ~GFP_DMA);
632 	if (!sgl)
633 		return NULL;
634 
635 	sg_init_table(sgl, nalloc);
636 	sg = sgl;
637 	while (length) {
638 		elem_len = min_t(u64, length, PAGE_SIZE << order);
639 		page = alloc_pages(gfp, order);
640 		if (!page) {
641 			sgl_free_order(sgl, order);
642 			return NULL;
643 		}
644 
645 		sg_set_page(sg, page, elem_len, 0);
646 		length -= elem_len;
647 		sg = sg_next(sg);
648 	}
649 	WARN_ONCE(length, "length = %lld\n", length);
650 	if (nent_p)
651 		*nent_p = nent;
652 	return sgl;
653 }
654 EXPORT_SYMBOL(sgl_alloc_order);
655 
656 /**
657  * sgl_alloc - allocate a scatterlist and its pages
658  * @length: Length in bytes of the scatterlist
659  * @gfp: Memory allocation flags
660  * @nent_p: [out] Number of entries in the scatterlist
661  *
662  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
663  */
664 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
665 			      unsigned int *nent_p)
666 {
667 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
668 }
669 EXPORT_SYMBOL(sgl_alloc);
670 
671 /**
672  * sgl_free_n_order - free a scatterlist and its pages
673  * @sgl: Scatterlist with one or more elements
674  * @nents: Maximum number of elements to free
675  * @order: Second argument for __free_pages()
676  *
677  * Notes:
678  * - If several scatterlists have been chained and each chain element is
679  *   freed separately then it's essential to set nents correctly to avoid that a
680  *   page would get freed twice.
681  * - All pages in a chained scatterlist can be freed at once by setting @nents
682  *   to a high number.
683  */
684 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
685 {
686 	struct scatterlist *sg;
687 	struct page *page;
688 	int i;
689 
690 	for_each_sg(sgl, sg, nents, i) {
691 		if (!sg)
692 			break;
693 		page = sg_page(sg);
694 		if (page)
695 			__free_pages(page, order);
696 	}
697 	kfree(sgl);
698 }
699 EXPORT_SYMBOL(sgl_free_n_order);
700 
701 /**
702  * sgl_free_order - free a scatterlist and its pages
703  * @sgl: Scatterlist with one or more elements
704  * @order: Second argument for __free_pages()
705  */
706 void sgl_free_order(struct scatterlist *sgl, int order)
707 {
708 	sgl_free_n_order(sgl, INT_MAX, order);
709 }
710 EXPORT_SYMBOL(sgl_free_order);
711 
712 /**
713  * sgl_free - free a scatterlist and its pages
714  * @sgl: Scatterlist with one or more elements
715  */
716 void sgl_free(struct scatterlist *sgl)
717 {
718 	sgl_free_order(sgl, 0);
719 }
720 EXPORT_SYMBOL(sgl_free);
721 
722 #endif /* CONFIG_SGL_ALLOC */
723 
724 void __sg_page_iter_start(struct sg_page_iter *piter,
725 			  struct scatterlist *sglist, unsigned int nents,
726 			  unsigned long pgoffset)
727 {
728 	piter->__pg_advance = 0;
729 	piter->__nents = nents;
730 
731 	piter->sg = sglist;
732 	piter->sg_pgoffset = pgoffset;
733 }
734 EXPORT_SYMBOL(__sg_page_iter_start);
735 
736 static int sg_page_count(struct scatterlist *sg)
737 {
738 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
739 }
740 
741 bool __sg_page_iter_next(struct sg_page_iter *piter)
742 {
743 	if (!piter->__nents || !piter->sg)
744 		return false;
745 
746 	piter->sg_pgoffset += piter->__pg_advance;
747 	piter->__pg_advance = 1;
748 
749 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
750 		piter->sg_pgoffset -= sg_page_count(piter->sg);
751 		piter->sg = sg_next(piter->sg);
752 		if (!--piter->__nents || !piter->sg)
753 			return false;
754 	}
755 
756 	return true;
757 }
758 EXPORT_SYMBOL(__sg_page_iter_next);
759 
760 static int sg_dma_page_count(struct scatterlist *sg)
761 {
762 	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
763 }
764 
765 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
766 {
767 	struct sg_page_iter *piter = &dma_iter->base;
768 
769 	if (!piter->__nents || !piter->sg)
770 		return false;
771 
772 	piter->sg_pgoffset += piter->__pg_advance;
773 	piter->__pg_advance = 1;
774 
775 	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
776 		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
777 		piter->sg = sg_next(piter->sg);
778 		if (!--piter->__nents || !piter->sg)
779 			return false;
780 	}
781 
782 	return true;
783 }
784 EXPORT_SYMBOL(__sg_page_iter_dma_next);
785 
786 /**
787  * sg_miter_start - start mapping iteration over a sg list
788  * @miter: sg mapping iter to be started
789  * @sgl: sg list to iterate over
790  * @nents: number of sg entries
791  *
792  * Description:
793  *   Starts mapping iterator @miter.
794  *
795  * Context:
796  *   Don't care.
797  */
798 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
799 		    unsigned int nents, unsigned int flags)
800 {
801 	memset(miter, 0, sizeof(struct sg_mapping_iter));
802 
803 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
804 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
805 	miter->__flags = flags;
806 }
807 EXPORT_SYMBOL(sg_miter_start);
808 
809 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
810 {
811 	if (!miter->__remaining) {
812 		struct scatterlist *sg;
813 
814 		if (!__sg_page_iter_next(&miter->piter))
815 			return false;
816 
817 		sg = miter->piter.sg;
818 
819 		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
820 		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
821 		miter->__offset &= PAGE_SIZE - 1;
822 		miter->__remaining = sg->offset + sg->length -
823 				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
824 				     miter->__offset;
825 		miter->__remaining = min_t(unsigned long, miter->__remaining,
826 					   PAGE_SIZE - miter->__offset);
827 	}
828 
829 	return true;
830 }
831 
832 /**
833  * sg_miter_skip - reposition mapping iterator
834  * @miter: sg mapping iter to be skipped
835  * @offset: number of bytes to plus the current location
836  *
837  * Description:
838  *   Sets the offset of @miter to its current location plus @offset bytes.
839  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
840  *   stops @miter.
841  *
842  * Context:
843  *   Don't care.
844  *
845  * Returns:
846  *   true if @miter contains the valid mapping.  false if end of sg
847  *   list is reached.
848  */
849 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
850 {
851 	sg_miter_stop(miter);
852 
853 	while (offset) {
854 		off_t consumed;
855 
856 		if (!sg_miter_get_next_page(miter))
857 			return false;
858 
859 		consumed = min_t(off_t, offset, miter->__remaining);
860 		miter->__offset += consumed;
861 		miter->__remaining -= consumed;
862 		offset -= consumed;
863 	}
864 
865 	return true;
866 }
867 EXPORT_SYMBOL(sg_miter_skip);
868 
869 /**
870  * sg_miter_next - proceed mapping iterator to the next mapping
871  * @miter: sg mapping iter to proceed
872  *
873  * Description:
874  *   Proceeds @miter to the next mapping.  @miter should have been started
875  *   using sg_miter_start().  On successful return, @miter->page,
876  *   @miter->addr and @miter->length point to the current mapping.
877  *
878  * Context:
879  *   May sleep if !SG_MITER_ATOMIC.
880  *
881  * Returns:
882  *   true if @miter contains the next mapping.  false if end of sg
883  *   list is reached.
884  */
885 bool sg_miter_next(struct sg_mapping_iter *miter)
886 {
887 	sg_miter_stop(miter);
888 
889 	/*
890 	 * Get to the next page if necessary.
891 	 * __remaining, __offset is adjusted by sg_miter_stop
892 	 */
893 	if (!sg_miter_get_next_page(miter))
894 		return false;
895 
896 	miter->page = sg_page_iter_page(&miter->piter);
897 	miter->consumed = miter->length = miter->__remaining;
898 
899 	if (miter->__flags & SG_MITER_ATOMIC)
900 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
901 	else
902 		miter->addr = kmap(miter->page) + miter->__offset;
903 
904 	return true;
905 }
906 EXPORT_SYMBOL(sg_miter_next);
907 
908 /**
909  * sg_miter_stop - stop mapping iteration
910  * @miter: sg mapping iter to be stopped
911  *
912  * Description:
913  *   Stops mapping iterator @miter.  @miter should have been started
914  *   using sg_miter_start().  A stopped iteration can be resumed by
915  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
916  *   need to be released during iteration.
917  *
918  * Context:
919  *   Don't care otherwise.
920  */
921 void sg_miter_stop(struct sg_mapping_iter *miter)
922 {
923 	WARN_ON(miter->consumed > miter->length);
924 
925 	/* drop resources from the last iteration */
926 	if (miter->addr) {
927 		miter->__offset += miter->consumed;
928 		miter->__remaining -= miter->consumed;
929 
930 		if (miter->__flags & SG_MITER_TO_SG)
931 			flush_dcache_page(miter->page);
932 
933 		if (miter->__flags & SG_MITER_ATOMIC) {
934 			WARN_ON_ONCE(!pagefault_disabled());
935 			kunmap_atomic(miter->addr);
936 		} else
937 			kunmap(miter->page);
938 
939 		miter->page = NULL;
940 		miter->addr = NULL;
941 		miter->length = 0;
942 		miter->consumed = 0;
943 	}
944 }
945 EXPORT_SYMBOL(sg_miter_stop);
946 
947 /**
948  * sg_copy_buffer - Copy data between a linear buffer and an SG list
949  * @sgl:		 The SG list
950  * @nents:		 Number of SG entries
951  * @buf:		 Where to copy from
952  * @buflen:		 The number of bytes to copy
953  * @skip:		 Number of bytes to skip before copying
954  * @to_buffer:		 transfer direction (true == from an sg list to a
955  *			 buffer, false == from a buffer to an sg list)
956  *
957  * Returns the number of copied bytes.
958  *
959  **/
960 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
961 		      size_t buflen, off_t skip, bool to_buffer)
962 {
963 	unsigned int offset = 0;
964 	struct sg_mapping_iter miter;
965 	unsigned int sg_flags = SG_MITER_ATOMIC;
966 
967 	if (to_buffer)
968 		sg_flags |= SG_MITER_FROM_SG;
969 	else
970 		sg_flags |= SG_MITER_TO_SG;
971 
972 	sg_miter_start(&miter, sgl, nents, sg_flags);
973 
974 	if (!sg_miter_skip(&miter, skip))
975 		return 0;
976 
977 	while ((offset < buflen) && sg_miter_next(&miter)) {
978 		unsigned int len;
979 
980 		len = min(miter.length, buflen - offset);
981 
982 		if (to_buffer)
983 			memcpy(buf + offset, miter.addr, len);
984 		else
985 			memcpy(miter.addr, buf + offset, len);
986 
987 		offset += len;
988 	}
989 
990 	sg_miter_stop(&miter);
991 
992 	return offset;
993 }
994 EXPORT_SYMBOL(sg_copy_buffer);
995 
996 /**
997  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
998  * @sgl:		 The SG list
999  * @nents:		 Number of SG entries
1000  * @buf:		 Where to copy from
1001  * @buflen:		 The number of bytes to copy
1002  *
1003  * Returns the number of copied bytes.
1004  *
1005  **/
1006 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1007 			   const void *buf, size_t buflen)
1008 {
1009 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1010 }
1011 EXPORT_SYMBOL(sg_copy_from_buffer);
1012 
1013 /**
1014  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1015  * @sgl:		 The SG list
1016  * @nents:		 Number of SG entries
1017  * @buf:		 Where to copy to
1018  * @buflen:		 The number of bytes to copy
1019  *
1020  * Returns the number of copied bytes.
1021  *
1022  **/
1023 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1024 			 void *buf, size_t buflen)
1025 {
1026 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1027 }
1028 EXPORT_SYMBOL(sg_copy_to_buffer);
1029 
1030 /**
1031  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1032  * @sgl:		 The SG list
1033  * @nents:		 Number of SG entries
1034  * @buf:		 Where to copy from
1035  * @buflen:		 The number of bytes to copy
1036  * @skip:		 Number of bytes to skip before copying
1037  *
1038  * Returns the number of copied bytes.
1039  *
1040  **/
1041 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1042 			    const void *buf, size_t buflen, off_t skip)
1043 {
1044 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1045 }
1046 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1047 
1048 /**
1049  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1050  * @sgl:		 The SG list
1051  * @nents:		 Number of SG entries
1052  * @buf:		 Where to copy to
1053  * @buflen:		 The number of bytes to copy
1054  * @skip:		 Number of bytes to skip before copying
1055  *
1056  * Returns the number of copied bytes.
1057  *
1058  **/
1059 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1060 			  void *buf, size_t buflen, off_t skip)
1061 {
1062 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1063 }
1064 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1065 
1066 /**
1067  * sg_zero_buffer - Zero-out a part of a SG list
1068  * @sgl:		 The SG list
1069  * @nents:		 Number of SG entries
1070  * @buflen:		 The number of bytes to zero out
1071  * @skip:		 Number of bytes to skip before zeroing
1072  *
1073  * Returns the number of bytes zeroed.
1074  **/
1075 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1076 		       size_t buflen, off_t skip)
1077 {
1078 	unsigned int offset = 0;
1079 	struct sg_mapping_iter miter;
1080 	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1081 
1082 	sg_miter_start(&miter, sgl, nents, sg_flags);
1083 
1084 	if (!sg_miter_skip(&miter, skip))
1085 		return false;
1086 
1087 	while (offset < buflen && sg_miter_next(&miter)) {
1088 		unsigned int len;
1089 
1090 		len = min(miter.length, buflen - offset);
1091 		memset(miter.addr, 0, len);
1092 
1093 		offset += len;
1094 	}
1095 
1096 	sg_miter_stop(&miter);
1097 	return offset;
1098 }
1099 EXPORT_SYMBOL(sg_zero_buffer);
1100 
1101 /*
1102  * Extract and pin a list of up to sg_max pages from UBUF- or IOVEC-class
1103  * iterators, and add them to the scatterlist.
1104  */
1105 static ssize_t extract_user_to_sg(struct iov_iter *iter,
1106 				  ssize_t maxsize,
1107 				  struct sg_table *sgtable,
1108 				  unsigned int sg_max,
1109 				  iov_iter_extraction_t extraction_flags)
1110 {
1111 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1112 	struct page **pages;
1113 	unsigned int npages;
1114 	ssize_t ret = 0, res;
1115 	size_t len, off;
1116 
1117 	/* We decant the page list into the tail of the scatterlist */
1118 	pages = (void *)sgtable->sgl +
1119 		array_size(sg_max, sizeof(struct scatterlist));
1120 	pages -= sg_max;
1121 
1122 	do {
1123 		res = iov_iter_extract_pages(iter, &pages, maxsize, sg_max,
1124 					     extraction_flags, &off);
1125 		if (res < 0)
1126 			goto failed;
1127 
1128 		len = res;
1129 		maxsize -= len;
1130 		ret += len;
1131 		npages = DIV_ROUND_UP(off + len, PAGE_SIZE);
1132 		sg_max -= npages;
1133 
1134 		for (; npages > 0; npages--) {
1135 			struct page *page = *pages;
1136 			size_t seg = min_t(size_t, PAGE_SIZE - off, len);
1137 
1138 			*pages++ = NULL;
1139 			sg_set_page(sg, page, seg, off);
1140 			sgtable->nents++;
1141 			sg++;
1142 			len -= seg;
1143 			off = 0;
1144 		}
1145 	} while (maxsize > 0 && sg_max > 0);
1146 
1147 	return ret;
1148 
1149 failed:
1150 	while (sgtable->nents > sgtable->orig_nents)
1151 		put_page(sg_page(&sgtable->sgl[--sgtable->nents]));
1152 	return res;
1153 }
1154 
1155 /*
1156  * Extract up to sg_max pages from a BVEC-type iterator and add them to the
1157  * scatterlist.  The pages are not pinned.
1158  */
1159 static ssize_t extract_bvec_to_sg(struct iov_iter *iter,
1160 				  ssize_t maxsize,
1161 				  struct sg_table *sgtable,
1162 				  unsigned int sg_max,
1163 				  iov_iter_extraction_t extraction_flags)
1164 {
1165 	const struct bio_vec *bv = iter->bvec;
1166 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1167 	unsigned long start = iter->iov_offset;
1168 	unsigned int i;
1169 	ssize_t ret = 0;
1170 
1171 	for (i = 0; i < iter->nr_segs; i++) {
1172 		size_t off, len;
1173 
1174 		len = bv[i].bv_len;
1175 		if (start >= len) {
1176 			start -= len;
1177 			continue;
1178 		}
1179 
1180 		len = min_t(size_t, maxsize, len - start);
1181 		off = bv[i].bv_offset + start;
1182 
1183 		sg_set_page(sg, bv[i].bv_page, len, off);
1184 		sgtable->nents++;
1185 		sg++;
1186 		sg_max--;
1187 
1188 		ret += len;
1189 		maxsize -= len;
1190 		if (maxsize <= 0 || sg_max == 0)
1191 			break;
1192 		start = 0;
1193 	}
1194 
1195 	if (ret > 0)
1196 		iov_iter_advance(iter, ret);
1197 	return ret;
1198 }
1199 
1200 /*
1201  * Extract up to sg_max pages from a KVEC-type iterator and add them to the
1202  * scatterlist.  This can deal with vmalloc'd buffers as well as kmalloc'd or
1203  * static buffers.  The pages are not pinned.
1204  */
1205 static ssize_t extract_kvec_to_sg(struct iov_iter *iter,
1206 				  ssize_t maxsize,
1207 				  struct sg_table *sgtable,
1208 				  unsigned int sg_max,
1209 				  iov_iter_extraction_t extraction_flags)
1210 {
1211 	const struct kvec *kv = iter->kvec;
1212 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1213 	unsigned long start = iter->iov_offset;
1214 	unsigned int i;
1215 	ssize_t ret = 0;
1216 
1217 	for (i = 0; i < iter->nr_segs; i++) {
1218 		struct page *page;
1219 		unsigned long kaddr;
1220 		size_t off, len, seg;
1221 
1222 		len = kv[i].iov_len;
1223 		if (start >= len) {
1224 			start -= len;
1225 			continue;
1226 		}
1227 
1228 		kaddr = (unsigned long)kv[i].iov_base + start;
1229 		off = kaddr & ~PAGE_MASK;
1230 		len = min_t(size_t, maxsize, len - start);
1231 		kaddr &= PAGE_MASK;
1232 
1233 		maxsize -= len;
1234 		ret += len;
1235 		do {
1236 			seg = min_t(size_t, len, PAGE_SIZE - off);
1237 			if (is_vmalloc_or_module_addr((void *)kaddr))
1238 				page = vmalloc_to_page((void *)kaddr);
1239 			else
1240 				page = virt_to_page((void *)kaddr);
1241 
1242 			sg_set_page(sg, page, len, off);
1243 			sgtable->nents++;
1244 			sg++;
1245 			sg_max--;
1246 
1247 			len -= seg;
1248 			kaddr += PAGE_SIZE;
1249 			off = 0;
1250 		} while (len > 0 && sg_max > 0);
1251 
1252 		if (maxsize <= 0 || sg_max == 0)
1253 			break;
1254 		start = 0;
1255 	}
1256 
1257 	if (ret > 0)
1258 		iov_iter_advance(iter, ret);
1259 	return ret;
1260 }
1261 
1262 /*
1263  * Extract up to sg_max folios from an XARRAY-type iterator and add them to
1264  * the scatterlist.  The pages are not pinned.
1265  */
1266 static ssize_t extract_xarray_to_sg(struct iov_iter *iter,
1267 				    ssize_t maxsize,
1268 				    struct sg_table *sgtable,
1269 				    unsigned int sg_max,
1270 				    iov_iter_extraction_t extraction_flags)
1271 {
1272 	struct scatterlist *sg = sgtable->sgl + sgtable->nents;
1273 	struct xarray *xa = iter->xarray;
1274 	struct folio *folio;
1275 	loff_t start = iter->xarray_start + iter->iov_offset;
1276 	pgoff_t index = start / PAGE_SIZE;
1277 	ssize_t ret = 0;
1278 	size_t offset, len;
1279 	XA_STATE(xas, xa, index);
1280 
1281 	rcu_read_lock();
1282 
1283 	xas_for_each(&xas, folio, ULONG_MAX) {
1284 		if (xas_retry(&xas, folio))
1285 			continue;
1286 		if (WARN_ON(xa_is_value(folio)))
1287 			break;
1288 		if (WARN_ON(folio_test_hugetlb(folio)))
1289 			break;
1290 
1291 		offset = offset_in_folio(folio, start);
1292 		len = min_t(size_t, maxsize, folio_size(folio) - offset);
1293 
1294 		sg_set_page(sg, folio_page(folio, 0), len, offset);
1295 		sgtable->nents++;
1296 		sg++;
1297 		sg_max--;
1298 
1299 		maxsize -= len;
1300 		ret += len;
1301 		if (maxsize <= 0 || sg_max == 0)
1302 			break;
1303 	}
1304 
1305 	rcu_read_unlock();
1306 	if (ret > 0)
1307 		iov_iter_advance(iter, ret);
1308 	return ret;
1309 }
1310 
1311 /**
1312  * extract_iter_to_sg - Extract pages from an iterator and add to an sglist
1313  * @iter: The iterator to extract from
1314  * @maxsize: The amount of iterator to copy
1315  * @sgtable: The scatterlist table to fill in
1316  * @sg_max: Maximum number of elements in @sgtable that may be filled
1317  * @extraction_flags: Flags to qualify the request
1318  *
1319  * Extract the page fragments from the given amount of the source iterator and
1320  * add them to a scatterlist that refers to all of those bits, to a maximum
1321  * addition of @sg_max elements.
1322  *
1323  * The pages referred to by UBUF- and IOVEC-type iterators are extracted and
1324  * pinned; BVEC-, KVEC- and XARRAY-type are extracted but aren't pinned; PIPE-
1325  * and DISCARD-type are not supported.
1326  *
1327  * No end mark is placed on the scatterlist; that's left to the caller.
1328  *
1329  * @extraction_flags can have ITER_ALLOW_P2PDMA set to request peer-to-peer DMA
1330  * be allowed on the pages extracted.
1331  *
1332  * If successful, @sgtable->nents is updated to include the number of elements
1333  * added and the number of bytes added is returned.  @sgtable->orig_nents is
1334  * left unaltered.
1335  *
1336  * The iov_iter_extract_mode() function should be used to query how cleanup
1337  * should be performed.
1338  */
1339 ssize_t extract_iter_to_sg(struct iov_iter *iter, size_t maxsize,
1340 			   struct sg_table *sgtable, unsigned int sg_max,
1341 			   iov_iter_extraction_t extraction_flags)
1342 {
1343 	if (maxsize == 0)
1344 		return 0;
1345 
1346 	switch (iov_iter_type(iter)) {
1347 	case ITER_UBUF:
1348 	case ITER_IOVEC:
1349 		return extract_user_to_sg(iter, maxsize, sgtable, sg_max,
1350 					  extraction_flags);
1351 	case ITER_BVEC:
1352 		return extract_bvec_to_sg(iter, maxsize, sgtable, sg_max,
1353 					  extraction_flags);
1354 	case ITER_KVEC:
1355 		return extract_kvec_to_sg(iter, maxsize, sgtable, sg_max,
1356 					  extraction_flags);
1357 	case ITER_XARRAY:
1358 		return extract_xarray_to_sg(iter, maxsize, sgtable, sg_max,
1359 					    extraction_flags);
1360 	default:
1361 		pr_err("%s(%u) unsupported\n", __func__, iov_iter_type(iter));
1362 		WARN_ON_ONCE(1);
1363 		return -EIO;
1364 	}
1365 }
1366 EXPORT_SYMBOL_GPL(extract_iter_to_sg);
1367