xref: /openbmc/linux/lib/scatterlist.c (revision ca79522c)
1 /*
2  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
3  *
4  * Scatterlist handling helpers.
5  *
6  * This source code is licensed under the GNU General Public License,
7  * Version 2. See the file COPYING for more details.
8  */
9 #include <linux/export.h>
10 #include <linux/slab.h>
11 #include <linux/scatterlist.h>
12 #include <linux/highmem.h>
13 #include <linux/kmemleak.h>
14 
15 /**
16  * sg_next - return the next scatterlist entry in a list
17  * @sg:		The current sg entry
18  *
19  * Description:
20  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
21  *   of a chained scatterlist, it could jump to the start of a new
22  *   scatterlist array.
23  *
24  **/
25 struct scatterlist *sg_next(struct scatterlist *sg)
26 {
27 #ifdef CONFIG_DEBUG_SG
28 	BUG_ON(sg->sg_magic != SG_MAGIC);
29 #endif
30 	if (sg_is_last(sg))
31 		return NULL;
32 
33 	sg++;
34 	if (unlikely(sg_is_chain(sg)))
35 		sg = sg_chain_ptr(sg);
36 
37 	return sg;
38 }
39 EXPORT_SYMBOL(sg_next);
40 
41 /**
42  * sg_nents - return total count of entries in scatterlist
43  * @sg:		The scatterlist
44  *
45  * Description:
46  * Allows to know how many entries are in sg, taking into acount
47  * chaining as well
48  *
49  **/
50 int sg_nents(struct scatterlist *sg)
51 {
52 	int nents;
53 	for (nents = 0; sg; sg = sg_next(sg))
54 		nents++;
55 	return nents;
56 }
57 EXPORT_SYMBOL(sg_nents);
58 
59 
60 /**
61  * sg_last - return the last scatterlist entry in a list
62  * @sgl:	First entry in the scatterlist
63  * @nents:	Number of entries in the scatterlist
64  *
65  * Description:
66  *   Should only be used casually, it (currently) scans the entire list
67  *   to get the last entry.
68  *
69  *   Note that the @sgl@ pointer passed in need not be the first one,
70  *   the important bit is that @nents@ denotes the number of entries that
71  *   exist from @sgl@.
72  *
73  **/
74 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
75 {
76 #ifndef ARCH_HAS_SG_CHAIN
77 	struct scatterlist *ret = &sgl[nents - 1];
78 #else
79 	struct scatterlist *sg, *ret = NULL;
80 	unsigned int i;
81 
82 	for_each_sg(sgl, sg, nents, i)
83 		ret = sg;
84 
85 #endif
86 #ifdef CONFIG_DEBUG_SG
87 	BUG_ON(sgl[0].sg_magic != SG_MAGIC);
88 	BUG_ON(!sg_is_last(ret));
89 #endif
90 	return ret;
91 }
92 EXPORT_SYMBOL(sg_last);
93 
94 /**
95  * sg_init_table - Initialize SG table
96  * @sgl:	   The SG table
97  * @nents:	   Number of entries in table
98  *
99  * Notes:
100  *   If this is part of a chained sg table, sg_mark_end() should be
101  *   used only on the last table part.
102  *
103  **/
104 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
105 {
106 	memset(sgl, 0, sizeof(*sgl) * nents);
107 #ifdef CONFIG_DEBUG_SG
108 	{
109 		unsigned int i;
110 		for (i = 0; i < nents; i++)
111 			sgl[i].sg_magic = SG_MAGIC;
112 	}
113 #endif
114 	sg_mark_end(&sgl[nents - 1]);
115 }
116 EXPORT_SYMBOL(sg_init_table);
117 
118 /**
119  * sg_init_one - Initialize a single entry sg list
120  * @sg:		 SG entry
121  * @buf:	 Virtual address for IO
122  * @buflen:	 IO length
123  *
124  **/
125 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
126 {
127 	sg_init_table(sg, 1);
128 	sg_set_buf(sg, buf, buflen);
129 }
130 EXPORT_SYMBOL(sg_init_one);
131 
132 /*
133  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
134  * helpers.
135  */
136 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
137 {
138 	if (nents == SG_MAX_SINGLE_ALLOC) {
139 		/*
140 		 * Kmemleak doesn't track page allocations as they are not
141 		 * commonly used (in a raw form) for kernel data structures.
142 		 * As we chain together a list of pages and then a normal
143 		 * kmalloc (tracked by kmemleak), in order to for that last
144 		 * allocation not to become decoupled (and thus a
145 		 * false-positive) we need to inform kmemleak of all the
146 		 * intermediate allocations.
147 		 */
148 		void *ptr = (void *) __get_free_page(gfp_mask);
149 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
150 		return ptr;
151 	} else
152 		return kmalloc(nents * sizeof(struct scatterlist), gfp_mask);
153 }
154 
155 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
156 {
157 	if (nents == SG_MAX_SINGLE_ALLOC) {
158 		kmemleak_free(sg);
159 		free_page((unsigned long) sg);
160 	} else
161 		kfree(sg);
162 }
163 
164 /**
165  * __sg_free_table - Free a previously mapped sg table
166  * @table:	The sg table header to use
167  * @max_ents:	The maximum number of entries per single scatterlist
168  * @free_fn:	Free function
169  *
170  *  Description:
171  *    Free an sg table previously allocated and setup with
172  *    __sg_alloc_table().  The @max_ents value must be identical to
173  *    that previously used with __sg_alloc_table().
174  *
175  **/
176 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
177 		     sg_free_fn *free_fn)
178 {
179 	struct scatterlist *sgl, *next;
180 
181 	if (unlikely(!table->sgl))
182 		return;
183 
184 	sgl = table->sgl;
185 	while (table->orig_nents) {
186 		unsigned int alloc_size = table->orig_nents;
187 		unsigned int sg_size;
188 
189 		/*
190 		 * If we have more than max_ents segments left,
191 		 * then assign 'next' to the sg table after the current one.
192 		 * sg_size is then one less than alloc size, since the last
193 		 * element is the chain pointer.
194 		 */
195 		if (alloc_size > max_ents) {
196 			next = sg_chain_ptr(&sgl[max_ents - 1]);
197 			alloc_size = max_ents;
198 			sg_size = alloc_size - 1;
199 		} else {
200 			sg_size = alloc_size;
201 			next = NULL;
202 		}
203 
204 		table->orig_nents -= sg_size;
205 		free_fn(sgl, alloc_size);
206 		sgl = next;
207 	}
208 
209 	table->sgl = NULL;
210 }
211 EXPORT_SYMBOL(__sg_free_table);
212 
213 /**
214  * sg_free_table - Free a previously allocated sg table
215  * @table:	The mapped sg table header
216  *
217  **/
218 void sg_free_table(struct sg_table *table)
219 {
220 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
221 }
222 EXPORT_SYMBOL(sg_free_table);
223 
224 /**
225  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
226  * @table:	The sg table header to use
227  * @nents:	Number of entries in sg list
228  * @max_ents:	The maximum number of entries the allocator returns per call
229  * @gfp_mask:	GFP allocation mask
230  * @alloc_fn:	Allocator to use
231  *
232  * Description:
233  *   This function returns a @table @nents long. The allocator is
234  *   defined to return scatterlist chunks of maximum size @max_ents.
235  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
236  *   chained in units of @max_ents.
237  *
238  * Notes:
239  *   If this function returns non-0 (eg failure), the caller must call
240  *   __sg_free_table() to cleanup any leftover allocations.
241  *
242  **/
243 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
244 		     unsigned int max_ents, gfp_t gfp_mask,
245 		     sg_alloc_fn *alloc_fn)
246 {
247 	struct scatterlist *sg, *prv;
248 	unsigned int left;
249 
250 #ifndef ARCH_HAS_SG_CHAIN
251 	if (WARN_ON_ONCE(nents > max_ents))
252 		return -EINVAL;
253 #endif
254 
255 	memset(table, 0, sizeof(*table));
256 
257 	left = nents;
258 	prv = NULL;
259 	do {
260 		unsigned int sg_size, alloc_size = left;
261 
262 		if (alloc_size > max_ents) {
263 			alloc_size = max_ents;
264 			sg_size = alloc_size - 1;
265 		} else
266 			sg_size = alloc_size;
267 
268 		left -= sg_size;
269 
270 		sg = alloc_fn(alloc_size, gfp_mask);
271 		if (unlikely(!sg)) {
272 			/*
273 			 * Adjust entry count to reflect that the last
274 			 * entry of the previous table won't be used for
275 			 * linkage.  Without this, sg_kfree() may get
276 			 * confused.
277 			 */
278 			if (prv)
279 				table->nents = ++table->orig_nents;
280 
281  			return -ENOMEM;
282 		}
283 
284 		sg_init_table(sg, alloc_size);
285 		table->nents = table->orig_nents += sg_size;
286 
287 		/*
288 		 * If this is the first mapping, assign the sg table header.
289 		 * If this is not the first mapping, chain previous part.
290 		 */
291 		if (prv)
292 			sg_chain(prv, max_ents, sg);
293 		else
294 			table->sgl = sg;
295 
296 		/*
297 		 * If no more entries after this one, mark the end
298 		 */
299 		if (!left)
300 			sg_mark_end(&sg[sg_size - 1]);
301 
302 		prv = sg;
303 	} while (left);
304 
305 	return 0;
306 }
307 EXPORT_SYMBOL(__sg_alloc_table);
308 
309 /**
310  * sg_alloc_table - Allocate and initialize an sg table
311  * @table:	The sg table header to use
312  * @nents:	Number of entries in sg list
313  * @gfp_mask:	GFP allocation mask
314  *
315  *  Description:
316  *    Allocate and initialize an sg table. If @nents@ is larger than
317  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
318  *
319  **/
320 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
321 {
322 	int ret;
323 
324 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
325 			       gfp_mask, sg_kmalloc);
326 	if (unlikely(ret))
327 		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree);
328 
329 	return ret;
330 }
331 EXPORT_SYMBOL(sg_alloc_table);
332 
333 /**
334  * sg_alloc_table_from_pages - Allocate and initialize an sg table from
335  *			       an array of pages
336  * @sgt:	The sg table header to use
337  * @pages:	Pointer to an array of page pointers
338  * @n_pages:	Number of pages in the pages array
339  * @offset:     Offset from start of the first page to the start of a buffer
340  * @size:       Number of valid bytes in the buffer (after offset)
341  * @gfp_mask:	GFP allocation mask
342  *
343  *  Description:
344  *    Allocate and initialize an sg table from a list of pages. Contiguous
345  *    ranges of the pages are squashed into a single scatterlist node. A user
346  *    may provide an offset at a start and a size of valid data in a buffer
347  *    specified by the page array. The returned sg table is released by
348  *    sg_free_table.
349  *
350  * Returns:
351  *   0 on success, negative error on failure
352  */
353 int sg_alloc_table_from_pages(struct sg_table *sgt,
354 	struct page **pages, unsigned int n_pages,
355 	unsigned long offset, unsigned long size,
356 	gfp_t gfp_mask)
357 {
358 	unsigned int chunks;
359 	unsigned int i;
360 	unsigned int cur_page;
361 	int ret;
362 	struct scatterlist *s;
363 
364 	/* compute number of contiguous chunks */
365 	chunks = 1;
366 	for (i = 1; i < n_pages; ++i)
367 		if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1)
368 			++chunks;
369 
370 	ret = sg_alloc_table(sgt, chunks, gfp_mask);
371 	if (unlikely(ret))
372 		return ret;
373 
374 	/* merging chunks and putting them into the scatterlist */
375 	cur_page = 0;
376 	for_each_sg(sgt->sgl, s, sgt->orig_nents, i) {
377 		unsigned long chunk_size;
378 		unsigned int j;
379 
380 		/* look for the end of the current chunk */
381 		for (j = cur_page + 1; j < n_pages; ++j)
382 			if (page_to_pfn(pages[j]) !=
383 			    page_to_pfn(pages[j - 1]) + 1)
384 				break;
385 
386 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
387 		sg_set_page(s, pages[cur_page], min(size, chunk_size), offset);
388 		size -= chunk_size;
389 		offset = 0;
390 		cur_page = j;
391 	}
392 
393 	return 0;
394 }
395 EXPORT_SYMBOL(sg_alloc_table_from_pages);
396 
397 void __sg_page_iter_start(struct sg_page_iter *piter,
398 			  struct scatterlist *sglist, unsigned int nents,
399 			  unsigned long pgoffset)
400 {
401 	piter->__pg_advance = 0;
402 	piter->__nents = nents;
403 
404 	piter->sg = sglist;
405 	piter->sg_pgoffset = pgoffset;
406 }
407 EXPORT_SYMBOL(__sg_page_iter_start);
408 
409 static int sg_page_count(struct scatterlist *sg)
410 {
411 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
412 }
413 
414 bool __sg_page_iter_next(struct sg_page_iter *piter)
415 {
416 	if (!piter->__nents || !piter->sg)
417 		return false;
418 
419 	piter->sg_pgoffset += piter->__pg_advance;
420 	piter->__pg_advance = 1;
421 
422 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
423 		piter->sg_pgoffset -= sg_page_count(piter->sg);
424 		piter->sg = sg_next(piter->sg);
425 		if (!--piter->__nents || !piter->sg)
426 			return false;
427 	}
428 
429 	return true;
430 }
431 EXPORT_SYMBOL(__sg_page_iter_next);
432 
433 /**
434  * sg_miter_start - start mapping iteration over a sg list
435  * @miter: sg mapping iter to be started
436  * @sgl: sg list to iterate over
437  * @nents: number of sg entries
438  *
439  * Description:
440  *   Starts mapping iterator @miter.
441  *
442  * Context:
443  *   Don't care.
444  */
445 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
446 		    unsigned int nents, unsigned int flags)
447 {
448 	memset(miter, 0, sizeof(struct sg_mapping_iter));
449 
450 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
451 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
452 	miter->__flags = flags;
453 }
454 EXPORT_SYMBOL(sg_miter_start);
455 
456 /**
457  * sg_miter_next - proceed mapping iterator to the next mapping
458  * @miter: sg mapping iter to proceed
459  *
460  * Description:
461  *   Proceeds @miter to the next mapping.  @miter should have been started
462  *   using sg_miter_start().  On successful return, @miter->page,
463  *   @miter->addr and @miter->length point to the current mapping.
464  *
465  * Context:
466  *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
467  *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
468  *
469  * Returns:
470  *   true if @miter contains the next mapping.  false if end of sg
471  *   list is reached.
472  */
473 bool sg_miter_next(struct sg_mapping_iter *miter)
474 {
475 	sg_miter_stop(miter);
476 
477 	/*
478 	 * Get to the next page if necessary.
479 	 * __remaining, __offset is adjusted by sg_miter_stop
480 	 */
481 	if (!miter->__remaining) {
482 		struct scatterlist *sg;
483 		unsigned long pgoffset;
484 
485 		if (!__sg_page_iter_next(&miter->piter))
486 			return false;
487 
488 		sg = miter->piter.sg;
489 		pgoffset = miter->piter.sg_pgoffset;
490 
491 		miter->__offset = pgoffset ? 0 : sg->offset;
492 		miter->__remaining = sg->offset + sg->length -
493 				(pgoffset << PAGE_SHIFT) - miter->__offset;
494 		miter->__remaining = min_t(unsigned long, miter->__remaining,
495 					   PAGE_SIZE - miter->__offset);
496 	}
497 	miter->page = sg_page_iter_page(&miter->piter);
498 	miter->consumed = miter->length = miter->__remaining;
499 
500 	if (miter->__flags & SG_MITER_ATOMIC)
501 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
502 	else
503 		miter->addr = kmap(miter->page) + miter->__offset;
504 
505 	return true;
506 }
507 EXPORT_SYMBOL(sg_miter_next);
508 
509 /**
510  * sg_miter_stop - stop mapping iteration
511  * @miter: sg mapping iter to be stopped
512  *
513  * Description:
514  *   Stops mapping iterator @miter.  @miter should have been started
515  *   started using sg_miter_start().  A stopped iteration can be
516  *   resumed by calling sg_miter_next() on it.  This is useful when
517  *   resources (kmap) need to be released during iteration.
518  *
519  * Context:
520  *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
521  *   otherwise.
522  */
523 void sg_miter_stop(struct sg_mapping_iter *miter)
524 {
525 	WARN_ON(miter->consumed > miter->length);
526 
527 	/* drop resources from the last iteration */
528 	if (miter->addr) {
529 		miter->__offset += miter->consumed;
530 		miter->__remaining -= miter->consumed;
531 
532 		if (miter->__flags & SG_MITER_TO_SG)
533 			flush_kernel_dcache_page(miter->page);
534 
535 		if (miter->__flags & SG_MITER_ATOMIC) {
536 			WARN_ON_ONCE(preemptible());
537 			kunmap_atomic(miter->addr);
538 		} else
539 			kunmap(miter->page);
540 
541 		miter->page = NULL;
542 		miter->addr = NULL;
543 		miter->length = 0;
544 		miter->consumed = 0;
545 	}
546 }
547 EXPORT_SYMBOL(sg_miter_stop);
548 
549 /**
550  * sg_copy_buffer - Copy data between a linear buffer and an SG list
551  * @sgl:		 The SG list
552  * @nents:		 Number of SG entries
553  * @buf:		 Where to copy from
554  * @buflen:		 The number of bytes to copy
555  * @to_buffer: 		 transfer direction (non zero == from an sg list to a
556  * 			 buffer, 0 == from a buffer to an sg list
557  *
558  * Returns the number of copied bytes.
559  *
560  **/
561 static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents,
562 			     void *buf, size_t buflen, int to_buffer)
563 {
564 	unsigned int offset = 0;
565 	struct sg_mapping_iter miter;
566 	unsigned long flags;
567 	unsigned int sg_flags = SG_MITER_ATOMIC;
568 
569 	if (to_buffer)
570 		sg_flags |= SG_MITER_FROM_SG;
571 	else
572 		sg_flags |= SG_MITER_TO_SG;
573 
574 	sg_miter_start(&miter, sgl, nents, sg_flags);
575 
576 	local_irq_save(flags);
577 
578 	while (sg_miter_next(&miter) && offset < buflen) {
579 		unsigned int len;
580 
581 		len = min(miter.length, buflen - offset);
582 
583 		if (to_buffer)
584 			memcpy(buf + offset, miter.addr, len);
585 		else
586 			memcpy(miter.addr, buf + offset, len);
587 
588 		offset += len;
589 	}
590 
591 	sg_miter_stop(&miter);
592 
593 	local_irq_restore(flags);
594 	return offset;
595 }
596 
597 /**
598  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
599  * @sgl:		 The SG list
600  * @nents:		 Number of SG entries
601  * @buf:		 Where to copy from
602  * @buflen:		 The number of bytes to copy
603  *
604  * Returns the number of copied bytes.
605  *
606  **/
607 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
608 			   void *buf, size_t buflen)
609 {
610 	return sg_copy_buffer(sgl, nents, buf, buflen, 0);
611 }
612 EXPORT_SYMBOL(sg_copy_from_buffer);
613 
614 /**
615  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
616  * @sgl:		 The SG list
617  * @nents:		 Number of SG entries
618  * @buf:		 Where to copy to
619  * @buflen:		 The number of bytes to copy
620  *
621  * Returns the number of copied bytes.
622  *
623  **/
624 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
625 			 void *buf, size_t buflen)
626 {
627 	return sg_copy_buffer(sgl, nents, buf, buflen, 1);
628 }
629 EXPORT_SYMBOL(sg_copy_to_buffer);
630