xref: /openbmc/linux/lib/scatterlist.c (revision 9a40401c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 
13 /**
14  * sg_next - return the next scatterlist entry in a list
15  * @sg:		The current sg entry
16  *
17  * Description:
18  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
19  *   of a chained scatterlist, it could jump to the start of a new
20  *   scatterlist array.
21  *
22  **/
23 struct scatterlist *sg_next(struct scatterlist *sg)
24 {
25 	if (sg_is_last(sg))
26 		return NULL;
27 
28 	sg++;
29 	if (unlikely(sg_is_chain(sg)))
30 		sg = sg_chain_ptr(sg);
31 
32 	return sg;
33 }
34 EXPORT_SYMBOL(sg_next);
35 
36 /**
37  * sg_nents - return total count of entries in scatterlist
38  * @sg:		The scatterlist
39  *
40  * Description:
41  * Allows to know how many entries are in sg, taking into acount
42  * chaining as well
43  *
44  **/
45 int sg_nents(struct scatterlist *sg)
46 {
47 	int nents;
48 	for (nents = 0; sg; sg = sg_next(sg))
49 		nents++;
50 	return nents;
51 }
52 EXPORT_SYMBOL(sg_nents);
53 
54 /**
55  * sg_nents_for_len - return total count of entries in scatterlist
56  *                    needed to satisfy the supplied length
57  * @sg:		The scatterlist
58  * @len:	The total required length
59  *
60  * Description:
61  * Determines the number of entries in sg that are required to meet
62  * the supplied length, taking into acount chaining as well
63  *
64  * Returns:
65  *   the number of sg entries needed, negative error on failure
66  *
67  **/
68 int sg_nents_for_len(struct scatterlist *sg, u64 len)
69 {
70 	int nents;
71 	u64 total;
72 
73 	if (!len)
74 		return 0;
75 
76 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 		nents++;
78 		total += sg->length;
79 		if (total >= len)
80 			return nents;
81 	}
82 
83 	return -EINVAL;
84 }
85 EXPORT_SYMBOL(sg_nents_for_len);
86 
87 /**
88  * sg_last - return the last scatterlist entry in a list
89  * @sgl:	First entry in the scatterlist
90  * @nents:	Number of entries in the scatterlist
91  *
92  * Description:
93  *   Should only be used casually, it (currently) scans the entire list
94  *   to get the last entry.
95  *
96  *   Note that the @sgl@ pointer passed in need not be the first one,
97  *   the important bit is that @nents@ denotes the number of entries that
98  *   exist from @sgl@.
99  *
100  **/
101 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102 {
103 	struct scatterlist *sg, *ret = NULL;
104 	unsigned int i;
105 
106 	for_each_sg(sgl, sg, nents, i)
107 		ret = sg;
108 
109 	BUG_ON(!sg_is_last(ret));
110 	return ret;
111 }
112 EXPORT_SYMBOL(sg_last);
113 
114 /**
115  * sg_init_table - Initialize SG table
116  * @sgl:	   The SG table
117  * @nents:	   Number of entries in table
118  *
119  * Notes:
120  *   If this is part of a chained sg table, sg_mark_end() should be
121  *   used only on the last table part.
122  *
123  **/
124 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125 {
126 	memset(sgl, 0, sizeof(*sgl) * nents);
127 	sg_init_marker(sgl, nents);
128 }
129 EXPORT_SYMBOL(sg_init_table);
130 
131 /**
132  * sg_init_one - Initialize a single entry sg list
133  * @sg:		 SG entry
134  * @buf:	 Virtual address for IO
135  * @buflen:	 IO length
136  *
137  **/
138 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139 {
140 	sg_init_table(sg, 1);
141 	sg_set_buf(sg, buf, buflen);
142 }
143 EXPORT_SYMBOL(sg_init_one);
144 
145 /*
146  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147  * helpers.
148  */
149 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150 {
151 	if (nents == SG_MAX_SINGLE_ALLOC) {
152 		/*
153 		 * Kmemleak doesn't track page allocations as they are not
154 		 * commonly used (in a raw form) for kernel data structures.
155 		 * As we chain together a list of pages and then a normal
156 		 * kmalloc (tracked by kmemleak), in order to for that last
157 		 * allocation not to become decoupled (and thus a
158 		 * false-positive) we need to inform kmemleak of all the
159 		 * intermediate allocations.
160 		 */
161 		void *ptr = (void *) __get_free_page(gfp_mask);
162 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 		return ptr;
164 	} else
165 		return kmalloc_array(nents, sizeof(struct scatterlist),
166 				     gfp_mask);
167 }
168 
169 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170 {
171 	if (nents == SG_MAX_SINGLE_ALLOC) {
172 		kmemleak_free(sg);
173 		free_page((unsigned long) sg);
174 	} else
175 		kfree(sg);
176 }
177 
178 /**
179  * __sg_free_table - Free a previously mapped sg table
180  * @table:	The sg table header to use
181  * @max_ents:	The maximum number of entries per single scatterlist
182  * @nents_first_chunk: Number of entries int the (preallocated) first
183  * 	scatterlist chunk, 0 means no such preallocated first chunk
184  * @free_fn:	Free function
185  *
186  *  Description:
187  *    Free an sg table previously allocated and setup with
188  *    __sg_alloc_table().  The @max_ents value must be identical to
189  *    that previously used with __sg_alloc_table().
190  *
191  **/
192 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
193 		     unsigned int nents_first_chunk, sg_free_fn *free_fn)
194 {
195 	struct scatterlist *sgl, *next;
196 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
197 
198 	if (unlikely(!table->sgl))
199 		return;
200 
201 	sgl = table->sgl;
202 	while (table->orig_nents) {
203 		unsigned int alloc_size = table->orig_nents;
204 		unsigned int sg_size;
205 
206 		/*
207 		 * If we have more than max_ents segments left,
208 		 * then assign 'next' to the sg table after the current one.
209 		 * sg_size is then one less than alloc size, since the last
210 		 * element is the chain pointer.
211 		 */
212 		if (alloc_size > curr_max_ents) {
213 			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
214 			alloc_size = curr_max_ents;
215 			sg_size = alloc_size - 1;
216 		} else {
217 			sg_size = alloc_size;
218 			next = NULL;
219 		}
220 
221 		table->orig_nents -= sg_size;
222 		if (nents_first_chunk)
223 			nents_first_chunk = 0;
224 		else
225 			free_fn(sgl, alloc_size);
226 		sgl = next;
227 		curr_max_ents = max_ents;
228 	}
229 
230 	table->sgl = NULL;
231 }
232 EXPORT_SYMBOL(__sg_free_table);
233 
234 /**
235  * sg_free_table - Free a previously allocated sg table
236  * @table:	The mapped sg table header
237  *
238  **/
239 void sg_free_table(struct sg_table *table)
240 {
241 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree);
242 }
243 EXPORT_SYMBOL(sg_free_table);
244 
245 /**
246  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
247  * @table:	The sg table header to use
248  * @nents:	Number of entries in sg list
249  * @max_ents:	The maximum number of entries the allocator returns per call
250  * @nents_first_chunk: Number of entries int the (preallocated) first
251  * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
252  * @gfp_mask:	GFP allocation mask
253  * @alloc_fn:	Allocator to use
254  *
255  * Description:
256  *   This function returns a @table @nents long. The allocator is
257  *   defined to return scatterlist chunks of maximum size @max_ents.
258  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
259  *   chained in units of @max_ents.
260  *
261  * Notes:
262  *   If this function returns non-0 (eg failure), the caller must call
263  *   __sg_free_table() to cleanup any leftover allocations.
264  *
265  **/
266 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
267 		     unsigned int max_ents, struct scatterlist *first_chunk,
268 		     unsigned int nents_first_chunk, gfp_t gfp_mask,
269 		     sg_alloc_fn *alloc_fn)
270 {
271 	struct scatterlist *sg, *prv;
272 	unsigned int left;
273 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
274 	unsigned prv_max_ents;
275 
276 	memset(table, 0, sizeof(*table));
277 
278 	if (nents == 0)
279 		return -EINVAL;
280 #ifdef CONFIG_ARCH_NO_SG_CHAIN
281 	if (WARN_ON_ONCE(nents > max_ents))
282 		return -EINVAL;
283 #endif
284 
285 	left = nents;
286 	prv = NULL;
287 	do {
288 		unsigned int sg_size, alloc_size = left;
289 
290 		if (alloc_size > curr_max_ents) {
291 			alloc_size = curr_max_ents;
292 			sg_size = alloc_size - 1;
293 		} else
294 			sg_size = alloc_size;
295 
296 		left -= sg_size;
297 
298 		if (first_chunk) {
299 			sg = first_chunk;
300 			first_chunk = NULL;
301 		} else {
302 			sg = alloc_fn(alloc_size, gfp_mask);
303 		}
304 		if (unlikely(!sg)) {
305 			/*
306 			 * Adjust entry count to reflect that the last
307 			 * entry of the previous table won't be used for
308 			 * linkage.  Without this, sg_kfree() may get
309 			 * confused.
310 			 */
311 			if (prv)
312 				table->nents = ++table->orig_nents;
313 
314 			return -ENOMEM;
315 		}
316 
317 		sg_init_table(sg, alloc_size);
318 		table->nents = table->orig_nents += sg_size;
319 
320 		/*
321 		 * If this is the first mapping, assign the sg table header.
322 		 * If this is not the first mapping, chain previous part.
323 		 */
324 		if (prv)
325 			sg_chain(prv, prv_max_ents, sg);
326 		else
327 			table->sgl = sg;
328 
329 		/*
330 		 * If no more entries after this one, mark the end
331 		 */
332 		if (!left)
333 			sg_mark_end(&sg[sg_size - 1]);
334 
335 		prv = sg;
336 		prv_max_ents = curr_max_ents;
337 		curr_max_ents = max_ents;
338 	} while (left);
339 
340 	return 0;
341 }
342 EXPORT_SYMBOL(__sg_alloc_table);
343 
344 /**
345  * sg_alloc_table - Allocate and initialize an sg table
346  * @table:	The sg table header to use
347  * @nents:	Number of entries in sg list
348  * @gfp_mask:	GFP allocation mask
349  *
350  *  Description:
351  *    Allocate and initialize an sg table. If @nents@ is larger than
352  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
353  *
354  **/
355 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
356 {
357 	int ret;
358 
359 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
360 			       NULL, 0, gfp_mask, sg_kmalloc);
361 	if (unlikely(ret))
362 		__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree);
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL(sg_alloc_table);
367 
368 static struct scatterlist *get_next_sg(struct sg_table *table,
369 				       struct scatterlist *cur,
370 				       unsigned long needed_sges,
371 				       gfp_t gfp_mask)
372 {
373 	struct scatterlist *new_sg, *next_sg;
374 	unsigned int alloc_size;
375 
376 	if (cur) {
377 		next_sg = sg_next(cur);
378 		/* Check if last entry should be keeped for chainning */
379 		if (!sg_is_last(next_sg) || needed_sges == 1)
380 			return next_sg;
381 	}
382 
383 	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
384 	new_sg = sg_kmalloc(alloc_size, gfp_mask);
385 	if (!new_sg)
386 		return ERR_PTR(-ENOMEM);
387 	sg_init_table(new_sg, alloc_size);
388 	if (cur) {
389 		__sg_chain(next_sg, new_sg);
390 		table->orig_nents += alloc_size - 1;
391 	} else {
392 		table->sgl = new_sg;
393 		table->orig_nents = alloc_size;
394 		table->nents = 0;
395 	}
396 	return new_sg;
397 }
398 
399 /**
400  * __sg_alloc_table_from_pages - Allocate and initialize an sg table from
401  *			         an array of pages
402  * @sgt:	 The sg table header to use
403  * @pages:	 Pointer to an array of page pointers
404  * @n_pages:	 Number of pages in the pages array
405  * @offset:      Offset from start of the first page to the start of a buffer
406  * @size:        Number of valid bytes in the buffer (after offset)
407  * @max_segment: Maximum size of a scatterlist element in bytes
408  * @prv:	 Last populated sge in sgt
409  * @left_pages:  Left pages caller have to set after this call
410  * @gfp_mask:	 GFP allocation mask
411  *
412  * Description:
413  *    If @prv is NULL, allocate and initialize an sg table from a list of pages,
414  *    else reuse the scatterlist passed in at @prv.
415  *    Contiguous ranges of the pages are squashed into a single scatterlist
416  *    entry up to the maximum size specified in @max_segment.  A user may
417  *    provide an offset at a start and a size of valid data in a buffer
418  *    specified by the page array.
419  *
420  * Returns:
421  *   Last SGE in sgt on success, PTR_ERR on otherwise.
422  *   The allocation in @sgt must be released by sg_free_table.
423  *
424  * Notes:
425  *   If this function returns non-0 (eg failure), the caller must call
426  *   sg_free_table() to cleanup any leftover allocations.
427  */
428 struct scatterlist *__sg_alloc_table_from_pages(struct sg_table *sgt,
429 		struct page **pages, unsigned int n_pages, unsigned int offset,
430 		unsigned long size, unsigned int max_segment,
431 		struct scatterlist *prv, unsigned int left_pages,
432 		gfp_t gfp_mask)
433 {
434 	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
435 	unsigned int added_nents = 0;
436 	struct scatterlist *s = prv;
437 
438 	/*
439 	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
440 	 * otherwise it can overshoot.
441 	 */
442 	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
443 	if (WARN_ON(max_segment < PAGE_SIZE))
444 		return ERR_PTR(-EINVAL);
445 
446 	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && prv)
447 		return ERR_PTR(-EOPNOTSUPP);
448 
449 	if (prv) {
450 		unsigned long paddr = (page_to_pfn(sg_page(prv)) * PAGE_SIZE +
451 				       prv->offset + prv->length) /
452 				      PAGE_SIZE;
453 
454 		if (WARN_ON(offset))
455 			return ERR_PTR(-EINVAL);
456 
457 		/* Merge contiguous pages into the last SG */
458 		prv_len = prv->length;
459 		while (n_pages && page_to_pfn(pages[0]) == paddr) {
460 			if (prv->length + PAGE_SIZE > max_segment)
461 				break;
462 			prv->length += PAGE_SIZE;
463 			paddr++;
464 			pages++;
465 			n_pages--;
466 		}
467 		if (!n_pages)
468 			goto out;
469 	}
470 
471 	/* compute number of contiguous chunks */
472 	chunks = 1;
473 	seg_len = 0;
474 	for (i = 1; i < n_pages; i++) {
475 		seg_len += PAGE_SIZE;
476 		if (seg_len >= max_segment ||
477 		    page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) {
478 			chunks++;
479 			seg_len = 0;
480 		}
481 	}
482 
483 	/* merging chunks and putting them into the scatterlist */
484 	cur_page = 0;
485 	for (i = 0; i < chunks; i++) {
486 		unsigned int j, chunk_size;
487 
488 		/* look for the end of the current chunk */
489 		seg_len = 0;
490 		for (j = cur_page + 1; j < n_pages; j++) {
491 			seg_len += PAGE_SIZE;
492 			if (seg_len >= max_segment ||
493 			    page_to_pfn(pages[j]) !=
494 			    page_to_pfn(pages[j - 1]) + 1)
495 				break;
496 		}
497 
498 		/* Pass how many chunks might be left */
499 		s = get_next_sg(sgt, s, chunks - i + left_pages, gfp_mask);
500 		if (IS_ERR(s)) {
501 			/*
502 			 * Adjust entry length to be as before function was
503 			 * called.
504 			 */
505 			if (prv)
506 				prv->length = prv_len;
507 			return s;
508 		}
509 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
510 		sg_set_page(s, pages[cur_page],
511 			    min_t(unsigned long, size, chunk_size), offset);
512 		added_nents++;
513 		size -= chunk_size;
514 		offset = 0;
515 		cur_page = j;
516 	}
517 	sgt->nents += added_nents;
518 out:
519 	if (!left_pages)
520 		sg_mark_end(s);
521 	return s;
522 }
523 EXPORT_SYMBOL(__sg_alloc_table_from_pages);
524 
525 /**
526  * sg_alloc_table_from_pages - Allocate and initialize an sg table from
527  *			       an array of pages
528  * @sgt:	 The sg table header to use
529  * @pages:	 Pointer to an array of page pointers
530  * @n_pages:	 Number of pages in the pages array
531  * @offset:      Offset from start of the first page to the start of a buffer
532  * @size:        Number of valid bytes in the buffer (after offset)
533  * @gfp_mask:	 GFP allocation mask
534  *
535  *  Description:
536  *    Allocate and initialize an sg table from a list of pages. Contiguous
537  *    ranges of the pages are squashed into a single scatterlist node. A user
538  *    may provide an offset at a start and a size of valid data in a buffer
539  *    specified by the page array. The returned sg table is released by
540  *    sg_free_table.
541  *
542  * Returns:
543  *   0 on success, negative error on failure
544  */
545 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages,
546 			      unsigned int n_pages, unsigned int offset,
547 			      unsigned long size, gfp_t gfp_mask)
548 {
549 	return PTR_ERR_OR_ZERO(__sg_alloc_table_from_pages(sgt, pages, n_pages,
550 			offset, size, UINT_MAX, NULL, 0, gfp_mask));
551 }
552 EXPORT_SYMBOL(sg_alloc_table_from_pages);
553 
554 #ifdef CONFIG_SGL_ALLOC
555 
556 /**
557  * sgl_alloc_order - allocate a scatterlist and its pages
558  * @length: Length in bytes of the scatterlist. Must be at least one
559  * @order: Second argument for alloc_pages()
560  * @chainable: Whether or not to allocate an extra element in the scatterlist
561  *	for scatterlist chaining purposes
562  * @gfp: Memory allocation flags
563  * @nent_p: [out] Number of entries in the scatterlist that have pages
564  *
565  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
566  */
567 struct scatterlist *sgl_alloc_order(unsigned long long length,
568 				    unsigned int order, bool chainable,
569 				    gfp_t gfp, unsigned int *nent_p)
570 {
571 	struct scatterlist *sgl, *sg;
572 	struct page *page;
573 	unsigned int nent, nalloc;
574 	u32 elem_len;
575 
576 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
577 	/* Check for integer overflow */
578 	if (length > (nent << (PAGE_SHIFT + order)))
579 		return NULL;
580 	nalloc = nent;
581 	if (chainable) {
582 		/* Check for integer overflow */
583 		if (nalloc + 1 < nalloc)
584 			return NULL;
585 		nalloc++;
586 	}
587 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
588 			    (gfp & ~GFP_DMA) | __GFP_ZERO);
589 	if (!sgl)
590 		return NULL;
591 
592 	sg_init_table(sgl, nalloc);
593 	sg = sgl;
594 	while (length) {
595 		elem_len = min_t(u64, length, PAGE_SIZE << order);
596 		page = alloc_pages(gfp, order);
597 		if (!page) {
598 			sgl_free(sgl);
599 			return NULL;
600 		}
601 
602 		sg_set_page(sg, page, elem_len, 0);
603 		length -= elem_len;
604 		sg = sg_next(sg);
605 	}
606 	WARN_ONCE(length, "length = %lld\n", length);
607 	if (nent_p)
608 		*nent_p = nent;
609 	return sgl;
610 }
611 EXPORT_SYMBOL(sgl_alloc_order);
612 
613 /**
614  * sgl_alloc - allocate a scatterlist and its pages
615  * @length: Length in bytes of the scatterlist
616  * @gfp: Memory allocation flags
617  * @nent_p: [out] Number of entries in the scatterlist
618  *
619  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
620  */
621 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
622 			      unsigned int *nent_p)
623 {
624 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
625 }
626 EXPORT_SYMBOL(sgl_alloc);
627 
628 /**
629  * sgl_free_n_order - free a scatterlist and its pages
630  * @sgl: Scatterlist with one or more elements
631  * @nents: Maximum number of elements to free
632  * @order: Second argument for __free_pages()
633  *
634  * Notes:
635  * - If several scatterlists have been chained and each chain element is
636  *   freed separately then it's essential to set nents correctly to avoid that a
637  *   page would get freed twice.
638  * - All pages in a chained scatterlist can be freed at once by setting @nents
639  *   to a high number.
640  */
641 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
642 {
643 	struct scatterlist *sg;
644 	struct page *page;
645 	int i;
646 
647 	for_each_sg(sgl, sg, nents, i) {
648 		if (!sg)
649 			break;
650 		page = sg_page(sg);
651 		if (page)
652 			__free_pages(page, order);
653 	}
654 	kfree(sgl);
655 }
656 EXPORT_SYMBOL(sgl_free_n_order);
657 
658 /**
659  * sgl_free_order - free a scatterlist and its pages
660  * @sgl: Scatterlist with one or more elements
661  * @order: Second argument for __free_pages()
662  */
663 void sgl_free_order(struct scatterlist *sgl, int order)
664 {
665 	sgl_free_n_order(sgl, INT_MAX, order);
666 }
667 EXPORT_SYMBOL(sgl_free_order);
668 
669 /**
670  * sgl_free - free a scatterlist and its pages
671  * @sgl: Scatterlist with one or more elements
672  */
673 void sgl_free(struct scatterlist *sgl)
674 {
675 	sgl_free_order(sgl, 0);
676 }
677 EXPORT_SYMBOL(sgl_free);
678 
679 #endif /* CONFIG_SGL_ALLOC */
680 
681 void __sg_page_iter_start(struct sg_page_iter *piter,
682 			  struct scatterlist *sglist, unsigned int nents,
683 			  unsigned long pgoffset)
684 {
685 	piter->__pg_advance = 0;
686 	piter->__nents = nents;
687 
688 	piter->sg = sglist;
689 	piter->sg_pgoffset = pgoffset;
690 }
691 EXPORT_SYMBOL(__sg_page_iter_start);
692 
693 static int sg_page_count(struct scatterlist *sg)
694 {
695 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
696 }
697 
698 bool __sg_page_iter_next(struct sg_page_iter *piter)
699 {
700 	if (!piter->__nents || !piter->sg)
701 		return false;
702 
703 	piter->sg_pgoffset += piter->__pg_advance;
704 	piter->__pg_advance = 1;
705 
706 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
707 		piter->sg_pgoffset -= sg_page_count(piter->sg);
708 		piter->sg = sg_next(piter->sg);
709 		if (!--piter->__nents || !piter->sg)
710 			return false;
711 	}
712 
713 	return true;
714 }
715 EXPORT_SYMBOL(__sg_page_iter_next);
716 
717 static int sg_dma_page_count(struct scatterlist *sg)
718 {
719 	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
720 }
721 
722 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
723 {
724 	struct sg_page_iter *piter = &dma_iter->base;
725 
726 	if (!piter->__nents || !piter->sg)
727 		return false;
728 
729 	piter->sg_pgoffset += piter->__pg_advance;
730 	piter->__pg_advance = 1;
731 
732 	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
733 		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
734 		piter->sg = sg_next(piter->sg);
735 		if (!--piter->__nents || !piter->sg)
736 			return false;
737 	}
738 
739 	return true;
740 }
741 EXPORT_SYMBOL(__sg_page_iter_dma_next);
742 
743 /**
744  * sg_miter_start - start mapping iteration over a sg list
745  * @miter: sg mapping iter to be started
746  * @sgl: sg list to iterate over
747  * @nents: number of sg entries
748  *
749  * Description:
750  *   Starts mapping iterator @miter.
751  *
752  * Context:
753  *   Don't care.
754  */
755 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
756 		    unsigned int nents, unsigned int flags)
757 {
758 	memset(miter, 0, sizeof(struct sg_mapping_iter));
759 
760 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
761 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
762 	miter->__flags = flags;
763 }
764 EXPORT_SYMBOL(sg_miter_start);
765 
766 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
767 {
768 	if (!miter->__remaining) {
769 		struct scatterlist *sg;
770 
771 		if (!__sg_page_iter_next(&miter->piter))
772 			return false;
773 
774 		sg = miter->piter.sg;
775 
776 		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
777 		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
778 		miter->__offset &= PAGE_SIZE - 1;
779 		miter->__remaining = sg->offset + sg->length -
780 				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
781 				     miter->__offset;
782 		miter->__remaining = min_t(unsigned long, miter->__remaining,
783 					   PAGE_SIZE - miter->__offset);
784 	}
785 
786 	return true;
787 }
788 
789 /**
790  * sg_miter_skip - reposition mapping iterator
791  * @miter: sg mapping iter to be skipped
792  * @offset: number of bytes to plus the current location
793  *
794  * Description:
795  *   Sets the offset of @miter to its current location plus @offset bytes.
796  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
797  *   stops @miter.
798  *
799  * Context:
800  *   Don't care if @miter is stopped, or not proceeded yet.
801  *   Otherwise, preemption disabled if the SG_MITER_ATOMIC is set.
802  *
803  * Returns:
804  *   true if @miter contains the valid mapping.  false if end of sg
805  *   list is reached.
806  */
807 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
808 {
809 	sg_miter_stop(miter);
810 
811 	while (offset) {
812 		off_t consumed;
813 
814 		if (!sg_miter_get_next_page(miter))
815 			return false;
816 
817 		consumed = min_t(off_t, offset, miter->__remaining);
818 		miter->__offset += consumed;
819 		miter->__remaining -= consumed;
820 		offset -= consumed;
821 	}
822 
823 	return true;
824 }
825 EXPORT_SYMBOL(sg_miter_skip);
826 
827 /**
828  * sg_miter_next - proceed mapping iterator to the next mapping
829  * @miter: sg mapping iter to proceed
830  *
831  * Description:
832  *   Proceeds @miter to the next mapping.  @miter should have been started
833  *   using sg_miter_start().  On successful return, @miter->page,
834  *   @miter->addr and @miter->length point to the current mapping.
835  *
836  * Context:
837  *   Preemption disabled if SG_MITER_ATOMIC.  Preemption must stay disabled
838  *   till @miter is stopped.  May sleep if !SG_MITER_ATOMIC.
839  *
840  * Returns:
841  *   true if @miter contains the next mapping.  false if end of sg
842  *   list is reached.
843  */
844 bool sg_miter_next(struct sg_mapping_iter *miter)
845 {
846 	sg_miter_stop(miter);
847 
848 	/*
849 	 * Get to the next page if necessary.
850 	 * __remaining, __offset is adjusted by sg_miter_stop
851 	 */
852 	if (!sg_miter_get_next_page(miter))
853 		return false;
854 
855 	miter->page = sg_page_iter_page(&miter->piter);
856 	miter->consumed = miter->length = miter->__remaining;
857 
858 	if (miter->__flags & SG_MITER_ATOMIC)
859 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
860 	else
861 		miter->addr = kmap(miter->page) + miter->__offset;
862 
863 	return true;
864 }
865 EXPORT_SYMBOL(sg_miter_next);
866 
867 /**
868  * sg_miter_stop - stop mapping iteration
869  * @miter: sg mapping iter to be stopped
870  *
871  * Description:
872  *   Stops mapping iterator @miter.  @miter should have been started
873  *   using sg_miter_start().  A stopped iteration can be resumed by
874  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
875  *   need to be released during iteration.
876  *
877  * Context:
878  *   Preemption disabled if the SG_MITER_ATOMIC is set.  Don't care
879  *   otherwise.
880  */
881 void sg_miter_stop(struct sg_mapping_iter *miter)
882 {
883 	WARN_ON(miter->consumed > miter->length);
884 
885 	/* drop resources from the last iteration */
886 	if (miter->addr) {
887 		miter->__offset += miter->consumed;
888 		miter->__remaining -= miter->consumed;
889 
890 		if ((miter->__flags & SG_MITER_TO_SG) &&
891 		    !PageSlab(miter->page))
892 			flush_kernel_dcache_page(miter->page);
893 
894 		if (miter->__flags & SG_MITER_ATOMIC) {
895 			WARN_ON_ONCE(preemptible());
896 			kunmap_atomic(miter->addr);
897 		} else
898 			kunmap(miter->page);
899 
900 		miter->page = NULL;
901 		miter->addr = NULL;
902 		miter->length = 0;
903 		miter->consumed = 0;
904 	}
905 }
906 EXPORT_SYMBOL(sg_miter_stop);
907 
908 /**
909  * sg_copy_buffer - Copy data between a linear buffer and an SG list
910  * @sgl:		 The SG list
911  * @nents:		 Number of SG entries
912  * @buf:		 Where to copy from
913  * @buflen:		 The number of bytes to copy
914  * @skip:		 Number of bytes to skip before copying
915  * @to_buffer:		 transfer direction (true == from an sg list to a
916  *			 buffer, false == from a buffer to an sg list)
917  *
918  * Returns the number of copied bytes.
919  *
920  **/
921 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
922 		      size_t buflen, off_t skip, bool to_buffer)
923 {
924 	unsigned int offset = 0;
925 	struct sg_mapping_iter miter;
926 	unsigned int sg_flags = SG_MITER_ATOMIC;
927 
928 	if (to_buffer)
929 		sg_flags |= SG_MITER_FROM_SG;
930 	else
931 		sg_flags |= SG_MITER_TO_SG;
932 
933 	sg_miter_start(&miter, sgl, nents, sg_flags);
934 
935 	if (!sg_miter_skip(&miter, skip))
936 		return false;
937 
938 	while ((offset < buflen) && sg_miter_next(&miter)) {
939 		unsigned int len;
940 
941 		len = min(miter.length, buflen - offset);
942 
943 		if (to_buffer)
944 			memcpy(buf + offset, miter.addr, len);
945 		else
946 			memcpy(miter.addr, buf + offset, len);
947 
948 		offset += len;
949 	}
950 
951 	sg_miter_stop(&miter);
952 
953 	return offset;
954 }
955 EXPORT_SYMBOL(sg_copy_buffer);
956 
957 /**
958  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
959  * @sgl:		 The SG list
960  * @nents:		 Number of SG entries
961  * @buf:		 Where to copy from
962  * @buflen:		 The number of bytes to copy
963  *
964  * Returns the number of copied bytes.
965  *
966  **/
967 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
968 			   const void *buf, size_t buflen)
969 {
970 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
971 }
972 EXPORT_SYMBOL(sg_copy_from_buffer);
973 
974 /**
975  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
976  * @sgl:		 The SG list
977  * @nents:		 Number of SG entries
978  * @buf:		 Where to copy to
979  * @buflen:		 The number of bytes to copy
980  *
981  * Returns the number of copied bytes.
982  *
983  **/
984 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
985 			 void *buf, size_t buflen)
986 {
987 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
988 }
989 EXPORT_SYMBOL(sg_copy_to_buffer);
990 
991 /**
992  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
993  * @sgl:		 The SG list
994  * @nents:		 Number of SG entries
995  * @buf:		 Where to copy from
996  * @buflen:		 The number of bytes to copy
997  * @skip:		 Number of bytes to skip before copying
998  *
999  * Returns the number of copied bytes.
1000  *
1001  **/
1002 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1003 			    const void *buf, size_t buflen, off_t skip)
1004 {
1005 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1006 }
1007 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1008 
1009 /**
1010  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1011  * @sgl:		 The SG list
1012  * @nents:		 Number of SG entries
1013  * @buf:		 Where to copy to
1014  * @buflen:		 The number of bytes to copy
1015  * @skip:		 Number of bytes to skip before copying
1016  *
1017  * Returns the number of copied bytes.
1018  *
1019  **/
1020 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1021 			  void *buf, size_t buflen, off_t skip)
1022 {
1023 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1024 }
1025 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1026 
1027 /**
1028  * sg_zero_buffer - Zero-out a part of a SG list
1029  * @sgl:		 The SG list
1030  * @nents:		 Number of SG entries
1031  * @buflen:		 The number of bytes to zero out
1032  * @skip:		 Number of bytes to skip before zeroing
1033  *
1034  * Returns the number of bytes zeroed.
1035  **/
1036 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1037 		       size_t buflen, off_t skip)
1038 {
1039 	unsigned int offset = 0;
1040 	struct sg_mapping_iter miter;
1041 	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1042 
1043 	sg_miter_start(&miter, sgl, nents, sg_flags);
1044 
1045 	if (!sg_miter_skip(&miter, skip))
1046 		return false;
1047 
1048 	while (offset < buflen && sg_miter_next(&miter)) {
1049 		unsigned int len;
1050 
1051 		len = min(miter.length, buflen - offset);
1052 		memset(miter.addr, 0, len);
1053 
1054 		offset += len;
1055 	}
1056 
1057 	sg_miter_stop(&miter);
1058 	return offset;
1059 }
1060 EXPORT_SYMBOL(sg_zero_buffer);
1061