1 /* 2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> 3 * 4 * Scatterlist handling helpers. 5 * 6 * This source code is licensed under the GNU General Public License, 7 * Version 2. See the file COPYING for more details. 8 */ 9 #include <linux/export.h> 10 #include <linux/slab.h> 11 #include <linux/scatterlist.h> 12 #include <linux/highmem.h> 13 #include <linux/kmemleak.h> 14 15 /** 16 * sg_next - return the next scatterlist entry in a list 17 * @sg: The current sg entry 18 * 19 * Description: 20 * Usually the next entry will be @sg@ + 1, but if this sg element is part 21 * of a chained scatterlist, it could jump to the start of a new 22 * scatterlist array. 23 * 24 **/ 25 struct scatterlist *sg_next(struct scatterlist *sg) 26 { 27 #ifdef CONFIG_DEBUG_SG 28 BUG_ON(sg->sg_magic != SG_MAGIC); 29 #endif 30 if (sg_is_last(sg)) 31 return NULL; 32 33 sg++; 34 if (unlikely(sg_is_chain(sg))) 35 sg = sg_chain_ptr(sg); 36 37 return sg; 38 } 39 EXPORT_SYMBOL(sg_next); 40 41 /** 42 * sg_last - return the last scatterlist entry in a list 43 * @sgl: First entry in the scatterlist 44 * @nents: Number of entries in the scatterlist 45 * 46 * Description: 47 * Should only be used casually, it (currently) scans the entire list 48 * to get the last entry. 49 * 50 * Note that the @sgl@ pointer passed in need not be the first one, 51 * the important bit is that @nents@ denotes the number of entries that 52 * exist from @sgl@. 53 * 54 **/ 55 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) 56 { 57 #ifndef ARCH_HAS_SG_CHAIN 58 struct scatterlist *ret = &sgl[nents - 1]; 59 #else 60 struct scatterlist *sg, *ret = NULL; 61 unsigned int i; 62 63 for_each_sg(sgl, sg, nents, i) 64 ret = sg; 65 66 #endif 67 #ifdef CONFIG_DEBUG_SG 68 BUG_ON(sgl[0].sg_magic != SG_MAGIC); 69 BUG_ON(!sg_is_last(ret)); 70 #endif 71 return ret; 72 } 73 EXPORT_SYMBOL(sg_last); 74 75 /** 76 * sg_init_table - Initialize SG table 77 * @sgl: The SG table 78 * @nents: Number of entries in table 79 * 80 * Notes: 81 * If this is part of a chained sg table, sg_mark_end() should be 82 * used only on the last table part. 83 * 84 **/ 85 void sg_init_table(struct scatterlist *sgl, unsigned int nents) 86 { 87 memset(sgl, 0, sizeof(*sgl) * nents); 88 #ifdef CONFIG_DEBUG_SG 89 { 90 unsigned int i; 91 for (i = 0; i < nents; i++) 92 sgl[i].sg_magic = SG_MAGIC; 93 } 94 #endif 95 sg_mark_end(&sgl[nents - 1]); 96 } 97 EXPORT_SYMBOL(sg_init_table); 98 99 /** 100 * sg_init_one - Initialize a single entry sg list 101 * @sg: SG entry 102 * @buf: Virtual address for IO 103 * @buflen: IO length 104 * 105 **/ 106 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) 107 { 108 sg_init_table(sg, 1); 109 sg_set_buf(sg, buf, buflen); 110 } 111 EXPORT_SYMBOL(sg_init_one); 112 113 /* 114 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree 115 * helpers. 116 */ 117 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) 118 { 119 if (nents == SG_MAX_SINGLE_ALLOC) { 120 /* 121 * Kmemleak doesn't track page allocations as they are not 122 * commonly used (in a raw form) for kernel data structures. 123 * As we chain together a list of pages and then a normal 124 * kmalloc (tracked by kmemleak), in order to for that last 125 * allocation not to become decoupled (and thus a 126 * false-positive) we need to inform kmemleak of all the 127 * intermediate allocations. 128 */ 129 void *ptr = (void *) __get_free_page(gfp_mask); 130 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); 131 return ptr; 132 } else 133 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask); 134 } 135 136 static void sg_kfree(struct scatterlist *sg, unsigned int nents) 137 { 138 if (nents == SG_MAX_SINGLE_ALLOC) { 139 kmemleak_free(sg); 140 free_page((unsigned long) sg); 141 } else 142 kfree(sg); 143 } 144 145 /** 146 * __sg_free_table - Free a previously mapped sg table 147 * @table: The sg table header to use 148 * @max_ents: The maximum number of entries per single scatterlist 149 * @free_fn: Free function 150 * 151 * Description: 152 * Free an sg table previously allocated and setup with 153 * __sg_alloc_table(). The @max_ents value must be identical to 154 * that previously used with __sg_alloc_table(). 155 * 156 **/ 157 void __sg_free_table(struct sg_table *table, unsigned int max_ents, 158 sg_free_fn *free_fn) 159 { 160 struct scatterlist *sgl, *next; 161 162 if (unlikely(!table->sgl)) 163 return; 164 165 sgl = table->sgl; 166 while (table->orig_nents) { 167 unsigned int alloc_size = table->orig_nents; 168 unsigned int sg_size; 169 170 /* 171 * If we have more than max_ents segments left, 172 * then assign 'next' to the sg table after the current one. 173 * sg_size is then one less than alloc size, since the last 174 * element is the chain pointer. 175 */ 176 if (alloc_size > max_ents) { 177 next = sg_chain_ptr(&sgl[max_ents - 1]); 178 alloc_size = max_ents; 179 sg_size = alloc_size - 1; 180 } else { 181 sg_size = alloc_size; 182 next = NULL; 183 } 184 185 table->orig_nents -= sg_size; 186 free_fn(sgl, alloc_size); 187 sgl = next; 188 } 189 190 table->sgl = NULL; 191 } 192 EXPORT_SYMBOL(__sg_free_table); 193 194 /** 195 * sg_free_table - Free a previously allocated sg table 196 * @table: The mapped sg table header 197 * 198 **/ 199 void sg_free_table(struct sg_table *table) 200 { 201 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); 202 } 203 EXPORT_SYMBOL(sg_free_table); 204 205 /** 206 * __sg_alloc_table - Allocate and initialize an sg table with given allocator 207 * @table: The sg table header to use 208 * @nents: Number of entries in sg list 209 * @max_ents: The maximum number of entries the allocator returns per call 210 * @gfp_mask: GFP allocation mask 211 * @alloc_fn: Allocator to use 212 * 213 * Description: 214 * This function returns a @table @nents long. The allocator is 215 * defined to return scatterlist chunks of maximum size @max_ents. 216 * Thus if @nents is bigger than @max_ents, the scatterlists will be 217 * chained in units of @max_ents. 218 * 219 * Notes: 220 * If this function returns non-0 (eg failure), the caller must call 221 * __sg_free_table() to cleanup any leftover allocations. 222 * 223 **/ 224 int __sg_alloc_table(struct sg_table *table, unsigned int nents, 225 unsigned int max_ents, gfp_t gfp_mask, 226 sg_alloc_fn *alloc_fn) 227 { 228 struct scatterlist *sg, *prv; 229 unsigned int left; 230 231 #ifndef ARCH_HAS_SG_CHAIN 232 BUG_ON(nents > max_ents); 233 #endif 234 235 memset(table, 0, sizeof(*table)); 236 237 left = nents; 238 prv = NULL; 239 do { 240 unsigned int sg_size, alloc_size = left; 241 242 if (alloc_size > max_ents) { 243 alloc_size = max_ents; 244 sg_size = alloc_size - 1; 245 } else 246 sg_size = alloc_size; 247 248 left -= sg_size; 249 250 sg = alloc_fn(alloc_size, gfp_mask); 251 if (unlikely(!sg)) { 252 /* 253 * Adjust entry count to reflect that the last 254 * entry of the previous table won't be used for 255 * linkage. Without this, sg_kfree() may get 256 * confused. 257 */ 258 if (prv) 259 table->nents = ++table->orig_nents; 260 261 return -ENOMEM; 262 } 263 264 sg_init_table(sg, alloc_size); 265 table->nents = table->orig_nents += sg_size; 266 267 /* 268 * If this is the first mapping, assign the sg table header. 269 * If this is not the first mapping, chain previous part. 270 */ 271 if (prv) 272 sg_chain(prv, max_ents, sg); 273 else 274 table->sgl = sg; 275 276 /* 277 * If no more entries after this one, mark the end 278 */ 279 if (!left) 280 sg_mark_end(&sg[sg_size - 1]); 281 282 prv = sg; 283 } while (left); 284 285 return 0; 286 } 287 EXPORT_SYMBOL(__sg_alloc_table); 288 289 /** 290 * sg_alloc_table - Allocate and initialize an sg table 291 * @table: The sg table header to use 292 * @nents: Number of entries in sg list 293 * @gfp_mask: GFP allocation mask 294 * 295 * Description: 296 * Allocate and initialize an sg table. If @nents@ is larger than 297 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. 298 * 299 **/ 300 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) 301 { 302 int ret; 303 304 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, 305 gfp_mask, sg_kmalloc); 306 if (unlikely(ret)) 307 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, sg_kfree); 308 309 return ret; 310 } 311 EXPORT_SYMBOL(sg_alloc_table); 312 313 /** 314 * sg_alloc_table_from_pages - Allocate and initialize an sg table from 315 * an array of pages 316 * @sgt: The sg table header to use 317 * @pages: Pointer to an array of page pointers 318 * @n_pages: Number of pages in the pages array 319 * @offset: Offset from start of the first page to the start of a buffer 320 * @size: Number of valid bytes in the buffer (after offset) 321 * @gfp_mask: GFP allocation mask 322 * 323 * Description: 324 * Allocate and initialize an sg table from a list of pages. Contiguous 325 * ranges of the pages are squashed into a single scatterlist node. A user 326 * may provide an offset at a start and a size of valid data in a buffer 327 * specified by the page array. The returned sg table is released by 328 * sg_free_table. 329 * 330 * Returns: 331 * 0 on success, negative error on failure 332 */ 333 int sg_alloc_table_from_pages(struct sg_table *sgt, 334 struct page **pages, unsigned int n_pages, 335 unsigned long offset, unsigned long size, 336 gfp_t gfp_mask) 337 { 338 unsigned int chunks; 339 unsigned int i; 340 unsigned int cur_page; 341 int ret; 342 struct scatterlist *s; 343 344 /* compute number of contiguous chunks */ 345 chunks = 1; 346 for (i = 1; i < n_pages; ++i) 347 if (page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) 348 ++chunks; 349 350 ret = sg_alloc_table(sgt, chunks, gfp_mask); 351 if (unlikely(ret)) 352 return ret; 353 354 /* merging chunks and putting them into the scatterlist */ 355 cur_page = 0; 356 for_each_sg(sgt->sgl, s, sgt->orig_nents, i) { 357 unsigned long chunk_size; 358 unsigned int j; 359 360 /* look for the end of the current chunk */ 361 for (j = cur_page + 1; j < n_pages; ++j) 362 if (page_to_pfn(pages[j]) != 363 page_to_pfn(pages[j - 1]) + 1) 364 break; 365 366 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset; 367 sg_set_page(s, pages[cur_page], min(size, chunk_size), offset); 368 size -= chunk_size; 369 offset = 0; 370 cur_page = j; 371 } 372 373 return 0; 374 } 375 EXPORT_SYMBOL(sg_alloc_table_from_pages); 376 377 /** 378 * sg_miter_start - start mapping iteration over a sg list 379 * @miter: sg mapping iter to be started 380 * @sgl: sg list to iterate over 381 * @nents: number of sg entries 382 * 383 * Description: 384 * Starts mapping iterator @miter. 385 * 386 * Context: 387 * Don't care. 388 */ 389 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, 390 unsigned int nents, unsigned int flags) 391 { 392 memset(miter, 0, sizeof(struct sg_mapping_iter)); 393 394 miter->__sg = sgl; 395 miter->__nents = nents; 396 miter->__offset = 0; 397 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); 398 miter->__flags = flags; 399 } 400 EXPORT_SYMBOL(sg_miter_start); 401 402 /** 403 * sg_miter_next - proceed mapping iterator to the next mapping 404 * @miter: sg mapping iter to proceed 405 * 406 * Description: 407 * Proceeds @miter@ to the next mapping. @miter@ should have been 408 * started using sg_miter_start(). On successful return, 409 * @miter@->page, @miter@->addr and @miter@->length point to the 410 * current mapping. 411 * 412 * Context: 413 * IRQ disabled if SG_MITER_ATOMIC. IRQ must stay disabled till 414 * @miter@ is stopped. May sleep if !SG_MITER_ATOMIC. 415 * 416 * Returns: 417 * true if @miter contains the next mapping. false if end of sg 418 * list is reached. 419 */ 420 bool sg_miter_next(struct sg_mapping_iter *miter) 421 { 422 unsigned int off, len; 423 424 /* check for end and drop resources from the last iteration */ 425 if (!miter->__nents) 426 return false; 427 428 sg_miter_stop(miter); 429 430 /* get to the next sg if necessary. __offset is adjusted by stop */ 431 while (miter->__offset == miter->__sg->length) { 432 if (--miter->__nents) { 433 miter->__sg = sg_next(miter->__sg); 434 miter->__offset = 0; 435 } else 436 return false; 437 } 438 439 /* map the next page */ 440 off = miter->__sg->offset + miter->__offset; 441 len = miter->__sg->length - miter->__offset; 442 443 miter->page = nth_page(sg_page(miter->__sg), off >> PAGE_SHIFT); 444 off &= ~PAGE_MASK; 445 miter->length = min_t(unsigned int, len, PAGE_SIZE - off); 446 miter->consumed = miter->length; 447 448 if (miter->__flags & SG_MITER_ATOMIC) 449 miter->addr = kmap_atomic(miter->page) + off; 450 else 451 miter->addr = kmap(miter->page) + off; 452 453 return true; 454 } 455 EXPORT_SYMBOL(sg_miter_next); 456 457 /** 458 * sg_miter_stop - stop mapping iteration 459 * @miter: sg mapping iter to be stopped 460 * 461 * Description: 462 * Stops mapping iterator @miter. @miter should have been started 463 * started using sg_miter_start(). A stopped iteration can be 464 * resumed by calling sg_miter_next() on it. This is useful when 465 * resources (kmap) need to be released during iteration. 466 * 467 * Context: 468 * IRQ disabled if the SG_MITER_ATOMIC is set. Don't care otherwise. 469 */ 470 void sg_miter_stop(struct sg_mapping_iter *miter) 471 { 472 WARN_ON(miter->consumed > miter->length); 473 474 /* drop resources from the last iteration */ 475 if (miter->addr) { 476 miter->__offset += miter->consumed; 477 478 if (miter->__flags & SG_MITER_TO_SG) 479 flush_kernel_dcache_page(miter->page); 480 481 if (miter->__flags & SG_MITER_ATOMIC) { 482 WARN_ON(!irqs_disabled()); 483 kunmap_atomic(miter->addr); 484 } else 485 kunmap(miter->page); 486 487 miter->page = NULL; 488 miter->addr = NULL; 489 miter->length = 0; 490 miter->consumed = 0; 491 } 492 } 493 EXPORT_SYMBOL(sg_miter_stop); 494 495 /** 496 * sg_copy_buffer - Copy data between a linear buffer and an SG list 497 * @sgl: The SG list 498 * @nents: Number of SG entries 499 * @buf: Where to copy from 500 * @buflen: The number of bytes to copy 501 * @to_buffer: transfer direction (non zero == from an sg list to a 502 * buffer, 0 == from a buffer to an sg list 503 * 504 * Returns the number of copied bytes. 505 * 506 **/ 507 static size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, 508 void *buf, size_t buflen, int to_buffer) 509 { 510 unsigned int offset = 0; 511 struct sg_mapping_iter miter; 512 unsigned long flags; 513 unsigned int sg_flags = SG_MITER_ATOMIC; 514 515 if (to_buffer) 516 sg_flags |= SG_MITER_FROM_SG; 517 else 518 sg_flags |= SG_MITER_TO_SG; 519 520 sg_miter_start(&miter, sgl, nents, sg_flags); 521 522 local_irq_save(flags); 523 524 while (sg_miter_next(&miter) && offset < buflen) { 525 unsigned int len; 526 527 len = min(miter.length, buflen - offset); 528 529 if (to_buffer) 530 memcpy(buf + offset, miter.addr, len); 531 else 532 memcpy(miter.addr, buf + offset, len); 533 534 offset += len; 535 } 536 537 sg_miter_stop(&miter); 538 539 local_irq_restore(flags); 540 return offset; 541 } 542 543 /** 544 * sg_copy_from_buffer - Copy from a linear buffer to an SG list 545 * @sgl: The SG list 546 * @nents: Number of SG entries 547 * @buf: Where to copy from 548 * @buflen: The number of bytes to copy 549 * 550 * Returns the number of copied bytes. 551 * 552 **/ 553 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, 554 void *buf, size_t buflen) 555 { 556 return sg_copy_buffer(sgl, nents, buf, buflen, 0); 557 } 558 EXPORT_SYMBOL(sg_copy_from_buffer); 559 560 /** 561 * sg_copy_to_buffer - Copy from an SG list to a linear buffer 562 * @sgl: The SG list 563 * @nents: Number of SG entries 564 * @buf: Where to copy to 565 * @buflen: The number of bytes to copy 566 * 567 * Returns the number of copied bytes. 568 * 569 **/ 570 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, 571 void *buf, size_t buflen) 572 { 573 return sg_copy_buffer(sgl, nents, buf, buflen, 1); 574 } 575 EXPORT_SYMBOL(sg_copy_to_buffer); 576