1 /* 2 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> 3 * 4 * Scatterlist handling helpers. 5 * 6 * This source code is licensed under the GNU General Public License, 7 * Version 2. See the file COPYING for more details. 8 */ 9 #include <linux/export.h> 10 #include <linux/slab.h> 11 #include <linux/scatterlist.h> 12 #include <linux/highmem.h> 13 #include <linux/kmemleak.h> 14 15 /** 16 * sg_next - return the next scatterlist entry in a list 17 * @sg: The current sg entry 18 * 19 * Description: 20 * Usually the next entry will be @sg@ + 1, but if this sg element is part 21 * of a chained scatterlist, it could jump to the start of a new 22 * scatterlist array. 23 * 24 **/ 25 struct scatterlist *sg_next(struct scatterlist *sg) 26 { 27 #ifdef CONFIG_DEBUG_SG 28 BUG_ON(sg->sg_magic != SG_MAGIC); 29 #endif 30 if (sg_is_last(sg)) 31 return NULL; 32 33 sg++; 34 if (unlikely(sg_is_chain(sg))) 35 sg = sg_chain_ptr(sg); 36 37 return sg; 38 } 39 EXPORT_SYMBOL(sg_next); 40 41 /** 42 * sg_nents - return total count of entries in scatterlist 43 * @sg: The scatterlist 44 * 45 * Description: 46 * Allows to know how many entries are in sg, taking into acount 47 * chaining as well 48 * 49 **/ 50 int sg_nents(struct scatterlist *sg) 51 { 52 int nents; 53 for (nents = 0; sg; sg = sg_next(sg)) 54 nents++; 55 return nents; 56 } 57 EXPORT_SYMBOL(sg_nents); 58 59 /** 60 * sg_nents_for_len - return total count of entries in scatterlist 61 * needed to satisfy the supplied length 62 * @sg: The scatterlist 63 * @len: The total required length 64 * 65 * Description: 66 * Determines the number of entries in sg that are required to meet 67 * the supplied length, taking into acount chaining as well 68 * 69 * Returns: 70 * the number of sg entries needed, negative error on failure 71 * 72 **/ 73 int sg_nents_for_len(struct scatterlist *sg, u64 len) 74 { 75 int nents; 76 u64 total; 77 78 if (!len) 79 return 0; 80 81 for (nents = 0, total = 0; sg; sg = sg_next(sg)) { 82 nents++; 83 total += sg->length; 84 if (total >= len) 85 return nents; 86 } 87 88 return -EINVAL; 89 } 90 EXPORT_SYMBOL(sg_nents_for_len); 91 92 /** 93 * sg_last - return the last scatterlist entry in a list 94 * @sgl: First entry in the scatterlist 95 * @nents: Number of entries in the scatterlist 96 * 97 * Description: 98 * Should only be used casually, it (currently) scans the entire list 99 * to get the last entry. 100 * 101 * Note that the @sgl@ pointer passed in need not be the first one, 102 * the important bit is that @nents@ denotes the number of entries that 103 * exist from @sgl@. 104 * 105 **/ 106 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) 107 { 108 struct scatterlist *sg, *ret = NULL; 109 unsigned int i; 110 111 for_each_sg(sgl, sg, nents, i) 112 ret = sg; 113 114 #ifdef CONFIG_DEBUG_SG 115 BUG_ON(sgl[0].sg_magic != SG_MAGIC); 116 BUG_ON(!sg_is_last(ret)); 117 #endif 118 return ret; 119 } 120 EXPORT_SYMBOL(sg_last); 121 122 /** 123 * sg_init_table - Initialize SG table 124 * @sgl: The SG table 125 * @nents: Number of entries in table 126 * 127 * Notes: 128 * If this is part of a chained sg table, sg_mark_end() should be 129 * used only on the last table part. 130 * 131 **/ 132 void sg_init_table(struct scatterlist *sgl, unsigned int nents) 133 { 134 memset(sgl, 0, sizeof(*sgl) * nents); 135 #ifdef CONFIG_DEBUG_SG 136 { 137 unsigned int i; 138 for (i = 0; i < nents; i++) 139 sgl[i].sg_magic = SG_MAGIC; 140 } 141 #endif 142 sg_mark_end(&sgl[nents - 1]); 143 } 144 EXPORT_SYMBOL(sg_init_table); 145 146 /** 147 * sg_init_one - Initialize a single entry sg list 148 * @sg: SG entry 149 * @buf: Virtual address for IO 150 * @buflen: IO length 151 * 152 **/ 153 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) 154 { 155 sg_init_table(sg, 1); 156 sg_set_buf(sg, buf, buflen); 157 } 158 EXPORT_SYMBOL(sg_init_one); 159 160 /* 161 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree 162 * helpers. 163 */ 164 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) 165 { 166 if (nents == SG_MAX_SINGLE_ALLOC) { 167 /* 168 * Kmemleak doesn't track page allocations as they are not 169 * commonly used (in a raw form) for kernel data structures. 170 * As we chain together a list of pages and then a normal 171 * kmalloc (tracked by kmemleak), in order to for that last 172 * allocation not to become decoupled (and thus a 173 * false-positive) we need to inform kmemleak of all the 174 * intermediate allocations. 175 */ 176 void *ptr = (void *) __get_free_page(gfp_mask); 177 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); 178 return ptr; 179 } else 180 return kmalloc(nents * sizeof(struct scatterlist), gfp_mask); 181 } 182 183 static void sg_kfree(struct scatterlist *sg, unsigned int nents) 184 { 185 if (nents == SG_MAX_SINGLE_ALLOC) { 186 kmemleak_free(sg); 187 free_page((unsigned long) sg); 188 } else 189 kfree(sg); 190 } 191 192 /** 193 * __sg_free_table - Free a previously mapped sg table 194 * @table: The sg table header to use 195 * @max_ents: The maximum number of entries per single scatterlist 196 * @skip_first_chunk: don't free the (preallocated) first scatterlist chunk 197 * @free_fn: Free function 198 * 199 * Description: 200 * Free an sg table previously allocated and setup with 201 * __sg_alloc_table(). The @max_ents value must be identical to 202 * that previously used with __sg_alloc_table(). 203 * 204 **/ 205 void __sg_free_table(struct sg_table *table, unsigned int max_ents, 206 bool skip_first_chunk, sg_free_fn *free_fn) 207 { 208 struct scatterlist *sgl, *next; 209 210 if (unlikely(!table->sgl)) 211 return; 212 213 sgl = table->sgl; 214 while (table->orig_nents) { 215 unsigned int alloc_size = table->orig_nents; 216 unsigned int sg_size; 217 218 /* 219 * If we have more than max_ents segments left, 220 * then assign 'next' to the sg table after the current one. 221 * sg_size is then one less than alloc size, since the last 222 * element is the chain pointer. 223 */ 224 if (alloc_size > max_ents) { 225 next = sg_chain_ptr(&sgl[max_ents - 1]); 226 alloc_size = max_ents; 227 sg_size = alloc_size - 1; 228 } else { 229 sg_size = alloc_size; 230 next = NULL; 231 } 232 233 table->orig_nents -= sg_size; 234 if (skip_first_chunk) 235 skip_first_chunk = false; 236 else 237 free_fn(sgl, alloc_size); 238 sgl = next; 239 } 240 241 table->sgl = NULL; 242 } 243 EXPORT_SYMBOL(__sg_free_table); 244 245 /** 246 * sg_free_table - Free a previously allocated sg table 247 * @table: The mapped sg table header 248 * 249 **/ 250 void sg_free_table(struct sg_table *table) 251 { 252 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree); 253 } 254 EXPORT_SYMBOL(sg_free_table); 255 256 /** 257 * __sg_alloc_table - Allocate and initialize an sg table with given allocator 258 * @table: The sg table header to use 259 * @nents: Number of entries in sg list 260 * @max_ents: The maximum number of entries the allocator returns per call 261 * @gfp_mask: GFP allocation mask 262 * @alloc_fn: Allocator to use 263 * 264 * Description: 265 * This function returns a @table @nents long. The allocator is 266 * defined to return scatterlist chunks of maximum size @max_ents. 267 * Thus if @nents is bigger than @max_ents, the scatterlists will be 268 * chained in units of @max_ents. 269 * 270 * Notes: 271 * If this function returns non-0 (eg failure), the caller must call 272 * __sg_free_table() to cleanup any leftover allocations. 273 * 274 **/ 275 int __sg_alloc_table(struct sg_table *table, unsigned int nents, 276 unsigned int max_ents, struct scatterlist *first_chunk, 277 gfp_t gfp_mask, sg_alloc_fn *alloc_fn) 278 { 279 struct scatterlist *sg, *prv; 280 unsigned int left; 281 282 memset(table, 0, sizeof(*table)); 283 284 if (nents == 0) 285 return -EINVAL; 286 #ifndef CONFIG_ARCH_HAS_SG_CHAIN 287 if (WARN_ON_ONCE(nents > max_ents)) 288 return -EINVAL; 289 #endif 290 291 left = nents; 292 prv = NULL; 293 do { 294 unsigned int sg_size, alloc_size = left; 295 296 if (alloc_size > max_ents) { 297 alloc_size = max_ents; 298 sg_size = alloc_size - 1; 299 } else 300 sg_size = alloc_size; 301 302 left -= sg_size; 303 304 if (first_chunk) { 305 sg = first_chunk; 306 first_chunk = NULL; 307 } else { 308 sg = alloc_fn(alloc_size, gfp_mask); 309 } 310 if (unlikely(!sg)) { 311 /* 312 * Adjust entry count to reflect that the last 313 * entry of the previous table won't be used for 314 * linkage. Without this, sg_kfree() may get 315 * confused. 316 */ 317 if (prv) 318 table->nents = ++table->orig_nents; 319 320 return -ENOMEM; 321 } 322 323 sg_init_table(sg, alloc_size); 324 table->nents = table->orig_nents += sg_size; 325 326 /* 327 * If this is the first mapping, assign the sg table header. 328 * If this is not the first mapping, chain previous part. 329 */ 330 if (prv) 331 sg_chain(prv, max_ents, sg); 332 else 333 table->sgl = sg; 334 335 /* 336 * If no more entries after this one, mark the end 337 */ 338 if (!left) 339 sg_mark_end(&sg[sg_size - 1]); 340 341 prv = sg; 342 } while (left); 343 344 return 0; 345 } 346 EXPORT_SYMBOL(__sg_alloc_table); 347 348 /** 349 * sg_alloc_table - Allocate and initialize an sg table 350 * @table: The sg table header to use 351 * @nents: Number of entries in sg list 352 * @gfp_mask: GFP allocation mask 353 * 354 * Description: 355 * Allocate and initialize an sg table. If @nents@ is larger than 356 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. 357 * 358 **/ 359 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) 360 { 361 int ret; 362 363 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, 364 NULL, gfp_mask, sg_kmalloc); 365 if (unlikely(ret)) 366 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree); 367 368 return ret; 369 } 370 EXPORT_SYMBOL(sg_alloc_table); 371 372 /** 373 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from 374 * an array of pages 375 * @sgt: The sg table header to use 376 * @pages: Pointer to an array of page pointers 377 * @n_pages: Number of pages in the pages array 378 * @offset: Offset from start of the first page to the start of a buffer 379 * @size: Number of valid bytes in the buffer (after offset) 380 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned) 381 * @gfp_mask: GFP allocation mask 382 * 383 * Description: 384 * Allocate and initialize an sg table from a list of pages. Contiguous 385 * ranges of the pages are squashed into a single scatterlist node up to the 386 * maximum size specified in @max_segment. An user may provide an offset at a 387 * start and a size of valid data in a buffer specified by the page array. 388 * The returned sg table is released by sg_free_table. 389 * 390 * Returns: 391 * 0 on success, negative error on failure 392 */ 393 int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, 394 unsigned int n_pages, unsigned int offset, 395 unsigned long size, unsigned int max_segment, 396 gfp_t gfp_mask) 397 { 398 unsigned int chunks, cur_page, seg_len, i; 399 int ret; 400 struct scatterlist *s; 401 402 if (WARN_ON(!max_segment || offset_in_page(max_segment))) 403 return -EINVAL; 404 405 /* compute number of contiguous chunks */ 406 chunks = 1; 407 seg_len = 0; 408 for (i = 1; i < n_pages; i++) { 409 seg_len += PAGE_SIZE; 410 if (seg_len >= max_segment || 411 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) { 412 chunks++; 413 seg_len = 0; 414 } 415 } 416 417 ret = sg_alloc_table(sgt, chunks, gfp_mask); 418 if (unlikely(ret)) 419 return ret; 420 421 /* merging chunks and putting them into the scatterlist */ 422 cur_page = 0; 423 for_each_sg(sgt->sgl, s, sgt->orig_nents, i) { 424 unsigned int j, chunk_size; 425 426 /* look for the end of the current chunk */ 427 seg_len = 0; 428 for (j = cur_page + 1; j < n_pages; j++) { 429 seg_len += PAGE_SIZE; 430 if (seg_len >= max_segment || 431 page_to_pfn(pages[j]) != 432 page_to_pfn(pages[j - 1]) + 1) 433 break; 434 } 435 436 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset; 437 sg_set_page(s, pages[cur_page], 438 min_t(unsigned long, size, chunk_size), offset); 439 size -= chunk_size; 440 offset = 0; 441 cur_page = j; 442 } 443 444 return 0; 445 } 446 EXPORT_SYMBOL(__sg_alloc_table_from_pages); 447 448 /** 449 * sg_alloc_table_from_pages - Allocate and initialize an sg table from 450 * an array of pages 451 * @sgt: The sg table header to use 452 * @pages: Pointer to an array of page pointers 453 * @n_pages: Number of pages in the pages array 454 * @offset: Offset from start of the first page to the start of a buffer 455 * @size: Number of valid bytes in the buffer (after offset) 456 * @gfp_mask: GFP allocation mask 457 * 458 * Description: 459 * Allocate and initialize an sg table from a list of pages. Contiguous 460 * ranges of the pages are squashed into a single scatterlist node. A user 461 * may provide an offset at a start and a size of valid data in a buffer 462 * specified by the page array. The returned sg table is released by 463 * sg_free_table. 464 * 465 * Returns: 466 * 0 on success, negative error on failure 467 */ 468 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, 469 unsigned int n_pages, unsigned int offset, 470 unsigned long size, gfp_t gfp_mask) 471 { 472 return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size, 473 SCATTERLIST_MAX_SEGMENT, gfp_mask); 474 } 475 EXPORT_SYMBOL(sg_alloc_table_from_pages); 476 477 void __sg_page_iter_start(struct sg_page_iter *piter, 478 struct scatterlist *sglist, unsigned int nents, 479 unsigned long pgoffset) 480 { 481 piter->__pg_advance = 0; 482 piter->__nents = nents; 483 484 piter->sg = sglist; 485 piter->sg_pgoffset = pgoffset; 486 } 487 EXPORT_SYMBOL(__sg_page_iter_start); 488 489 static int sg_page_count(struct scatterlist *sg) 490 { 491 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT; 492 } 493 494 bool __sg_page_iter_next(struct sg_page_iter *piter) 495 { 496 if (!piter->__nents || !piter->sg) 497 return false; 498 499 piter->sg_pgoffset += piter->__pg_advance; 500 piter->__pg_advance = 1; 501 502 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) { 503 piter->sg_pgoffset -= sg_page_count(piter->sg); 504 piter->sg = sg_next(piter->sg); 505 if (!--piter->__nents || !piter->sg) 506 return false; 507 } 508 509 return true; 510 } 511 EXPORT_SYMBOL(__sg_page_iter_next); 512 513 /** 514 * sg_miter_start - start mapping iteration over a sg list 515 * @miter: sg mapping iter to be started 516 * @sgl: sg list to iterate over 517 * @nents: number of sg entries 518 * 519 * Description: 520 * Starts mapping iterator @miter. 521 * 522 * Context: 523 * Don't care. 524 */ 525 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, 526 unsigned int nents, unsigned int flags) 527 { 528 memset(miter, 0, sizeof(struct sg_mapping_iter)); 529 530 __sg_page_iter_start(&miter->piter, sgl, nents, 0); 531 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); 532 miter->__flags = flags; 533 } 534 EXPORT_SYMBOL(sg_miter_start); 535 536 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter) 537 { 538 if (!miter->__remaining) { 539 struct scatterlist *sg; 540 unsigned long pgoffset; 541 542 if (!__sg_page_iter_next(&miter->piter)) 543 return false; 544 545 sg = miter->piter.sg; 546 pgoffset = miter->piter.sg_pgoffset; 547 548 miter->__offset = pgoffset ? 0 : sg->offset; 549 miter->__remaining = sg->offset + sg->length - 550 (pgoffset << PAGE_SHIFT) - miter->__offset; 551 miter->__remaining = min_t(unsigned long, miter->__remaining, 552 PAGE_SIZE - miter->__offset); 553 } 554 555 return true; 556 } 557 558 /** 559 * sg_miter_skip - reposition mapping iterator 560 * @miter: sg mapping iter to be skipped 561 * @offset: number of bytes to plus the current location 562 * 563 * Description: 564 * Sets the offset of @miter to its current location plus @offset bytes. 565 * If mapping iterator @miter has been proceeded by sg_miter_next(), this 566 * stops @miter. 567 * 568 * Context: 569 * Don't care if @miter is stopped, or not proceeded yet. 570 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set. 571 * 572 * Returns: 573 * true if @miter contains the valid mapping. false if end of sg 574 * list is reached. 575 */ 576 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset) 577 { 578 sg_miter_stop(miter); 579 580 while (offset) { 581 off_t consumed; 582 583 if (!sg_miter_get_next_page(miter)) 584 return false; 585 586 consumed = min_t(off_t, offset, miter->__remaining); 587 miter->__offset += consumed; 588 miter->__remaining -= consumed; 589 offset -= consumed; 590 } 591 592 return true; 593 } 594 EXPORT_SYMBOL(sg_miter_skip); 595 596 /** 597 * sg_miter_next - proceed mapping iterator to the next mapping 598 * @miter: sg mapping iter to proceed 599 * 600 * Description: 601 * Proceeds @miter to the next mapping. @miter should have been started 602 * using sg_miter_start(). On successful return, @miter->page, 603 * @miter->addr and @miter->length point to the current mapping. 604 * 605 * Context: 606 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled 607 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC. 608 * 609 * Returns: 610 * true if @miter contains the next mapping. false if end of sg 611 * list is reached. 612 */ 613 bool sg_miter_next(struct sg_mapping_iter *miter) 614 { 615 sg_miter_stop(miter); 616 617 /* 618 * Get to the next page if necessary. 619 * __remaining, __offset is adjusted by sg_miter_stop 620 */ 621 if (!sg_miter_get_next_page(miter)) 622 return false; 623 624 miter->page = sg_page_iter_page(&miter->piter); 625 miter->consumed = miter->length = miter->__remaining; 626 627 if (miter->__flags & SG_MITER_ATOMIC) 628 miter->addr = kmap_atomic(miter->page) + miter->__offset; 629 else 630 miter->addr = kmap(miter->page) + miter->__offset; 631 632 return true; 633 } 634 EXPORT_SYMBOL(sg_miter_next); 635 636 /** 637 * sg_miter_stop - stop mapping iteration 638 * @miter: sg mapping iter to be stopped 639 * 640 * Description: 641 * Stops mapping iterator @miter. @miter should have been started 642 * using sg_miter_start(). A stopped iteration can be resumed by 643 * calling sg_miter_next() on it. This is useful when resources (kmap) 644 * need to be released during iteration. 645 * 646 * Context: 647 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care 648 * otherwise. 649 */ 650 void sg_miter_stop(struct sg_mapping_iter *miter) 651 { 652 WARN_ON(miter->consumed > miter->length); 653 654 /* drop resources from the last iteration */ 655 if (miter->addr) { 656 miter->__offset += miter->consumed; 657 miter->__remaining -= miter->consumed; 658 659 if ((miter->__flags & SG_MITER_TO_SG) && 660 !PageSlab(miter->page)) 661 flush_kernel_dcache_page(miter->page); 662 663 if (miter->__flags & SG_MITER_ATOMIC) { 664 WARN_ON_ONCE(preemptible()); 665 kunmap_atomic(miter->addr); 666 } else 667 kunmap(miter->page); 668 669 miter->page = NULL; 670 miter->addr = NULL; 671 miter->length = 0; 672 miter->consumed = 0; 673 } 674 } 675 EXPORT_SYMBOL(sg_miter_stop); 676 677 /** 678 * sg_copy_buffer - Copy data between a linear buffer and an SG list 679 * @sgl: The SG list 680 * @nents: Number of SG entries 681 * @buf: Where to copy from 682 * @buflen: The number of bytes to copy 683 * @skip: Number of bytes to skip before copying 684 * @to_buffer: transfer direction (true == from an sg list to a 685 * buffer, false == from a buffer to an sg list 686 * 687 * Returns the number of copied bytes. 688 * 689 **/ 690 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, 691 size_t buflen, off_t skip, bool to_buffer) 692 { 693 unsigned int offset = 0; 694 struct sg_mapping_iter miter; 695 unsigned int sg_flags = SG_MITER_ATOMIC; 696 697 if (to_buffer) 698 sg_flags |= SG_MITER_FROM_SG; 699 else 700 sg_flags |= SG_MITER_TO_SG; 701 702 sg_miter_start(&miter, sgl, nents, sg_flags); 703 704 if (!sg_miter_skip(&miter, skip)) 705 return false; 706 707 while ((offset < buflen) && sg_miter_next(&miter)) { 708 unsigned int len; 709 710 len = min(miter.length, buflen - offset); 711 712 if (to_buffer) 713 memcpy(buf + offset, miter.addr, len); 714 else 715 memcpy(miter.addr, buf + offset, len); 716 717 offset += len; 718 } 719 720 sg_miter_stop(&miter); 721 722 return offset; 723 } 724 EXPORT_SYMBOL(sg_copy_buffer); 725 726 /** 727 * sg_copy_from_buffer - Copy from a linear buffer to an SG list 728 * @sgl: The SG list 729 * @nents: Number of SG entries 730 * @buf: Where to copy from 731 * @buflen: The number of bytes to copy 732 * 733 * Returns the number of copied bytes. 734 * 735 **/ 736 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, 737 const void *buf, size_t buflen) 738 { 739 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false); 740 } 741 EXPORT_SYMBOL(sg_copy_from_buffer); 742 743 /** 744 * sg_copy_to_buffer - Copy from an SG list to a linear buffer 745 * @sgl: The SG list 746 * @nents: Number of SG entries 747 * @buf: Where to copy to 748 * @buflen: The number of bytes to copy 749 * 750 * Returns the number of copied bytes. 751 * 752 **/ 753 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, 754 void *buf, size_t buflen) 755 { 756 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true); 757 } 758 EXPORT_SYMBOL(sg_copy_to_buffer); 759 760 /** 761 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list 762 * @sgl: The SG list 763 * @nents: Number of SG entries 764 * @buf: Where to copy from 765 * @buflen: The number of bytes to copy 766 * @skip: Number of bytes to skip before copying 767 * 768 * Returns the number of copied bytes. 769 * 770 **/ 771 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, 772 const void *buf, size_t buflen, off_t skip) 773 { 774 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false); 775 } 776 EXPORT_SYMBOL(sg_pcopy_from_buffer); 777 778 /** 779 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer 780 * @sgl: The SG list 781 * @nents: Number of SG entries 782 * @buf: Where to copy to 783 * @buflen: The number of bytes to copy 784 * @skip: Number of bytes to skip before copying 785 * 786 * Returns the number of copied bytes. 787 * 788 **/ 789 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, 790 void *buf, size_t buflen, off_t skip) 791 { 792 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true); 793 } 794 EXPORT_SYMBOL(sg_pcopy_to_buffer); 795 796 /** 797 * sg_zero_buffer - Zero-out a part of a SG list 798 * @sgl: The SG list 799 * @nents: Number of SG entries 800 * @buflen: The number of bytes to zero out 801 * @skip: Number of bytes to skip before zeroing 802 * 803 * Returns the number of bytes zeroed. 804 **/ 805 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, 806 size_t buflen, off_t skip) 807 { 808 unsigned int offset = 0; 809 struct sg_mapping_iter miter; 810 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG; 811 812 sg_miter_start(&miter, sgl, nents, sg_flags); 813 814 if (!sg_miter_skip(&miter, skip)) 815 return false; 816 817 while (offset < buflen && sg_miter_next(&miter)) { 818 unsigned int len; 819 820 len = min(miter.length, buflen - offset); 821 memset(miter.addr, 0, len); 822 823 offset += len; 824 } 825 826 sg_miter_stop(&miter); 827 return offset; 828 } 829 EXPORT_SYMBOL(sg_zero_buffer); 830