xref: /openbmc/linux/lib/scatterlist.c (revision 62a9bbf2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com>
4  *
5  * Scatterlist handling helpers.
6  */
7 #include <linux/export.h>
8 #include <linux/slab.h>
9 #include <linux/scatterlist.h>
10 #include <linux/highmem.h>
11 #include <linux/kmemleak.h>
12 
13 /**
14  * sg_next - return the next scatterlist entry in a list
15  * @sg:		The current sg entry
16  *
17  * Description:
18  *   Usually the next entry will be @sg@ + 1, but if this sg element is part
19  *   of a chained scatterlist, it could jump to the start of a new
20  *   scatterlist array.
21  *
22  **/
23 struct scatterlist *sg_next(struct scatterlist *sg)
24 {
25 	if (sg_is_last(sg))
26 		return NULL;
27 
28 	sg++;
29 	if (unlikely(sg_is_chain(sg)))
30 		sg = sg_chain_ptr(sg);
31 
32 	return sg;
33 }
34 EXPORT_SYMBOL(sg_next);
35 
36 /**
37  * sg_nents - return total count of entries in scatterlist
38  * @sg:		The scatterlist
39  *
40  * Description:
41  * Allows to know how many entries are in sg, taking into account
42  * chaining as well
43  *
44  **/
45 int sg_nents(struct scatterlist *sg)
46 {
47 	int nents;
48 	for (nents = 0; sg; sg = sg_next(sg))
49 		nents++;
50 	return nents;
51 }
52 EXPORT_SYMBOL(sg_nents);
53 
54 /**
55  * sg_nents_for_len - return total count of entries in scatterlist
56  *                    needed to satisfy the supplied length
57  * @sg:		The scatterlist
58  * @len:	The total required length
59  *
60  * Description:
61  * Determines the number of entries in sg that are required to meet
62  * the supplied length, taking into account chaining as well
63  *
64  * Returns:
65  *   the number of sg entries needed, negative error on failure
66  *
67  **/
68 int sg_nents_for_len(struct scatterlist *sg, u64 len)
69 {
70 	int nents;
71 	u64 total;
72 
73 	if (!len)
74 		return 0;
75 
76 	for (nents = 0, total = 0; sg; sg = sg_next(sg)) {
77 		nents++;
78 		total += sg->length;
79 		if (total >= len)
80 			return nents;
81 	}
82 
83 	return -EINVAL;
84 }
85 EXPORT_SYMBOL(sg_nents_for_len);
86 
87 /**
88  * sg_last - return the last scatterlist entry in a list
89  * @sgl:	First entry in the scatterlist
90  * @nents:	Number of entries in the scatterlist
91  *
92  * Description:
93  *   Should only be used casually, it (currently) scans the entire list
94  *   to get the last entry.
95  *
96  *   Note that the @sgl@ pointer passed in need not be the first one,
97  *   the important bit is that @nents@ denotes the number of entries that
98  *   exist from @sgl@.
99  *
100  **/
101 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents)
102 {
103 	struct scatterlist *sg, *ret = NULL;
104 	unsigned int i;
105 
106 	for_each_sg(sgl, sg, nents, i)
107 		ret = sg;
108 
109 	BUG_ON(!sg_is_last(ret));
110 	return ret;
111 }
112 EXPORT_SYMBOL(sg_last);
113 
114 /**
115  * sg_init_table - Initialize SG table
116  * @sgl:	   The SG table
117  * @nents:	   Number of entries in table
118  *
119  * Notes:
120  *   If this is part of a chained sg table, sg_mark_end() should be
121  *   used only on the last table part.
122  *
123  **/
124 void sg_init_table(struct scatterlist *sgl, unsigned int nents)
125 {
126 	memset(sgl, 0, sizeof(*sgl) * nents);
127 	sg_init_marker(sgl, nents);
128 }
129 EXPORT_SYMBOL(sg_init_table);
130 
131 /**
132  * sg_init_one - Initialize a single entry sg list
133  * @sg:		 SG entry
134  * @buf:	 Virtual address for IO
135  * @buflen:	 IO length
136  *
137  **/
138 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen)
139 {
140 	sg_init_table(sg, 1);
141 	sg_set_buf(sg, buf, buflen);
142 }
143 EXPORT_SYMBOL(sg_init_one);
144 
145 /*
146  * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree
147  * helpers.
148  */
149 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask)
150 {
151 	if (nents == SG_MAX_SINGLE_ALLOC) {
152 		/*
153 		 * Kmemleak doesn't track page allocations as they are not
154 		 * commonly used (in a raw form) for kernel data structures.
155 		 * As we chain together a list of pages and then a normal
156 		 * kmalloc (tracked by kmemleak), in order to for that last
157 		 * allocation not to become decoupled (and thus a
158 		 * false-positive) we need to inform kmemleak of all the
159 		 * intermediate allocations.
160 		 */
161 		void *ptr = (void *) __get_free_page(gfp_mask);
162 		kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask);
163 		return ptr;
164 	} else
165 		return kmalloc_array(nents, sizeof(struct scatterlist),
166 				     gfp_mask);
167 }
168 
169 static void sg_kfree(struct scatterlist *sg, unsigned int nents)
170 {
171 	if (nents == SG_MAX_SINGLE_ALLOC) {
172 		kmemleak_free(sg);
173 		free_page((unsigned long) sg);
174 	} else
175 		kfree(sg);
176 }
177 
178 /**
179  * __sg_free_table - Free a previously mapped sg table
180  * @table:	The sg table header to use
181  * @max_ents:	The maximum number of entries per single scatterlist
182  * @nents_first_chunk: Number of entries int the (preallocated) first
183  * 	scatterlist chunk, 0 means no such preallocated first chunk
184  * @free_fn:	Free function
185  * @num_ents:	Number of entries in the table
186  *
187  *  Description:
188  *    Free an sg table previously allocated and setup with
189  *    __sg_alloc_table().  The @max_ents value must be identical to
190  *    that previously used with __sg_alloc_table().
191  *
192  **/
193 void __sg_free_table(struct sg_table *table, unsigned int max_ents,
194 		     unsigned int nents_first_chunk, sg_free_fn *free_fn,
195 		     unsigned int num_ents)
196 {
197 	struct scatterlist *sgl, *next;
198 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
199 
200 	if (unlikely(!table->sgl))
201 		return;
202 
203 	sgl = table->sgl;
204 	while (num_ents) {
205 		unsigned int alloc_size = num_ents;
206 		unsigned int sg_size;
207 
208 		/*
209 		 * If we have more than max_ents segments left,
210 		 * then assign 'next' to the sg table after the current one.
211 		 * sg_size is then one less than alloc size, since the last
212 		 * element is the chain pointer.
213 		 */
214 		if (alloc_size > curr_max_ents) {
215 			next = sg_chain_ptr(&sgl[curr_max_ents - 1]);
216 			alloc_size = curr_max_ents;
217 			sg_size = alloc_size - 1;
218 		} else {
219 			sg_size = alloc_size;
220 			next = NULL;
221 		}
222 
223 		num_ents -= sg_size;
224 		if (nents_first_chunk)
225 			nents_first_chunk = 0;
226 		else
227 			free_fn(sgl, alloc_size);
228 		sgl = next;
229 		curr_max_ents = max_ents;
230 	}
231 
232 	table->sgl = NULL;
233 }
234 EXPORT_SYMBOL(__sg_free_table);
235 
236 /**
237  * sg_free_append_table - Free a previously allocated append sg table.
238  * @table:	 The mapped sg append table header
239  *
240  **/
241 void sg_free_append_table(struct sg_append_table *table)
242 {
243 	__sg_free_table(&table->sgt, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
244 			table->total_nents);
245 }
246 EXPORT_SYMBOL(sg_free_append_table);
247 
248 
249 /**
250  * sg_free_table - Free a previously allocated sg table
251  * @table:	The mapped sg table header
252  *
253  **/
254 void sg_free_table(struct sg_table *table)
255 {
256 	__sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree,
257 			table->orig_nents);
258 }
259 EXPORT_SYMBOL(sg_free_table);
260 
261 /**
262  * __sg_alloc_table - Allocate and initialize an sg table with given allocator
263  * @table:	The sg table header to use
264  * @nents:	Number of entries in sg list
265  * @max_ents:	The maximum number of entries the allocator returns per call
266  * @nents_first_chunk: Number of entries int the (preallocated) first
267  * 	scatterlist chunk, 0 means no such preallocated chunk provided by user
268  * @gfp_mask:	GFP allocation mask
269  * @alloc_fn:	Allocator to use
270  *
271  * Description:
272  *   This function returns a @table @nents long. The allocator is
273  *   defined to return scatterlist chunks of maximum size @max_ents.
274  *   Thus if @nents is bigger than @max_ents, the scatterlists will be
275  *   chained in units of @max_ents.
276  *
277  * Notes:
278  *   If this function returns non-0 (eg failure), the caller must call
279  *   __sg_free_table() to cleanup any leftover allocations.
280  *
281  **/
282 int __sg_alloc_table(struct sg_table *table, unsigned int nents,
283 		     unsigned int max_ents, struct scatterlist *first_chunk,
284 		     unsigned int nents_first_chunk, gfp_t gfp_mask,
285 		     sg_alloc_fn *alloc_fn)
286 {
287 	struct scatterlist *sg, *prv;
288 	unsigned int left;
289 	unsigned curr_max_ents = nents_first_chunk ?: max_ents;
290 	unsigned prv_max_ents;
291 
292 	memset(table, 0, sizeof(*table));
293 
294 	if (nents == 0)
295 		return -EINVAL;
296 #ifdef CONFIG_ARCH_NO_SG_CHAIN
297 	if (WARN_ON_ONCE(nents > max_ents))
298 		return -EINVAL;
299 #endif
300 
301 	left = nents;
302 	prv = NULL;
303 	do {
304 		unsigned int sg_size, alloc_size = left;
305 
306 		if (alloc_size > curr_max_ents) {
307 			alloc_size = curr_max_ents;
308 			sg_size = alloc_size - 1;
309 		} else
310 			sg_size = alloc_size;
311 
312 		left -= sg_size;
313 
314 		if (first_chunk) {
315 			sg = first_chunk;
316 			first_chunk = NULL;
317 		} else {
318 			sg = alloc_fn(alloc_size, gfp_mask);
319 		}
320 		if (unlikely(!sg)) {
321 			/*
322 			 * Adjust entry count to reflect that the last
323 			 * entry of the previous table won't be used for
324 			 * linkage.  Without this, sg_kfree() may get
325 			 * confused.
326 			 */
327 			if (prv)
328 				table->nents = ++table->orig_nents;
329 
330 			return -ENOMEM;
331 		}
332 
333 		sg_init_table(sg, alloc_size);
334 		table->nents = table->orig_nents += sg_size;
335 
336 		/*
337 		 * If this is the first mapping, assign the sg table header.
338 		 * If this is not the first mapping, chain previous part.
339 		 */
340 		if (prv)
341 			sg_chain(prv, prv_max_ents, sg);
342 		else
343 			table->sgl = sg;
344 
345 		/*
346 		 * If no more entries after this one, mark the end
347 		 */
348 		if (!left)
349 			sg_mark_end(&sg[sg_size - 1]);
350 
351 		prv = sg;
352 		prv_max_ents = curr_max_ents;
353 		curr_max_ents = max_ents;
354 	} while (left);
355 
356 	return 0;
357 }
358 EXPORT_SYMBOL(__sg_alloc_table);
359 
360 /**
361  * sg_alloc_table - Allocate and initialize an sg table
362  * @table:	The sg table header to use
363  * @nents:	Number of entries in sg list
364  * @gfp_mask:	GFP allocation mask
365  *
366  *  Description:
367  *    Allocate and initialize an sg table. If @nents@ is larger than
368  *    SG_MAX_SINGLE_ALLOC a chained sg table will be setup.
369  *
370  **/
371 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask)
372 {
373 	int ret;
374 
375 	ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC,
376 			       NULL, 0, gfp_mask, sg_kmalloc);
377 	if (unlikely(ret))
378 		sg_free_table(table);
379 	return ret;
380 }
381 EXPORT_SYMBOL(sg_alloc_table);
382 
383 static struct scatterlist *get_next_sg(struct sg_append_table *table,
384 				       struct scatterlist *cur,
385 				       unsigned long needed_sges,
386 				       gfp_t gfp_mask)
387 {
388 	struct scatterlist *new_sg, *next_sg;
389 	unsigned int alloc_size;
390 
391 	if (cur) {
392 		next_sg = sg_next(cur);
393 		/* Check if last entry should be keeped for chainning */
394 		if (!sg_is_last(next_sg) || needed_sges == 1)
395 			return next_sg;
396 	}
397 
398 	alloc_size = min_t(unsigned long, needed_sges, SG_MAX_SINGLE_ALLOC);
399 	new_sg = sg_kmalloc(alloc_size, gfp_mask);
400 	if (!new_sg)
401 		return ERR_PTR(-ENOMEM);
402 	sg_init_table(new_sg, alloc_size);
403 	if (cur) {
404 		table->total_nents += alloc_size - 1;
405 		__sg_chain(next_sg, new_sg);
406 	} else {
407 		table->sgt.sgl = new_sg;
408 		table->total_nents = alloc_size;
409 	}
410 	return new_sg;
411 }
412 
413 static bool pages_are_mergeable(struct page *a, struct page *b)
414 {
415 	if (page_to_pfn(a) != page_to_pfn(b) + 1)
416 		return false;
417 	if (!zone_device_pages_have_same_pgmap(a, b))
418 		return false;
419 	return true;
420 }
421 
422 /**
423  * sg_alloc_append_table_from_pages - Allocate and initialize an append sg
424  *                                    table from an array of pages
425  * @sgt_append:  The sg append table to use
426  * @pages:       Pointer to an array of page pointers
427  * @n_pages:     Number of pages in the pages array
428  * @offset:      Offset from start of the first page to the start of a buffer
429  * @size:        Number of valid bytes in the buffer (after offset)
430  * @max_segment: Maximum size of a scatterlist element in bytes
431  * @left_pages:  Left pages caller have to set after this call
432  * @gfp_mask:	 GFP allocation mask
433  *
434  * Description:
435  *    In the first call it allocate and initialize an sg table from a list of
436  *    pages, else reuse the scatterlist from sgt_append. Contiguous ranges of
437  *    the pages are squashed into a single scatterlist entry up to the maximum
438  *    size specified in @max_segment.  A user may provide an offset at a start
439  *    and a size of valid data in a buffer specified by the page array. The
440  *    returned sg table is released by sg_free_append_table
441  *
442  * Returns:
443  *   0 on success, negative error on failure
444  *
445  * Notes:
446  *   If this function returns non-0 (eg failure), the caller must call
447  *   sg_free_append_table() to cleanup any leftover allocations.
448  *
449  *   In the fist call, sgt_append must by initialized.
450  */
451 int sg_alloc_append_table_from_pages(struct sg_append_table *sgt_append,
452 		struct page **pages, unsigned int n_pages, unsigned int offset,
453 		unsigned long size, unsigned int max_segment,
454 		unsigned int left_pages, gfp_t gfp_mask)
455 {
456 	unsigned int chunks, cur_page, seg_len, i, prv_len = 0;
457 	unsigned int added_nents = 0;
458 	struct scatterlist *s = sgt_append->prv;
459 	struct page *last_pg;
460 
461 	/*
462 	 * The algorithm below requires max_segment to be aligned to PAGE_SIZE
463 	 * otherwise it can overshoot.
464 	 */
465 	max_segment = ALIGN_DOWN(max_segment, PAGE_SIZE);
466 	if (WARN_ON(max_segment < PAGE_SIZE))
467 		return -EINVAL;
468 
469 	if (IS_ENABLED(CONFIG_ARCH_NO_SG_CHAIN) && sgt_append->prv)
470 		return -EOPNOTSUPP;
471 
472 	if (sgt_append->prv) {
473 		if (WARN_ON(offset))
474 			return -EINVAL;
475 
476 		/* Merge contiguous pages into the last SG */
477 		prv_len = sgt_append->prv->length;
478 		last_pg = sg_page(sgt_append->prv);
479 		while (n_pages && pages_are_mergeable(pages[0], last_pg)) {
480 			if (sgt_append->prv->length + PAGE_SIZE > max_segment)
481 				break;
482 			sgt_append->prv->length += PAGE_SIZE;
483 			last_pg = pages[0];
484 			pages++;
485 			n_pages--;
486 		}
487 		if (!n_pages)
488 			goto out;
489 	}
490 
491 	/* compute number of contiguous chunks */
492 	chunks = 1;
493 	seg_len = 0;
494 	for (i = 1; i < n_pages; i++) {
495 		seg_len += PAGE_SIZE;
496 		if (seg_len >= max_segment ||
497 		    !pages_are_mergeable(pages[i], pages[i - 1])) {
498 			chunks++;
499 			seg_len = 0;
500 		}
501 	}
502 
503 	/* merging chunks and putting them into the scatterlist */
504 	cur_page = 0;
505 	for (i = 0; i < chunks; i++) {
506 		unsigned int j, chunk_size;
507 
508 		/* look for the end of the current chunk */
509 		seg_len = 0;
510 		for (j = cur_page + 1; j < n_pages; j++) {
511 			seg_len += PAGE_SIZE;
512 			if (seg_len >= max_segment ||
513 			    !pages_are_mergeable(pages[j], pages[j - 1]))
514 				break;
515 		}
516 
517 		/* Pass how many chunks might be left */
518 		s = get_next_sg(sgt_append, s, chunks - i + left_pages,
519 				gfp_mask);
520 		if (IS_ERR(s)) {
521 			/*
522 			 * Adjust entry length to be as before function was
523 			 * called.
524 			 */
525 			if (sgt_append->prv)
526 				sgt_append->prv->length = prv_len;
527 			return PTR_ERR(s);
528 		}
529 		chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset;
530 		sg_set_page(s, pages[cur_page],
531 			    min_t(unsigned long, size, chunk_size), offset);
532 		added_nents++;
533 		size -= chunk_size;
534 		offset = 0;
535 		cur_page = j;
536 	}
537 	sgt_append->sgt.nents += added_nents;
538 	sgt_append->sgt.orig_nents = sgt_append->sgt.nents;
539 	sgt_append->prv = s;
540 out:
541 	if (!left_pages)
542 		sg_mark_end(s);
543 	return 0;
544 }
545 EXPORT_SYMBOL(sg_alloc_append_table_from_pages);
546 
547 /**
548  * sg_alloc_table_from_pages_segment - Allocate and initialize an sg table from
549  *                                     an array of pages and given maximum
550  *                                     segment.
551  * @sgt:	 The sg table header to use
552  * @pages:	 Pointer to an array of page pointers
553  * @n_pages:	 Number of pages in the pages array
554  * @offset:      Offset from start of the first page to the start of a buffer
555  * @size:        Number of valid bytes in the buffer (after offset)
556  * @max_segment: Maximum size of a scatterlist element in bytes
557  * @gfp_mask:	 GFP allocation mask
558  *
559  *  Description:
560  *    Allocate and initialize an sg table from a list of pages. Contiguous
561  *    ranges of the pages are squashed into a single scatterlist node up to the
562  *    maximum size specified in @max_segment. A user may provide an offset at a
563  *    start and a size of valid data in a buffer specified by the page array.
564  *
565  *    The returned sg table is released by sg_free_table.
566  *
567  *  Returns:
568  *   0 on success, negative error on failure
569  */
570 int sg_alloc_table_from_pages_segment(struct sg_table *sgt, struct page **pages,
571 				unsigned int n_pages, unsigned int offset,
572 				unsigned long size, unsigned int max_segment,
573 				gfp_t gfp_mask)
574 {
575 	struct sg_append_table append = {};
576 	int err;
577 
578 	err = sg_alloc_append_table_from_pages(&append, pages, n_pages, offset,
579 					       size, max_segment, 0, gfp_mask);
580 	if (err) {
581 		sg_free_append_table(&append);
582 		return err;
583 	}
584 	memcpy(sgt, &append.sgt, sizeof(*sgt));
585 	WARN_ON(append.total_nents != sgt->orig_nents);
586 	return 0;
587 }
588 EXPORT_SYMBOL(sg_alloc_table_from_pages_segment);
589 
590 #ifdef CONFIG_SGL_ALLOC
591 
592 /**
593  * sgl_alloc_order - allocate a scatterlist and its pages
594  * @length: Length in bytes of the scatterlist. Must be at least one
595  * @order: Second argument for alloc_pages()
596  * @chainable: Whether or not to allocate an extra element in the scatterlist
597  *	for scatterlist chaining purposes
598  * @gfp: Memory allocation flags
599  * @nent_p: [out] Number of entries in the scatterlist that have pages
600  *
601  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
602  */
603 struct scatterlist *sgl_alloc_order(unsigned long long length,
604 				    unsigned int order, bool chainable,
605 				    gfp_t gfp, unsigned int *nent_p)
606 {
607 	struct scatterlist *sgl, *sg;
608 	struct page *page;
609 	unsigned int nent, nalloc;
610 	u32 elem_len;
611 
612 	nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order);
613 	/* Check for integer overflow */
614 	if (length > (nent << (PAGE_SHIFT + order)))
615 		return NULL;
616 	nalloc = nent;
617 	if (chainable) {
618 		/* Check for integer overflow */
619 		if (nalloc + 1 < nalloc)
620 			return NULL;
621 		nalloc++;
622 	}
623 	sgl = kmalloc_array(nalloc, sizeof(struct scatterlist),
624 			    gfp & ~GFP_DMA);
625 	if (!sgl)
626 		return NULL;
627 
628 	sg_init_table(sgl, nalloc);
629 	sg = sgl;
630 	while (length) {
631 		elem_len = min_t(u64, length, PAGE_SIZE << order);
632 		page = alloc_pages(gfp, order);
633 		if (!page) {
634 			sgl_free_order(sgl, order);
635 			return NULL;
636 		}
637 
638 		sg_set_page(sg, page, elem_len, 0);
639 		length -= elem_len;
640 		sg = sg_next(sg);
641 	}
642 	WARN_ONCE(length, "length = %lld\n", length);
643 	if (nent_p)
644 		*nent_p = nent;
645 	return sgl;
646 }
647 EXPORT_SYMBOL(sgl_alloc_order);
648 
649 /**
650  * sgl_alloc - allocate a scatterlist and its pages
651  * @length: Length in bytes of the scatterlist
652  * @gfp: Memory allocation flags
653  * @nent_p: [out] Number of entries in the scatterlist
654  *
655  * Returns: A pointer to an initialized scatterlist or %NULL upon failure.
656  */
657 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp,
658 			      unsigned int *nent_p)
659 {
660 	return sgl_alloc_order(length, 0, false, gfp, nent_p);
661 }
662 EXPORT_SYMBOL(sgl_alloc);
663 
664 /**
665  * sgl_free_n_order - free a scatterlist and its pages
666  * @sgl: Scatterlist with one or more elements
667  * @nents: Maximum number of elements to free
668  * @order: Second argument for __free_pages()
669  *
670  * Notes:
671  * - If several scatterlists have been chained and each chain element is
672  *   freed separately then it's essential to set nents correctly to avoid that a
673  *   page would get freed twice.
674  * - All pages in a chained scatterlist can be freed at once by setting @nents
675  *   to a high number.
676  */
677 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order)
678 {
679 	struct scatterlist *sg;
680 	struct page *page;
681 	int i;
682 
683 	for_each_sg(sgl, sg, nents, i) {
684 		if (!sg)
685 			break;
686 		page = sg_page(sg);
687 		if (page)
688 			__free_pages(page, order);
689 	}
690 	kfree(sgl);
691 }
692 EXPORT_SYMBOL(sgl_free_n_order);
693 
694 /**
695  * sgl_free_order - free a scatterlist and its pages
696  * @sgl: Scatterlist with one or more elements
697  * @order: Second argument for __free_pages()
698  */
699 void sgl_free_order(struct scatterlist *sgl, int order)
700 {
701 	sgl_free_n_order(sgl, INT_MAX, order);
702 }
703 EXPORT_SYMBOL(sgl_free_order);
704 
705 /**
706  * sgl_free - free a scatterlist and its pages
707  * @sgl: Scatterlist with one or more elements
708  */
709 void sgl_free(struct scatterlist *sgl)
710 {
711 	sgl_free_order(sgl, 0);
712 }
713 EXPORT_SYMBOL(sgl_free);
714 
715 #endif /* CONFIG_SGL_ALLOC */
716 
717 void __sg_page_iter_start(struct sg_page_iter *piter,
718 			  struct scatterlist *sglist, unsigned int nents,
719 			  unsigned long pgoffset)
720 {
721 	piter->__pg_advance = 0;
722 	piter->__nents = nents;
723 
724 	piter->sg = sglist;
725 	piter->sg_pgoffset = pgoffset;
726 }
727 EXPORT_SYMBOL(__sg_page_iter_start);
728 
729 static int sg_page_count(struct scatterlist *sg)
730 {
731 	return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT;
732 }
733 
734 bool __sg_page_iter_next(struct sg_page_iter *piter)
735 {
736 	if (!piter->__nents || !piter->sg)
737 		return false;
738 
739 	piter->sg_pgoffset += piter->__pg_advance;
740 	piter->__pg_advance = 1;
741 
742 	while (piter->sg_pgoffset >= sg_page_count(piter->sg)) {
743 		piter->sg_pgoffset -= sg_page_count(piter->sg);
744 		piter->sg = sg_next(piter->sg);
745 		if (!--piter->__nents || !piter->sg)
746 			return false;
747 	}
748 
749 	return true;
750 }
751 EXPORT_SYMBOL(__sg_page_iter_next);
752 
753 static int sg_dma_page_count(struct scatterlist *sg)
754 {
755 	return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT;
756 }
757 
758 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter)
759 {
760 	struct sg_page_iter *piter = &dma_iter->base;
761 
762 	if (!piter->__nents || !piter->sg)
763 		return false;
764 
765 	piter->sg_pgoffset += piter->__pg_advance;
766 	piter->__pg_advance = 1;
767 
768 	while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) {
769 		piter->sg_pgoffset -= sg_dma_page_count(piter->sg);
770 		piter->sg = sg_next(piter->sg);
771 		if (!--piter->__nents || !piter->sg)
772 			return false;
773 	}
774 
775 	return true;
776 }
777 EXPORT_SYMBOL(__sg_page_iter_dma_next);
778 
779 /**
780  * sg_miter_start - start mapping iteration over a sg list
781  * @miter: sg mapping iter to be started
782  * @sgl: sg list to iterate over
783  * @nents: number of sg entries
784  *
785  * Description:
786  *   Starts mapping iterator @miter.
787  *
788  * Context:
789  *   Don't care.
790  */
791 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl,
792 		    unsigned int nents, unsigned int flags)
793 {
794 	memset(miter, 0, sizeof(struct sg_mapping_iter));
795 
796 	__sg_page_iter_start(&miter->piter, sgl, nents, 0);
797 	WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG)));
798 	miter->__flags = flags;
799 }
800 EXPORT_SYMBOL(sg_miter_start);
801 
802 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter)
803 {
804 	if (!miter->__remaining) {
805 		struct scatterlist *sg;
806 
807 		if (!__sg_page_iter_next(&miter->piter))
808 			return false;
809 
810 		sg = miter->piter.sg;
811 
812 		miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset;
813 		miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT;
814 		miter->__offset &= PAGE_SIZE - 1;
815 		miter->__remaining = sg->offset + sg->length -
816 				     (miter->piter.sg_pgoffset << PAGE_SHIFT) -
817 				     miter->__offset;
818 		miter->__remaining = min_t(unsigned long, miter->__remaining,
819 					   PAGE_SIZE - miter->__offset);
820 	}
821 
822 	return true;
823 }
824 
825 /**
826  * sg_miter_skip - reposition mapping iterator
827  * @miter: sg mapping iter to be skipped
828  * @offset: number of bytes to plus the current location
829  *
830  * Description:
831  *   Sets the offset of @miter to its current location plus @offset bytes.
832  *   If mapping iterator @miter has been proceeded by sg_miter_next(), this
833  *   stops @miter.
834  *
835  * Context:
836  *   Don't care.
837  *
838  * Returns:
839  *   true if @miter contains the valid mapping.  false if end of sg
840  *   list is reached.
841  */
842 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset)
843 {
844 	sg_miter_stop(miter);
845 
846 	while (offset) {
847 		off_t consumed;
848 
849 		if (!sg_miter_get_next_page(miter))
850 			return false;
851 
852 		consumed = min_t(off_t, offset, miter->__remaining);
853 		miter->__offset += consumed;
854 		miter->__remaining -= consumed;
855 		offset -= consumed;
856 	}
857 
858 	return true;
859 }
860 EXPORT_SYMBOL(sg_miter_skip);
861 
862 /**
863  * sg_miter_next - proceed mapping iterator to the next mapping
864  * @miter: sg mapping iter to proceed
865  *
866  * Description:
867  *   Proceeds @miter to the next mapping.  @miter should have been started
868  *   using sg_miter_start().  On successful return, @miter->page,
869  *   @miter->addr and @miter->length point to the current mapping.
870  *
871  * Context:
872  *   May sleep if !SG_MITER_ATOMIC.
873  *
874  * Returns:
875  *   true if @miter contains the next mapping.  false if end of sg
876  *   list is reached.
877  */
878 bool sg_miter_next(struct sg_mapping_iter *miter)
879 {
880 	sg_miter_stop(miter);
881 
882 	/*
883 	 * Get to the next page if necessary.
884 	 * __remaining, __offset is adjusted by sg_miter_stop
885 	 */
886 	if (!sg_miter_get_next_page(miter))
887 		return false;
888 
889 	miter->page = sg_page_iter_page(&miter->piter);
890 	miter->consumed = miter->length = miter->__remaining;
891 
892 	if (miter->__flags & SG_MITER_ATOMIC)
893 		miter->addr = kmap_atomic(miter->page) + miter->__offset;
894 	else
895 		miter->addr = kmap(miter->page) + miter->__offset;
896 
897 	return true;
898 }
899 EXPORT_SYMBOL(sg_miter_next);
900 
901 /**
902  * sg_miter_stop - stop mapping iteration
903  * @miter: sg mapping iter to be stopped
904  *
905  * Description:
906  *   Stops mapping iterator @miter.  @miter should have been started
907  *   using sg_miter_start().  A stopped iteration can be resumed by
908  *   calling sg_miter_next() on it.  This is useful when resources (kmap)
909  *   need to be released during iteration.
910  *
911  * Context:
912  *   Don't care otherwise.
913  */
914 void sg_miter_stop(struct sg_mapping_iter *miter)
915 {
916 	WARN_ON(miter->consumed > miter->length);
917 
918 	/* drop resources from the last iteration */
919 	if (miter->addr) {
920 		miter->__offset += miter->consumed;
921 		miter->__remaining -= miter->consumed;
922 
923 		if (miter->__flags & SG_MITER_TO_SG)
924 			flush_dcache_page(miter->page);
925 
926 		if (miter->__flags & SG_MITER_ATOMIC) {
927 			WARN_ON_ONCE(!pagefault_disabled());
928 			kunmap_atomic(miter->addr);
929 		} else
930 			kunmap(miter->page);
931 
932 		miter->page = NULL;
933 		miter->addr = NULL;
934 		miter->length = 0;
935 		miter->consumed = 0;
936 	}
937 }
938 EXPORT_SYMBOL(sg_miter_stop);
939 
940 /**
941  * sg_copy_buffer - Copy data between a linear buffer and an SG list
942  * @sgl:		 The SG list
943  * @nents:		 Number of SG entries
944  * @buf:		 Where to copy from
945  * @buflen:		 The number of bytes to copy
946  * @skip:		 Number of bytes to skip before copying
947  * @to_buffer:		 transfer direction (true == from an sg list to a
948  *			 buffer, false == from a buffer to an sg list)
949  *
950  * Returns the number of copied bytes.
951  *
952  **/
953 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf,
954 		      size_t buflen, off_t skip, bool to_buffer)
955 {
956 	unsigned int offset = 0;
957 	struct sg_mapping_iter miter;
958 	unsigned int sg_flags = SG_MITER_ATOMIC;
959 
960 	if (to_buffer)
961 		sg_flags |= SG_MITER_FROM_SG;
962 	else
963 		sg_flags |= SG_MITER_TO_SG;
964 
965 	sg_miter_start(&miter, sgl, nents, sg_flags);
966 
967 	if (!sg_miter_skip(&miter, skip))
968 		return 0;
969 
970 	while ((offset < buflen) && sg_miter_next(&miter)) {
971 		unsigned int len;
972 
973 		len = min(miter.length, buflen - offset);
974 
975 		if (to_buffer)
976 			memcpy(buf + offset, miter.addr, len);
977 		else
978 			memcpy(miter.addr, buf + offset, len);
979 
980 		offset += len;
981 	}
982 
983 	sg_miter_stop(&miter);
984 
985 	return offset;
986 }
987 EXPORT_SYMBOL(sg_copy_buffer);
988 
989 /**
990  * sg_copy_from_buffer - Copy from a linear buffer to an SG list
991  * @sgl:		 The SG list
992  * @nents:		 Number of SG entries
993  * @buf:		 Where to copy from
994  * @buflen:		 The number of bytes to copy
995  *
996  * Returns the number of copied bytes.
997  *
998  **/
999 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1000 			   const void *buf, size_t buflen)
1001 {
1002 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false);
1003 }
1004 EXPORT_SYMBOL(sg_copy_from_buffer);
1005 
1006 /**
1007  * sg_copy_to_buffer - Copy from an SG list to a linear buffer
1008  * @sgl:		 The SG list
1009  * @nents:		 Number of SG entries
1010  * @buf:		 Where to copy to
1011  * @buflen:		 The number of bytes to copy
1012  *
1013  * Returns the number of copied bytes.
1014  *
1015  **/
1016 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1017 			 void *buf, size_t buflen)
1018 {
1019 	return sg_copy_buffer(sgl, nents, buf, buflen, 0, true);
1020 }
1021 EXPORT_SYMBOL(sg_copy_to_buffer);
1022 
1023 /**
1024  * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list
1025  * @sgl:		 The SG list
1026  * @nents:		 Number of SG entries
1027  * @buf:		 Where to copy from
1028  * @buflen:		 The number of bytes to copy
1029  * @skip:		 Number of bytes to skip before copying
1030  *
1031  * Returns the number of copied bytes.
1032  *
1033  **/
1034 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents,
1035 			    const void *buf, size_t buflen, off_t skip)
1036 {
1037 	return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false);
1038 }
1039 EXPORT_SYMBOL(sg_pcopy_from_buffer);
1040 
1041 /**
1042  * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer
1043  * @sgl:		 The SG list
1044  * @nents:		 Number of SG entries
1045  * @buf:		 Where to copy to
1046  * @buflen:		 The number of bytes to copy
1047  * @skip:		 Number of bytes to skip before copying
1048  *
1049  * Returns the number of copied bytes.
1050  *
1051  **/
1052 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents,
1053 			  void *buf, size_t buflen, off_t skip)
1054 {
1055 	return sg_copy_buffer(sgl, nents, buf, buflen, skip, true);
1056 }
1057 EXPORT_SYMBOL(sg_pcopy_to_buffer);
1058 
1059 /**
1060  * sg_zero_buffer - Zero-out a part of a SG list
1061  * @sgl:		 The SG list
1062  * @nents:		 Number of SG entries
1063  * @buflen:		 The number of bytes to zero out
1064  * @skip:		 Number of bytes to skip before zeroing
1065  *
1066  * Returns the number of bytes zeroed.
1067  **/
1068 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents,
1069 		       size_t buflen, off_t skip)
1070 {
1071 	unsigned int offset = 0;
1072 	struct sg_mapping_iter miter;
1073 	unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG;
1074 
1075 	sg_miter_start(&miter, sgl, nents, sg_flags);
1076 
1077 	if (!sg_miter_skip(&miter, skip))
1078 		return false;
1079 
1080 	while (offset < buflen && sg_miter_next(&miter)) {
1081 		unsigned int len;
1082 
1083 		len = min(miter.length, buflen - offset);
1084 		memset(miter.addr, 0, len);
1085 
1086 		offset += len;
1087 	}
1088 
1089 	sg_miter_stop(&miter);
1090 	return offset;
1091 }
1092 EXPORT_SYMBOL(sg_zero_buffer);
1093