1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2007 Jens Axboe <jens.axboe@oracle.com> 4 * 5 * Scatterlist handling helpers. 6 */ 7 #include <linux/export.h> 8 #include <linux/slab.h> 9 #include <linux/scatterlist.h> 10 #include <linux/highmem.h> 11 #include <linux/kmemleak.h> 12 13 /** 14 * sg_next - return the next scatterlist entry in a list 15 * @sg: The current sg entry 16 * 17 * Description: 18 * Usually the next entry will be @sg@ + 1, but if this sg element is part 19 * of a chained scatterlist, it could jump to the start of a new 20 * scatterlist array. 21 * 22 **/ 23 struct scatterlist *sg_next(struct scatterlist *sg) 24 { 25 if (sg_is_last(sg)) 26 return NULL; 27 28 sg++; 29 if (unlikely(sg_is_chain(sg))) 30 sg = sg_chain_ptr(sg); 31 32 return sg; 33 } 34 EXPORT_SYMBOL(sg_next); 35 36 /** 37 * sg_nents - return total count of entries in scatterlist 38 * @sg: The scatterlist 39 * 40 * Description: 41 * Allows to know how many entries are in sg, taking into acount 42 * chaining as well 43 * 44 **/ 45 int sg_nents(struct scatterlist *sg) 46 { 47 int nents; 48 for (nents = 0; sg; sg = sg_next(sg)) 49 nents++; 50 return nents; 51 } 52 EXPORT_SYMBOL(sg_nents); 53 54 /** 55 * sg_nents_for_len - return total count of entries in scatterlist 56 * needed to satisfy the supplied length 57 * @sg: The scatterlist 58 * @len: The total required length 59 * 60 * Description: 61 * Determines the number of entries in sg that are required to meet 62 * the supplied length, taking into acount chaining as well 63 * 64 * Returns: 65 * the number of sg entries needed, negative error on failure 66 * 67 **/ 68 int sg_nents_for_len(struct scatterlist *sg, u64 len) 69 { 70 int nents; 71 u64 total; 72 73 if (!len) 74 return 0; 75 76 for (nents = 0, total = 0; sg; sg = sg_next(sg)) { 77 nents++; 78 total += sg->length; 79 if (total >= len) 80 return nents; 81 } 82 83 return -EINVAL; 84 } 85 EXPORT_SYMBOL(sg_nents_for_len); 86 87 /** 88 * sg_last - return the last scatterlist entry in a list 89 * @sgl: First entry in the scatterlist 90 * @nents: Number of entries in the scatterlist 91 * 92 * Description: 93 * Should only be used casually, it (currently) scans the entire list 94 * to get the last entry. 95 * 96 * Note that the @sgl@ pointer passed in need not be the first one, 97 * the important bit is that @nents@ denotes the number of entries that 98 * exist from @sgl@. 99 * 100 **/ 101 struct scatterlist *sg_last(struct scatterlist *sgl, unsigned int nents) 102 { 103 struct scatterlist *sg, *ret = NULL; 104 unsigned int i; 105 106 for_each_sg(sgl, sg, nents, i) 107 ret = sg; 108 109 BUG_ON(!sg_is_last(ret)); 110 return ret; 111 } 112 EXPORT_SYMBOL(sg_last); 113 114 /** 115 * sg_init_table - Initialize SG table 116 * @sgl: The SG table 117 * @nents: Number of entries in table 118 * 119 * Notes: 120 * If this is part of a chained sg table, sg_mark_end() should be 121 * used only on the last table part. 122 * 123 **/ 124 void sg_init_table(struct scatterlist *sgl, unsigned int nents) 125 { 126 memset(sgl, 0, sizeof(*sgl) * nents); 127 sg_init_marker(sgl, nents); 128 } 129 EXPORT_SYMBOL(sg_init_table); 130 131 /** 132 * sg_init_one - Initialize a single entry sg list 133 * @sg: SG entry 134 * @buf: Virtual address for IO 135 * @buflen: IO length 136 * 137 **/ 138 void sg_init_one(struct scatterlist *sg, const void *buf, unsigned int buflen) 139 { 140 sg_init_table(sg, 1); 141 sg_set_buf(sg, buf, buflen); 142 } 143 EXPORT_SYMBOL(sg_init_one); 144 145 /* 146 * The default behaviour of sg_alloc_table() is to use these kmalloc/kfree 147 * helpers. 148 */ 149 static struct scatterlist *sg_kmalloc(unsigned int nents, gfp_t gfp_mask) 150 { 151 if (nents == SG_MAX_SINGLE_ALLOC) { 152 /* 153 * Kmemleak doesn't track page allocations as they are not 154 * commonly used (in a raw form) for kernel data structures. 155 * As we chain together a list of pages and then a normal 156 * kmalloc (tracked by kmemleak), in order to for that last 157 * allocation not to become decoupled (and thus a 158 * false-positive) we need to inform kmemleak of all the 159 * intermediate allocations. 160 */ 161 void *ptr = (void *) __get_free_page(gfp_mask); 162 kmemleak_alloc(ptr, PAGE_SIZE, 1, gfp_mask); 163 return ptr; 164 } else 165 return kmalloc_array(nents, sizeof(struct scatterlist), 166 gfp_mask); 167 } 168 169 static void sg_kfree(struct scatterlist *sg, unsigned int nents) 170 { 171 if (nents == SG_MAX_SINGLE_ALLOC) { 172 kmemleak_free(sg); 173 free_page((unsigned long) sg); 174 } else 175 kfree(sg); 176 } 177 178 /** 179 * __sg_free_table - Free a previously mapped sg table 180 * @table: The sg table header to use 181 * @max_ents: The maximum number of entries per single scatterlist 182 * @nents_first_chunk: Number of entries int the (preallocated) first 183 * scatterlist chunk, 0 means no such preallocated first chunk 184 * @free_fn: Free function 185 * 186 * Description: 187 * Free an sg table previously allocated and setup with 188 * __sg_alloc_table(). The @max_ents value must be identical to 189 * that previously used with __sg_alloc_table(). 190 * 191 **/ 192 void __sg_free_table(struct sg_table *table, unsigned int max_ents, 193 unsigned int nents_first_chunk, sg_free_fn *free_fn) 194 { 195 struct scatterlist *sgl, *next; 196 unsigned curr_max_ents = nents_first_chunk ?: max_ents; 197 198 if (unlikely(!table->sgl)) 199 return; 200 201 sgl = table->sgl; 202 while (table->orig_nents) { 203 unsigned int alloc_size = table->orig_nents; 204 unsigned int sg_size; 205 206 /* 207 * If we have more than max_ents segments left, 208 * then assign 'next' to the sg table after the current one. 209 * sg_size is then one less than alloc size, since the last 210 * element is the chain pointer. 211 */ 212 if (alloc_size > curr_max_ents) { 213 next = sg_chain_ptr(&sgl[curr_max_ents - 1]); 214 alloc_size = curr_max_ents; 215 sg_size = alloc_size - 1; 216 } else { 217 sg_size = alloc_size; 218 next = NULL; 219 } 220 221 table->orig_nents -= sg_size; 222 if (nents_first_chunk) 223 nents_first_chunk = 0; 224 else 225 free_fn(sgl, alloc_size); 226 sgl = next; 227 curr_max_ents = max_ents; 228 } 229 230 table->sgl = NULL; 231 } 232 EXPORT_SYMBOL(__sg_free_table); 233 234 /** 235 * sg_free_table - Free a previously allocated sg table 236 * @table: The mapped sg table header 237 * 238 **/ 239 void sg_free_table(struct sg_table *table) 240 { 241 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, false, sg_kfree); 242 } 243 EXPORT_SYMBOL(sg_free_table); 244 245 /** 246 * __sg_alloc_table - Allocate and initialize an sg table with given allocator 247 * @table: The sg table header to use 248 * @nents: Number of entries in sg list 249 * @max_ents: The maximum number of entries the allocator returns per call 250 * @nents_first_chunk: Number of entries int the (preallocated) first 251 * scatterlist chunk, 0 means no such preallocated chunk provided by user 252 * @gfp_mask: GFP allocation mask 253 * @alloc_fn: Allocator to use 254 * 255 * Description: 256 * This function returns a @table @nents long. The allocator is 257 * defined to return scatterlist chunks of maximum size @max_ents. 258 * Thus if @nents is bigger than @max_ents, the scatterlists will be 259 * chained in units of @max_ents. 260 * 261 * Notes: 262 * If this function returns non-0 (eg failure), the caller must call 263 * __sg_free_table() to cleanup any leftover allocations. 264 * 265 **/ 266 int __sg_alloc_table(struct sg_table *table, unsigned int nents, 267 unsigned int max_ents, struct scatterlist *first_chunk, 268 unsigned int nents_first_chunk, gfp_t gfp_mask, 269 sg_alloc_fn *alloc_fn) 270 { 271 struct scatterlist *sg, *prv; 272 unsigned int left; 273 unsigned curr_max_ents = nents_first_chunk ?: max_ents; 274 unsigned prv_max_ents; 275 276 memset(table, 0, sizeof(*table)); 277 278 if (nents == 0) 279 return -EINVAL; 280 #ifdef CONFIG_ARCH_NO_SG_CHAIN 281 if (WARN_ON_ONCE(nents > max_ents)) 282 return -EINVAL; 283 #endif 284 285 left = nents; 286 prv = NULL; 287 do { 288 unsigned int sg_size, alloc_size = left; 289 290 if (alloc_size > curr_max_ents) { 291 alloc_size = curr_max_ents; 292 sg_size = alloc_size - 1; 293 } else 294 sg_size = alloc_size; 295 296 left -= sg_size; 297 298 if (first_chunk) { 299 sg = first_chunk; 300 first_chunk = NULL; 301 } else { 302 sg = alloc_fn(alloc_size, gfp_mask); 303 } 304 if (unlikely(!sg)) { 305 /* 306 * Adjust entry count to reflect that the last 307 * entry of the previous table won't be used for 308 * linkage. Without this, sg_kfree() may get 309 * confused. 310 */ 311 if (prv) 312 table->nents = ++table->orig_nents; 313 314 return -ENOMEM; 315 } 316 317 sg_init_table(sg, alloc_size); 318 table->nents = table->orig_nents += sg_size; 319 320 /* 321 * If this is the first mapping, assign the sg table header. 322 * If this is not the first mapping, chain previous part. 323 */ 324 if (prv) 325 sg_chain(prv, prv_max_ents, sg); 326 else 327 table->sgl = sg; 328 329 /* 330 * If no more entries after this one, mark the end 331 */ 332 if (!left) 333 sg_mark_end(&sg[sg_size - 1]); 334 335 prv = sg; 336 prv_max_ents = curr_max_ents; 337 curr_max_ents = max_ents; 338 } while (left); 339 340 return 0; 341 } 342 EXPORT_SYMBOL(__sg_alloc_table); 343 344 /** 345 * sg_alloc_table - Allocate and initialize an sg table 346 * @table: The sg table header to use 347 * @nents: Number of entries in sg list 348 * @gfp_mask: GFP allocation mask 349 * 350 * Description: 351 * Allocate and initialize an sg table. If @nents@ is larger than 352 * SG_MAX_SINGLE_ALLOC a chained sg table will be setup. 353 * 354 **/ 355 int sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) 356 { 357 int ret; 358 359 ret = __sg_alloc_table(table, nents, SG_MAX_SINGLE_ALLOC, 360 NULL, 0, gfp_mask, sg_kmalloc); 361 if (unlikely(ret)) 362 __sg_free_table(table, SG_MAX_SINGLE_ALLOC, 0, sg_kfree); 363 364 return ret; 365 } 366 EXPORT_SYMBOL(sg_alloc_table); 367 368 /** 369 * __sg_alloc_table_from_pages - Allocate and initialize an sg table from 370 * an array of pages 371 * @sgt: The sg table header to use 372 * @pages: Pointer to an array of page pointers 373 * @n_pages: Number of pages in the pages array 374 * @offset: Offset from start of the first page to the start of a buffer 375 * @size: Number of valid bytes in the buffer (after offset) 376 * @max_segment: Maximum size of a scatterlist node in bytes (page aligned) 377 * @gfp_mask: GFP allocation mask 378 * 379 * Description: 380 * Allocate and initialize an sg table from a list of pages. Contiguous 381 * ranges of the pages are squashed into a single scatterlist node up to the 382 * maximum size specified in @max_segment. An user may provide an offset at a 383 * start and a size of valid data in a buffer specified by the page array. 384 * The returned sg table is released by sg_free_table. 385 * 386 * Returns: 387 * 0 on success, negative error on failure 388 */ 389 int __sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, 390 unsigned int n_pages, unsigned int offset, 391 unsigned long size, unsigned int max_segment, 392 gfp_t gfp_mask) 393 { 394 unsigned int chunks, cur_page, seg_len, i; 395 int ret; 396 struct scatterlist *s; 397 398 if (WARN_ON(!max_segment || offset_in_page(max_segment))) 399 return -EINVAL; 400 401 /* compute number of contiguous chunks */ 402 chunks = 1; 403 seg_len = 0; 404 for (i = 1; i < n_pages; i++) { 405 seg_len += PAGE_SIZE; 406 if (seg_len >= max_segment || 407 page_to_pfn(pages[i]) != page_to_pfn(pages[i - 1]) + 1) { 408 chunks++; 409 seg_len = 0; 410 } 411 } 412 413 ret = sg_alloc_table(sgt, chunks, gfp_mask); 414 if (unlikely(ret)) 415 return ret; 416 417 /* merging chunks and putting them into the scatterlist */ 418 cur_page = 0; 419 for_each_sg(sgt->sgl, s, sgt->orig_nents, i) { 420 unsigned int j, chunk_size; 421 422 /* look for the end of the current chunk */ 423 seg_len = 0; 424 for (j = cur_page + 1; j < n_pages; j++) { 425 seg_len += PAGE_SIZE; 426 if (seg_len >= max_segment || 427 page_to_pfn(pages[j]) != 428 page_to_pfn(pages[j - 1]) + 1) 429 break; 430 } 431 432 chunk_size = ((j - cur_page) << PAGE_SHIFT) - offset; 433 sg_set_page(s, pages[cur_page], 434 min_t(unsigned long, size, chunk_size), offset); 435 size -= chunk_size; 436 offset = 0; 437 cur_page = j; 438 } 439 440 return 0; 441 } 442 EXPORT_SYMBOL(__sg_alloc_table_from_pages); 443 444 /** 445 * sg_alloc_table_from_pages - Allocate and initialize an sg table from 446 * an array of pages 447 * @sgt: The sg table header to use 448 * @pages: Pointer to an array of page pointers 449 * @n_pages: Number of pages in the pages array 450 * @offset: Offset from start of the first page to the start of a buffer 451 * @size: Number of valid bytes in the buffer (after offset) 452 * @gfp_mask: GFP allocation mask 453 * 454 * Description: 455 * Allocate and initialize an sg table from a list of pages. Contiguous 456 * ranges of the pages are squashed into a single scatterlist node. A user 457 * may provide an offset at a start and a size of valid data in a buffer 458 * specified by the page array. The returned sg table is released by 459 * sg_free_table. 460 * 461 * Returns: 462 * 0 on success, negative error on failure 463 */ 464 int sg_alloc_table_from_pages(struct sg_table *sgt, struct page **pages, 465 unsigned int n_pages, unsigned int offset, 466 unsigned long size, gfp_t gfp_mask) 467 { 468 return __sg_alloc_table_from_pages(sgt, pages, n_pages, offset, size, 469 SCATTERLIST_MAX_SEGMENT, gfp_mask); 470 } 471 EXPORT_SYMBOL(sg_alloc_table_from_pages); 472 473 #ifdef CONFIG_SGL_ALLOC 474 475 /** 476 * sgl_alloc_order - allocate a scatterlist and its pages 477 * @length: Length in bytes of the scatterlist. Must be at least one 478 * @order: Second argument for alloc_pages() 479 * @chainable: Whether or not to allocate an extra element in the scatterlist 480 * for scatterlist chaining purposes 481 * @gfp: Memory allocation flags 482 * @nent_p: [out] Number of entries in the scatterlist that have pages 483 * 484 * Returns: A pointer to an initialized scatterlist or %NULL upon failure. 485 */ 486 struct scatterlist *sgl_alloc_order(unsigned long long length, 487 unsigned int order, bool chainable, 488 gfp_t gfp, unsigned int *nent_p) 489 { 490 struct scatterlist *sgl, *sg; 491 struct page *page; 492 unsigned int nent, nalloc; 493 u32 elem_len; 494 495 nent = round_up(length, PAGE_SIZE << order) >> (PAGE_SHIFT + order); 496 /* Check for integer overflow */ 497 if (length > (nent << (PAGE_SHIFT + order))) 498 return NULL; 499 nalloc = nent; 500 if (chainable) { 501 /* Check for integer overflow */ 502 if (nalloc + 1 < nalloc) 503 return NULL; 504 nalloc++; 505 } 506 sgl = kmalloc_array(nalloc, sizeof(struct scatterlist), 507 (gfp & ~GFP_DMA) | __GFP_ZERO); 508 if (!sgl) 509 return NULL; 510 511 sg_init_table(sgl, nalloc); 512 sg = sgl; 513 while (length) { 514 elem_len = min_t(u64, length, PAGE_SIZE << order); 515 page = alloc_pages(gfp, order); 516 if (!page) { 517 sgl_free(sgl); 518 return NULL; 519 } 520 521 sg_set_page(sg, page, elem_len, 0); 522 length -= elem_len; 523 sg = sg_next(sg); 524 } 525 WARN_ONCE(length, "length = %lld\n", length); 526 if (nent_p) 527 *nent_p = nent; 528 return sgl; 529 } 530 EXPORT_SYMBOL(sgl_alloc_order); 531 532 /** 533 * sgl_alloc - allocate a scatterlist and its pages 534 * @length: Length in bytes of the scatterlist 535 * @gfp: Memory allocation flags 536 * @nent_p: [out] Number of entries in the scatterlist 537 * 538 * Returns: A pointer to an initialized scatterlist or %NULL upon failure. 539 */ 540 struct scatterlist *sgl_alloc(unsigned long long length, gfp_t gfp, 541 unsigned int *nent_p) 542 { 543 return sgl_alloc_order(length, 0, false, gfp, nent_p); 544 } 545 EXPORT_SYMBOL(sgl_alloc); 546 547 /** 548 * sgl_free_n_order - free a scatterlist and its pages 549 * @sgl: Scatterlist with one or more elements 550 * @nents: Maximum number of elements to free 551 * @order: Second argument for __free_pages() 552 * 553 * Notes: 554 * - If several scatterlists have been chained and each chain element is 555 * freed separately then it's essential to set nents correctly to avoid that a 556 * page would get freed twice. 557 * - All pages in a chained scatterlist can be freed at once by setting @nents 558 * to a high number. 559 */ 560 void sgl_free_n_order(struct scatterlist *sgl, int nents, int order) 561 { 562 struct scatterlist *sg; 563 struct page *page; 564 int i; 565 566 for_each_sg(sgl, sg, nents, i) { 567 if (!sg) 568 break; 569 page = sg_page(sg); 570 if (page) 571 __free_pages(page, order); 572 } 573 kfree(sgl); 574 } 575 EXPORT_SYMBOL(sgl_free_n_order); 576 577 /** 578 * sgl_free_order - free a scatterlist and its pages 579 * @sgl: Scatterlist with one or more elements 580 * @order: Second argument for __free_pages() 581 */ 582 void sgl_free_order(struct scatterlist *sgl, int order) 583 { 584 sgl_free_n_order(sgl, INT_MAX, order); 585 } 586 EXPORT_SYMBOL(sgl_free_order); 587 588 /** 589 * sgl_free - free a scatterlist and its pages 590 * @sgl: Scatterlist with one or more elements 591 */ 592 void sgl_free(struct scatterlist *sgl) 593 { 594 sgl_free_order(sgl, 0); 595 } 596 EXPORT_SYMBOL(sgl_free); 597 598 #endif /* CONFIG_SGL_ALLOC */ 599 600 void __sg_page_iter_start(struct sg_page_iter *piter, 601 struct scatterlist *sglist, unsigned int nents, 602 unsigned long pgoffset) 603 { 604 piter->__pg_advance = 0; 605 piter->__nents = nents; 606 607 piter->sg = sglist; 608 piter->sg_pgoffset = pgoffset; 609 } 610 EXPORT_SYMBOL(__sg_page_iter_start); 611 612 static int sg_page_count(struct scatterlist *sg) 613 { 614 return PAGE_ALIGN(sg->offset + sg->length) >> PAGE_SHIFT; 615 } 616 617 bool __sg_page_iter_next(struct sg_page_iter *piter) 618 { 619 if (!piter->__nents || !piter->sg) 620 return false; 621 622 piter->sg_pgoffset += piter->__pg_advance; 623 piter->__pg_advance = 1; 624 625 while (piter->sg_pgoffset >= sg_page_count(piter->sg)) { 626 piter->sg_pgoffset -= sg_page_count(piter->sg); 627 piter->sg = sg_next(piter->sg); 628 if (!--piter->__nents || !piter->sg) 629 return false; 630 } 631 632 return true; 633 } 634 EXPORT_SYMBOL(__sg_page_iter_next); 635 636 static int sg_dma_page_count(struct scatterlist *sg) 637 { 638 return PAGE_ALIGN(sg->offset + sg_dma_len(sg)) >> PAGE_SHIFT; 639 } 640 641 bool __sg_page_iter_dma_next(struct sg_dma_page_iter *dma_iter) 642 { 643 struct sg_page_iter *piter = &dma_iter->base; 644 645 if (!piter->__nents || !piter->sg) 646 return false; 647 648 piter->sg_pgoffset += piter->__pg_advance; 649 piter->__pg_advance = 1; 650 651 while (piter->sg_pgoffset >= sg_dma_page_count(piter->sg)) { 652 piter->sg_pgoffset -= sg_dma_page_count(piter->sg); 653 piter->sg = sg_next(piter->sg); 654 if (!--piter->__nents || !piter->sg) 655 return false; 656 } 657 658 return true; 659 } 660 EXPORT_SYMBOL(__sg_page_iter_dma_next); 661 662 /** 663 * sg_miter_start - start mapping iteration over a sg list 664 * @miter: sg mapping iter to be started 665 * @sgl: sg list to iterate over 666 * @nents: number of sg entries 667 * 668 * Description: 669 * Starts mapping iterator @miter. 670 * 671 * Context: 672 * Don't care. 673 */ 674 void sg_miter_start(struct sg_mapping_iter *miter, struct scatterlist *sgl, 675 unsigned int nents, unsigned int flags) 676 { 677 memset(miter, 0, sizeof(struct sg_mapping_iter)); 678 679 __sg_page_iter_start(&miter->piter, sgl, nents, 0); 680 WARN_ON(!(flags & (SG_MITER_TO_SG | SG_MITER_FROM_SG))); 681 miter->__flags = flags; 682 } 683 EXPORT_SYMBOL(sg_miter_start); 684 685 static bool sg_miter_get_next_page(struct sg_mapping_iter *miter) 686 { 687 if (!miter->__remaining) { 688 struct scatterlist *sg; 689 690 if (!__sg_page_iter_next(&miter->piter)) 691 return false; 692 693 sg = miter->piter.sg; 694 695 miter->__offset = miter->piter.sg_pgoffset ? 0 : sg->offset; 696 miter->piter.sg_pgoffset += miter->__offset >> PAGE_SHIFT; 697 miter->__offset &= PAGE_SIZE - 1; 698 miter->__remaining = sg->offset + sg->length - 699 (miter->piter.sg_pgoffset << PAGE_SHIFT) - 700 miter->__offset; 701 miter->__remaining = min_t(unsigned long, miter->__remaining, 702 PAGE_SIZE - miter->__offset); 703 } 704 705 return true; 706 } 707 708 /** 709 * sg_miter_skip - reposition mapping iterator 710 * @miter: sg mapping iter to be skipped 711 * @offset: number of bytes to plus the current location 712 * 713 * Description: 714 * Sets the offset of @miter to its current location plus @offset bytes. 715 * If mapping iterator @miter has been proceeded by sg_miter_next(), this 716 * stops @miter. 717 * 718 * Context: 719 * Don't care if @miter is stopped, or not proceeded yet. 720 * Otherwise, preemption disabled if the SG_MITER_ATOMIC is set. 721 * 722 * Returns: 723 * true if @miter contains the valid mapping. false if end of sg 724 * list is reached. 725 */ 726 bool sg_miter_skip(struct sg_mapping_iter *miter, off_t offset) 727 { 728 sg_miter_stop(miter); 729 730 while (offset) { 731 off_t consumed; 732 733 if (!sg_miter_get_next_page(miter)) 734 return false; 735 736 consumed = min_t(off_t, offset, miter->__remaining); 737 miter->__offset += consumed; 738 miter->__remaining -= consumed; 739 offset -= consumed; 740 } 741 742 return true; 743 } 744 EXPORT_SYMBOL(sg_miter_skip); 745 746 /** 747 * sg_miter_next - proceed mapping iterator to the next mapping 748 * @miter: sg mapping iter to proceed 749 * 750 * Description: 751 * Proceeds @miter to the next mapping. @miter should have been started 752 * using sg_miter_start(). On successful return, @miter->page, 753 * @miter->addr and @miter->length point to the current mapping. 754 * 755 * Context: 756 * Preemption disabled if SG_MITER_ATOMIC. Preemption must stay disabled 757 * till @miter is stopped. May sleep if !SG_MITER_ATOMIC. 758 * 759 * Returns: 760 * true if @miter contains the next mapping. false if end of sg 761 * list is reached. 762 */ 763 bool sg_miter_next(struct sg_mapping_iter *miter) 764 { 765 sg_miter_stop(miter); 766 767 /* 768 * Get to the next page if necessary. 769 * __remaining, __offset is adjusted by sg_miter_stop 770 */ 771 if (!sg_miter_get_next_page(miter)) 772 return false; 773 774 miter->page = sg_page_iter_page(&miter->piter); 775 miter->consumed = miter->length = miter->__remaining; 776 777 if (miter->__flags & SG_MITER_ATOMIC) 778 miter->addr = kmap_atomic(miter->page) + miter->__offset; 779 else 780 miter->addr = kmap(miter->page) + miter->__offset; 781 782 return true; 783 } 784 EXPORT_SYMBOL(sg_miter_next); 785 786 /** 787 * sg_miter_stop - stop mapping iteration 788 * @miter: sg mapping iter to be stopped 789 * 790 * Description: 791 * Stops mapping iterator @miter. @miter should have been started 792 * using sg_miter_start(). A stopped iteration can be resumed by 793 * calling sg_miter_next() on it. This is useful when resources (kmap) 794 * need to be released during iteration. 795 * 796 * Context: 797 * Preemption disabled if the SG_MITER_ATOMIC is set. Don't care 798 * otherwise. 799 */ 800 void sg_miter_stop(struct sg_mapping_iter *miter) 801 { 802 WARN_ON(miter->consumed > miter->length); 803 804 /* drop resources from the last iteration */ 805 if (miter->addr) { 806 miter->__offset += miter->consumed; 807 miter->__remaining -= miter->consumed; 808 809 if ((miter->__flags & SG_MITER_TO_SG) && 810 !PageSlab(miter->page)) 811 flush_kernel_dcache_page(miter->page); 812 813 if (miter->__flags & SG_MITER_ATOMIC) { 814 WARN_ON_ONCE(preemptible()); 815 kunmap_atomic(miter->addr); 816 } else 817 kunmap(miter->page); 818 819 miter->page = NULL; 820 miter->addr = NULL; 821 miter->length = 0; 822 miter->consumed = 0; 823 } 824 } 825 EXPORT_SYMBOL(sg_miter_stop); 826 827 /** 828 * sg_copy_buffer - Copy data between a linear buffer and an SG list 829 * @sgl: The SG list 830 * @nents: Number of SG entries 831 * @buf: Where to copy from 832 * @buflen: The number of bytes to copy 833 * @skip: Number of bytes to skip before copying 834 * @to_buffer: transfer direction (true == from an sg list to a 835 * buffer, false == from a buffer to an sg list) 836 * 837 * Returns the number of copied bytes. 838 * 839 **/ 840 size_t sg_copy_buffer(struct scatterlist *sgl, unsigned int nents, void *buf, 841 size_t buflen, off_t skip, bool to_buffer) 842 { 843 unsigned int offset = 0; 844 struct sg_mapping_iter miter; 845 unsigned int sg_flags = SG_MITER_ATOMIC; 846 847 if (to_buffer) 848 sg_flags |= SG_MITER_FROM_SG; 849 else 850 sg_flags |= SG_MITER_TO_SG; 851 852 sg_miter_start(&miter, sgl, nents, sg_flags); 853 854 if (!sg_miter_skip(&miter, skip)) 855 return false; 856 857 while ((offset < buflen) && sg_miter_next(&miter)) { 858 unsigned int len; 859 860 len = min(miter.length, buflen - offset); 861 862 if (to_buffer) 863 memcpy(buf + offset, miter.addr, len); 864 else 865 memcpy(miter.addr, buf + offset, len); 866 867 offset += len; 868 } 869 870 sg_miter_stop(&miter); 871 872 return offset; 873 } 874 EXPORT_SYMBOL(sg_copy_buffer); 875 876 /** 877 * sg_copy_from_buffer - Copy from a linear buffer to an SG list 878 * @sgl: The SG list 879 * @nents: Number of SG entries 880 * @buf: Where to copy from 881 * @buflen: The number of bytes to copy 882 * 883 * Returns the number of copied bytes. 884 * 885 **/ 886 size_t sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, 887 const void *buf, size_t buflen) 888 { 889 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, 0, false); 890 } 891 EXPORT_SYMBOL(sg_copy_from_buffer); 892 893 /** 894 * sg_copy_to_buffer - Copy from an SG list to a linear buffer 895 * @sgl: The SG list 896 * @nents: Number of SG entries 897 * @buf: Where to copy to 898 * @buflen: The number of bytes to copy 899 * 900 * Returns the number of copied bytes. 901 * 902 **/ 903 size_t sg_copy_to_buffer(struct scatterlist *sgl, unsigned int nents, 904 void *buf, size_t buflen) 905 { 906 return sg_copy_buffer(sgl, nents, buf, buflen, 0, true); 907 } 908 EXPORT_SYMBOL(sg_copy_to_buffer); 909 910 /** 911 * sg_pcopy_from_buffer - Copy from a linear buffer to an SG list 912 * @sgl: The SG list 913 * @nents: Number of SG entries 914 * @buf: Where to copy from 915 * @buflen: The number of bytes to copy 916 * @skip: Number of bytes to skip before copying 917 * 918 * Returns the number of copied bytes. 919 * 920 **/ 921 size_t sg_pcopy_from_buffer(struct scatterlist *sgl, unsigned int nents, 922 const void *buf, size_t buflen, off_t skip) 923 { 924 return sg_copy_buffer(sgl, nents, (void *)buf, buflen, skip, false); 925 } 926 EXPORT_SYMBOL(sg_pcopy_from_buffer); 927 928 /** 929 * sg_pcopy_to_buffer - Copy from an SG list to a linear buffer 930 * @sgl: The SG list 931 * @nents: Number of SG entries 932 * @buf: Where to copy to 933 * @buflen: The number of bytes to copy 934 * @skip: Number of bytes to skip before copying 935 * 936 * Returns the number of copied bytes. 937 * 938 **/ 939 size_t sg_pcopy_to_buffer(struct scatterlist *sgl, unsigned int nents, 940 void *buf, size_t buflen, off_t skip) 941 { 942 return sg_copy_buffer(sgl, nents, buf, buflen, skip, true); 943 } 944 EXPORT_SYMBOL(sg_pcopy_to_buffer); 945 946 /** 947 * sg_zero_buffer - Zero-out a part of a SG list 948 * @sgl: The SG list 949 * @nents: Number of SG entries 950 * @buflen: The number of bytes to zero out 951 * @skip: Number of bytes to skip before zeroing 952 * 953 * Returns the number of bytes zeroed. 954 **/ 955 size_t sg_zero_buffer(struct scatterlist *sgl, unsigned int nents, 956 size_t buflen, off_t skip) 957 { 958 unsigned int offset = 0; 959 struct sg_mapping_iter miter; 960 unsigned int sg_flags = SG_MITER_ATOMIC | SG_MITER_TO_SG; 961 962 sg_miter_start(&miter, sgl, nents, sg_flags); 963 964 if (!sg_miter_skip(&miter, skip)) 965 return false; 966 967 while (offset < buflen && sg_miter_next(&miter)) { 968 unsigned int len; 969 970 len = min(miter.length, buflen - offset); 971 memset(miter.addr, 0, len); 972 973 offset += len; 974 } 975 976 sg_miter_stop(&miter); 977 return offset; 978 } 979 EXPORT_SYMBOL(sg_zero_buffer); 980