xref: /openbmc/linux/lib/rhashtable.c (revision efdbd7345f8836f7495f3ac6ee237d86cb3bb6b0)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #define HASH_DEFAULT_SIZE	64UL
32 #define HASH_MIN_SIZE		4U
33 #define BUCKET_LOCKS_PER_CPU   128UL
34 
35 static u32 head_hashfn(struct rhashtable *ht,
36 		       const struct bucket_table *tbl,
37 		       const struct rhash_head *he)
38 {
39 	return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41 
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44 
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50 
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
54 
55 	return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61 
62 
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 			      gfp_t gfp)
65 {
66 	unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 	unsigned int nr_pcpus = 2;
69 #else
70 	unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72 
73 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75 
76 	/* Never allocate more than 0.5 locks per bucket */
77 	size = min_t(unsigned int, size, tbl->size >> 1);
78 
79 	if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82 		    gfp == GFP_KERNEL)
83 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
84 		else
85 #endif
86 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87 					   gfp);
88 		if (!tbl->locks)
89 			return -ENOMEM;
90 		for (i = 0; i < size; i++)
91 			spin_lock_init(&tbl->locks[i]);
92 	}
93 	tbl->locks_mask = size - 1;
94 
95 	return 0;
96 }
97 
98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100 	if (tbl)
101 		kvfree(tbl->locks);
102 
103 	kvfree(tbl);
104 }
105 
106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108 	bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110 
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 					       size_t nbuckets,
113 					       gfp_t gfp)
114 {
115 	struct bucket_table *tbl = NULL;
116 	size_t size;
117 	int i;
118 
119 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121 	    gfp != GFP_KERNEL)
122 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 	if (tbl == NULL && gfp == GFP_KERNEL)
124 		tbl = vzalloc(size);
125 	if (tbl == NULL)
126 		return NULL;
127 
128 	tbl->size = nbuckets;
129 
130 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
131 		bucket_table_free(tbl);
132 		return NULL;
133 	}
134 
135 	INIT_LIST_HEAD(&tbl->walkers);
136 
137 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
138 
139 	for (i = 0; i < nbuckets; i++)
140 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
141 
142 	return tbl;
143 }
144 
145 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
146 						  struct bucket_table *tbl)
147 {
148 	struct bucket_table *new_tbl;
149 
150 	do {
151 		new_tbl = tbl;
152 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
153 	} while (tbl);
154 
155 	return new_tbl;
156 }
157 
158 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
159 {
160 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
161 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
162 		rht_dereference_rcu(old_tbl->future_tbl, ht));
163 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
164 	int err = -ENOENT;
165 	struct rhash_head *head, *next, *entry;
166 	spinlock_t *new_bucket_lock;
167 	unsigned int new_hash;
168 
169 	rht_for_each(entry, old_tbl, old_hash) {
170 		err = 0;
171 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
172 
173 		if (rht_is_a_nulls(next))
174 			break;
175 
176 		pprev = &entry->next;
177 	}
178 
179 	if (err)
180 		goto out;
181 
182 	new_hash = head_hashfn(ht, new_tbl, entry);
183 
184 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
185 
186 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
187 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
188 				      new_tbl, new_hash);
189 
190 	RCU_INIT_POINTER(entry->next, head);
191 
192 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
193 	spin_unlock(new_bucket_lock);
194 
195 	rcu_assign_pointer(*pprev, next);
196 
197 out:
198 	return err;
199 }
200 
201 static void rhashtable_rehash_chain(struct rhashtable *ht,
202 				    unsigned int old_hash)
203 {
204 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
205 	spinlock_t *old_bucket_lock;
206 
207 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
208 
209 	spin_lock_bh(old_bucket_lock);
210 	while (!rhashtable_rehash_one(ht, old_hash))
211 		;
212 	old_tbl->rehash++;
213 	spin_unlock_bh(old_bucket_lock);
214 }
215 
216 static int rhashtable_rehash_attach(struct rhashtable *ht,
217 				    struct bucket_table *old_tbl,
218 				    struct bucket_table *new_tbl)
219 {
220 	/* Protect future_tbl using the first bucket lock. */
221 	spin_lock_bh(old_tbl->locks);
222 
223 	/* Did somebody beat us to it? */
224 	if (rcu_access_pointer(old_tbl->future_tbl)) {
225 		spin_unlock_bh(old_tbl->locks);
226 		return -EEXIST;
227 	}
228 
229 	/* Make insertions go into the new, empty table right away. Deletions
230 	 * and lookups will be attempted in both tables until we synchronize.
231 	 */
232 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
233 
234 	/* Ensure the new table is visible to readers. */
235 	smp_wmb();
236 
237 	spin_unlock_bh(old_tbl->locks);
238 
239 	return 0;
240 }
241 
242 static int rhashtable_rehash_table(struct rhashtable *ht)
243 {
244 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
245 	struct bucket_table *new_tbl;
246 	struct rhashtable_walker *walker;
247 	unsigned int old_hash;
248 
249 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
250 	if (!new_tbl)
251 		return 0;
252 
253 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
254 		rhashtable_rehash_chain(ht, old_hash);
255 
256 	/* Publish the new table pointer. */
257 	rcu_assign_pointer(ht->tbl, new_tbl);
258 
259 	spin_lock(&ht->lock);
260 	list_for_each_entry(walker, &old_tbl->walkers, list)
261 		walker->tbl = NULL;
262 	spin_unlock(&ht->lock);
263 
264 	/* Wait for readers. All new readers will see the new
265 	 * table, and thus no references to the old table will
266 	 * remain.
267 	 */
268 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
269 
270 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
271 }
272 
273 /**
274  * rhashtable_expand - Expand hash table while allowing concurrent lookups
275  * @ht:		the hash table to expand
276  *
277  * A secondary bucket array is allocated and the hash entries are migrated.
278  *
279  * This function may only be called in a context where it is safe to call
280  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
281  *
282  * The caller must ensure that no concurrent resizing occurs by holding
283  * ht->mutex.
284  *
285  * It is valid to have concurrent insertions and deletions protected by per
286  * bucket locks or concurrent RCU protected lookups and traversals.
287  */
288 static int rhashtable_expand(struct rhashtable *ht)
289 {
290 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
291 	int err;
292 
293 	ASSERT_RHT_MUTEX(ht);
294 
295 	old_tbl = rhashtable_last_table(ht, old_tbl);
296 
297 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
298 	if (new_tbl == NULL)
299 		return -ENOMEM;
300 
301 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
302 	if (err)
303 		bucket_table_free(new_tbl);
304 
305 	return err;
306 }
307 
308 /**
309  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
310  * @ht:		the hash table to shrink
311  *
312  * This function shrinks the hash table to fit, i.e., the smallest
313  * size would not cause it to expand right away automatically.
314  *
315  * The caller must ensure that no concurrent resizing occurs by holding
316  * ht->mutex.
317  *
318  * The caller must ensure that no concurrent table mutations take place.
319  * It is however valid to have concurrent lookups if they are RCU protected.
320  *
321  * It is valid to have concurrent insertions and deletions protected by per
322  * bucket locks or concurrent RCU protected lookups and traversals.
323  */
324 static int rhashtable_shrink(struct rhashtable *ht)
325 {
326 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
327 	unsigned int size;
328 	int err;
329 
330 	ASSERT_RHT_MUTEX(ht);
331 
332 	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
333 	if (size < ht->p.min_size)
334 		size = ht->p.min_size;
335 
336 	if (old_tbl->size <= size)
337 		return 0;
338 
339 	if (rht_dereference(old_tbl->future_tbl, ht))
340 		return -EEXIST;
341 
342 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
343 	if (new_tbl == NULL)
344 		return -ENOMEM;
345 
346 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
347 	if (err)
348 		bucket_table_free(new_tbl);
349 
350 	return err;
351 }
352 
353 static void rht_deferred_worker(struct work_struct *work)
354 {
355 	struct rhashtable *ht;
356 	struct bucket_table *tbl;
357 	int err = 0;
358 
359 	ht = container_of(work, struct rhashtable, run_work);
360 	mutex_lock(&ht->mutex);
361 
362 	tbl = rht_dereference(ht->tbl, ht);
363 	tbl = rhashtable_last_table(ht, tbl);
364 
365 	if (rht_grow_above_75(ht, tbl))
366 		rhashtable_expand(ht);
367 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
368 		rhashtable_shrink(ht);
369 
370 	err = rhashtable_rehash_table(ht);
371 
372 	mutex_unlock(&ht->mutex);
373 
374 	if (err)
375 		schedule_work(&ht->run_work);
376 }
377 
378 static bool rhashtable_check_elasticity(struct rhashtable *ht,
379 					struct bucket_table *tbl,
380 					unsigned int hash)
381 {
382 	unsigned int elasticity = ht->elasticity;
383 	struct rhash_head *head;
384 
385 	rht_for_each(head, tbl, hash)
386 		if (!--elasticity)
387 			return true;
388 
389 	return false;
390 }
391 
392 int rhashtable_insert_rehash(struct rhashtable *ht)
393 {
394 	struct bucket_table *old_tbl;
395 	struct bucket_table *new_tbl;
396 	struct bucket_table *tbl;
397 	unsigned int size;
398 	int err;
399 
400 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
401 	tbl = rhashtable_last_table(ht, old_tbl);
402 
403 	size = tbl->size;
404 
405 	if (rht_grow_above_75(ht, tbl))
406 		size *= 2;
407 	/* Do not schedule more than one rehash */
408 	else if (old_tbl != tbl)
409 		return -EBUSY;
410 
411 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
412 	if (new_tbl == NULL) {
413 		/* Schedule async resize/rehash to try allocation
414 		 * non-atomic context.
415 		 */
416 		schedule_work(&ht->run_work);
417 		return -ENOMEM;
418 	}
419 
420 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
421 	if (err) {
422 		bucket_table_free(new_tbl);
423 		if (err == -EEXIST)
424 			err = 0;
425 	} else
426 		schedule_work(&ht->run_work);
427 
428 	return err;
429 }
430 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
431 
432 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
433 			   struct rhash_head *obj,
434 			   struct bucket_table *tbl)
435 {
436 	struct rhash_head *head;
437 	unsigned int hash;
438 	int err;
439 
440 	tbl = rhashtable_last_table(ht, tbl);
441 	hash = head_hashfn(ht, tbl, obj);
442 	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
443 
444 	err = -EEXIST;
445 	if (key && rhashtable_lookup_fast(ht, key, ht->p))
446 		goto exit;
447 
448 	err = -E2BIG;
449 	if (unlikely(rht_grow_above_max(ht, tbl)))
450 		goto exit;
451 
452 	err = -EAGAIN;
453 	if (rhashtable_check_elasticity(ht, tbl, hash) ||
454 	    rht_grow_above_100(ht, tbl))
455 		goto exit;
456 
457 	err = 0;
458 
459 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
460 
461 	RCU_INIT_POINTER(obj->next, head);
462 
463 	rcu_assign_pointer(tbl->buckets[hash], obj);
464 
465 	atomic_inc(&ht->nelems);
466 
467 exit:
468 	spin_unlock(rht_bucket_lock(tbl, hash));
469 
470 	return err;
471 }
472 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
473 
474 /**
475  * rhashtable_walk_init - Initialise an iterator
476  * @ht:		Table to walk over
477  * @iter:	Hash table Iterator
478  *
479  * This function prepares a hash table walk.
480  *
481  * Note that if you restart a walk after rhashtable_walk_stop you
482  * may see the same object twice.  Also, you may miss objects if
483  * there are removals in between rhashtable_walk_stop and the next
484  * call to rhashtable_walk_start.
485  *
486  * For a completely stable walk you should construct your own data
487  * structure outside the hash table.
488  *
489  * This function may sleep so you must not call it from interrupt
490  * context or with spin locks held.
491  *
492  * You must call rhashtable_walk_exit if this function returns
493  * successfully.
494  */
495 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
496 {
497 	iter->ht = ht;
498 	iter->p = NULL;
499 	iter->slot = 0;
500 	iter->skip = 0;
501 
502 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
503 	if (!iter->walker)
504 		return -ENOMEM;
505 
506 	mutex_lock(&ht->mutex);
507 	iter->walker->tbl = rht_dereference(ht->tbl, ht);
508 	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
509 	mutex_unlock(&ht->mutex);
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
514 
515 /**
516  * rhashtable_walk_exit - Free an iterator
517  * @iter:	Hash table Iterator
518  *
519  * This function frees resources allocated by rhashtable_walk_init.
520  */
521 void rhashtable_walk_exit(struct rhashtable_iter *iter)
522 {
523 	mutex_lock(&iter->ht->mutex);
524 	if (iter->walker->tbl)
525 		list_del(&iter->walker->list);
526 	mutex_unlock(&iter->ht->mutex);
527 	kfree(iter->walker);
528 }
529 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
530 
531 /**
532  * rhashtable_walk_start - Start a hash table walk
533  * @iter:	Hash table iterator
534  *
535  * Start a hash table walk.  Note that we take the RCU lock in all
536  * cases including when we return an error.  So you must always call
537  * rhashtable_walk_stop to clean up.
538  *
539  * Returns zero if successful.
540  *
541  * Returns -EAGAIN if resize event occured.  Note that the iterator
542  * will rewind back to the beginning and you may use it immediately
543  * by calling rhashtable_walk_next.
544  */
545 int rhashtable_walk_start(struct rhashtable_iter *iter)
546 	__acquires(RCU)
547 {
548 	struct rhashtable *ht = iter->ht;
549 
550 	mutex_lock(&ht->mutex);
551 
552 	if (iter->walker->tbl)
553 		list_del(&iter->walker->list);
554 
555 	rcu_read_lock();
556 
557 	mutex_unlock(&ht->mutex);
558 
559 	if (!iter->walker->tbl) {
560 		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
561 		return -EAGAIN;
562 	}
563 
564 	return 0;
565 }
566 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
567 
568 /**
569  * rhashtable_walk_next - Return the next object and advance the iterator
570  * @iter:	Hash table iterator
571  *
572  * Note that you must call rhashtable_walk_stop when you are finished
573  * with the walk.
574  *
575  * Returns the next object or NULL when the end of the table is reached.
576  *
577  * Returns -EAGAIN if resize event occured.  Note that the iterator
578  * will rewind back to the beginning and you may continue to use it.
579  */
580 void *rhashtable_walk_next(struct rhashtable_iter *iter)
581 {
582 	struct bucket_table *tbl = iter->walker->tbl;
583 	struct rhashtable *ht = iter->ht;
584 	struct rhash_head *p = iter->p;
585 
586 	if (p) {
587 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
588 		goto next;
589 	}
590 
591 	for (; iter->slot < tbl->size; iter->slot++) {
592 		int skip = iter->skip;
593 
594 		rht_for_each_rcu(p, tbl, iter->slot) {
595 			if (!skip)
596 				break;
597 			skip--;
598 		}
599 
600 next:
601 		if (!rht_is_a_nulls(p)) {
602 			iter->skip++;
603 			iter->p = p;
604 			return rht_obj(ht, p);
605 		}
606 
607 		iter->skip = 0;
608 	}
609 
610 	iter->p = NULL;
611 
612 	/* Ensure we see any new tables. */
613 	smp_rmb();
614 
615 	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
616 	if (iter->walker->tbl) {
617 		iter->slot = 0;
618 		iter->skip = 0;
619 		return ERR_PTR(-EAGAIN);
620 	}
621 
622 	return NULL;
623 }
624 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
625 
626 /**
627  * rhashtable_walk_stop - Finish a hash table walk
628  * @iter:	Hash table iterator
629  *
630  * Finish a hash table walk.
631  */
632 void rhashtable_walk_stop(struct rhashtable_iter *iter)
633 	__releases(RCU)
634 {
635 	struct rhashtable *ht;
636 	struct bucket_table *tbl = iter->walker->tbl;
637 
638 	if (!tbl)
639 		goto out;
640 
641 	ht = iter->ht;
642 
643 	spin_lock(&ht->lock);
644 	if (tbl->rehash < tbl->size)
645 		list_add(&iter->walker->list, &tbl->walkers);
646 	else
647 		iter->walker->tbl = NULL;
648 	spin_unlock(&ht->lock);
649 
650 	iter->p = NULL;
651 
652 out:
653 	rcu_read_unlock();
654 }
655 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
656 
657 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
658 {
659 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
660 		   (unsigned long)params->min_size);
661 }
662 
663 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
664 {
665 	return jhash2(key, length, seed);
666 }
667 
668 /**
669  * rhashtable_init - initialize a new hash table
670  * @ht:		hash table to be initialized
671  * @params:	configuration parameters
672  *
673  * Initializes a new hash table based on the provided configuration
674  * parameters. A table can be configured either with a variable or
675  * fixed length key:
676  *
677  * Configuration Example 1: Fixed length keys
678  * struct test_obj {
679  *	int			key;
680  *	void *			my_member;
681  *	struct rhash_head	node;
682  * };
683  *
684  * struct rhashtable_params params = {
685  *	.head_offset = offsetof(struct test_obj, node),
686  *	.key_offset = offsetof(struct test_obj, key),
687  *	.key_len = sizeof(int),
688  *	.hashfn = jhash,
689  *	.nulls_base = (1U << RHT_BASE_SHIFT),
690  * };
691  *
692  * Configuration Example 2: Variable length keys
693  * struct test_obj {
694  *	[...]
695  *	struct rhash_head	node;
696  * };
697  *
698  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
699  * {
700  *	struct test_obj *obj = data;
701  *
702  *	return [... hash ...];
703  * }
704  *
705  * struct rhashtable_params params = {
706  *	.head_offset = offsetof(struct test_obj, node),
707  *	.hashfn = jhash,
708  *	.obj_hashfn = my_hash_fn,
709  * };
710  */
711 int rhashtable_init(struct rhashtable *ht,
712 		    const struct rhashtable_params *params)
713 {
714 	struct bucket_table *tbl;
715 	size_t size;
716 
717 	size = HASH_DEFAULT_SIZE;
718 
719 	if ((!params->key_len && !params->obj_hashfn) ||
720 	    (params->obj_hashfn && !params->obj_cmpfn))
721 		return -EINVAL;
722 
723 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
724 		return -EINVAL;
725 
726 	if (params->nelem_hint)
727 		size = rounded_hashtable_size(params);
728 
729 	memset(ht, 0, sizeof(*ht));
730 	mutex_init(&ht->mutex);
731 	spin_lock_init(&ht->lock);
732 	memcpy(&ht->p, params, sizeof(*params));
733 
734 	if (params->min_size)
735 		ht->p.min_size = roundup_pow_of_two(params->min_size);
736 
737 	if (params->max_size)
738 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
739 
740 	if (params->insecure_max_entries)
741 		ht->p.insecure_max_entries =
742 			rounddown_pow_of_two(params->insecure_max_entries);
743 	else
744 		ht->p.insecure_max_entries = ht->p.max_size * 2;
745 
746 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
747 
748 	/* The maximum (not average) chain length grows with the
749 	 * size of the hash table, at a rate of (log N)/(log log N).
750 	 * The value of 16 is selected so that even if the hash
751 	 * table grew to 2^32 you would not expect the maximum
752 	 * chain length to exceed it unless we are under attack
753 	 * (or extremely unlucky).
754 	 *
755 	 * As this limit is only to detect attacks, we don't need
756 	 * to set it to a lower value as you'd need the chain
757 	 * length to vastly exceed 16 to have any real effect
758 	 * on the system.
759 	 */
760 	if (!params->insecure_elasticity)
761 		ht->elasticity = 16;
762 
763 	if (params->locks_mul)
764 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
765 	else
766 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
767 
768 	ht->key_len = ht->p.key_len;
769 	if (!params->hashfn) {
770 		ht->p.hashfn = jhash;
771 
772 		if (!(ht->key_len & (sizeof(u32) - 1))) {
773 			ht->key_len /= sizeof(u32);
774 			ht->p.hashfn = rhashtable_jhash2;
775 		}
776 	}
777 
778 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
779 	if (tbl == NULL)
780 		return -ENOMEM;
781 
782 	atomic_set(&ht->nelems, 0);
783 
784 	RCU_INIT_POINTER(ht->tbl, tbl);
785 
786 	INIT_WORK(&ht->run_work, rht_deferred_worker);
787 
788 	return 0;
789 }
790 EXPORT_SYMBOL_GPL(rhashtable_init);
791 
792 /**
793  * rhashtable_free_and_destroy - free elements and destroy hash table
794  * @ht:		the hash table to destroy
795  * @free_fn:	callback to release resources of element
796  * @arg:	pointer passed to free_fn
797  *
798  * Stops an eventual async resize. If defined, invokes free_fn for each
799  * element to releasal resources. Please note that RCU protected
800  * readers may still be accessing the elements. Releasing of resources
801  * must occur in a compatible manner. Then frees the bucket array.
802  *
803  * This function will eventually sleep to wait for an async resize
804  * to complete. The caller is responsible that no further write operations
805  * occurs in parallel.
806  */
807 void rhashtable_free_and_destroy(struct rhashtable *ht,
808 				 void (*free_fn)(void *ptr, void *arg),
809 				 void *arg)
810 {
811 	const struct bucket_table *tbl;
812 	unsigned int i;
813 
814 	cancel_work_sync(&ht->run_work);
815 
816 	mutex_lock(&ht->mutex);
817 	tbl = rht_dereference(ht->tbl, ht);
818 	if (free_fn) {
819 		for (i = 0; i < tbl->size; i++) {
820 			struct rhash_head *pos, *next;
821 
822 			for (pos = rht_dereference(tbl->buckets[i], ht),
823 			     next = !rht_is_a_nulls(pos) ?
824 					rht_dereference(pos->next, ht) : NULL;
825 			     !rht_is_a_nulls(pos);
826 			     pos = next,
827 			     next = !rht_is_a_nulls(pos) ?
828 					rht_dereference(pos->next, ht) : NULL)
829 				free_fn(rht_obj(ht, pos), arg);
830 		}
831 	}
832 
833 	bucket_table_free(tbl);
834 	mutex_unlock(&ht->mutex);
835 }
836 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
837 
838 void rhashtable_destroy(struct rhashtable *ht)
839 {
840 	return rhashtable_free_and_destroy(ht, NULL, NULL);
841 }
842 EXPORT_SYMBOL_GPL(rhashtable_destroy);
843