xref: /openbmc/linux/lib/rhashtable.c (revision e5f586c763a079349398e2b0c7c271386193ac34)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
68 
69 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
70 			      gfp_t gfp)
71 {
72 	unsigned int i, size;
73 #if defined(CONFIG_PROVE_LOCKING)
74 	unsigned int nr_pcpus = 2;
75 #else
76 	unsigned int nr_pcpus = num_possible_cpus();
77 #endif
78 
79 	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
80 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
81 
82 	/* Never allocate more than 0.5 locks per bucket */
83 	size = min_t(unsigned int, size, tbl->size >> 1);
84 
85 	if (tbl->nest)
86 		size = min(size, 1U << tbl->nest);
87 
88 	if (sizeof(spinlock_t) != 0) {
89 		tbl->locks = NULL;
90 #ifdef CONFIG_NUMA
91 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
92 		    gfp == GFP_KERNEL)
93 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
94 #endif
95 		if (gfp != GFP_KERNEL)
96 			gfp |= __GFP_NOWARN | __GFP_NORETRY;
97 
98 		if (!tbl->locks)
99 			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
100 						   gfp);
101 		if (!tbl->locks)
102 			return -ENOMEM;
103 		for (i = 0; i < size; i++)
104 			spin_lock_init(&tbl->locks[i]);
105 	}
106 	tbl->locks_mask = size - 1;
107 
108 	return 0;
109 }
110 
111 static void nested_table_free(union nested_table *ntbl, unsigned int size)
112 {
113 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
114 	const unsigned int len = 1 << shift;
115 	unsigned int i;
116 
117 	ntbl = rcu_dereference_raw(ntbl->table);
118 	if (!ntbl)
119 		return;
120 
121 	if (size > len) {
122 		size >>= shift;
123 		for (i = 0; i < len; i++)
124 			nested_table_free(ntbl + i, size);
125 	}
126 
127 	kfree(ntbl);
128 }
129 
130 static void nested_bucket_table_free(const struct bucket_table *tbl)
131 {
132 	unsigned int size = tbl->size >> tbl->nest;
133 	unsigned int len = 1 << tbl->nest;
134 	union nested_table *ntbl;
135 	unsigned int i;
136 
137 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
138 
139 	for (i = 0; i < len; i++)
140 		nested_table_free(ntbl + i, size);
141 
142 	kfree(ntbl);
143 }
144 
145 static void bucket_table_free(const struct bucket_table *tbl)
146 {
147 	if (tbl->nest)
148 		nested_bucket_table_free(tbl);
149 
150 	kvfree(tbl->locks);
151 	kvfree(tbl);
152 }
153 
154 static void bucket_table_free_rcu(struct rcu_head *head)
155 {
156 	bucket_table_free(container_of(head, struct bucket_table, rcu));
157 }
158 
159 static union nested_table *nested_table_alloc(struct rhashtable *ht,
160 					      union nested_table __rcu **prev,
161 					      unsigned int shifted,
162 					      unsigned int nhash)
163 {
164 	union nested_table *ntbl;
165 	int i;
166 
167 	ntbl = rcu_dereference(*prev);
168 	if (ntbl)
169 		return ntbl;
170 
171 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
172 
173 	if (ntbl && shifted) {
174 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
175 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
176 					    (i << shifted) | nhash);
177 	}
178 
179 	rcu_assign_pointer(*prev, ntbl);
180 
181 	return ntbl;
182 }
183 
184 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
185 						      size_t nbuckets,
186 						      gfp_t gfp)
187 {
188 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
189 	struct bucket_table *tbl;
190 	size_t size;
191 
192 	if (nbuckets < (1 << (shift + 1)))
193 		return NULL;
194 
195 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
196 
197 	tbl = kzalloc(size, gfp);
198 	if (!tbl)
199 		return NULL;
200 
201 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
202 				0, 0)) {
203 		kfree(tbl);
204 		return NULL;
205 	}
206 
207 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
208 
209 	return tbl;
210 }
211 
212 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
213 					       size_t nbuckets,
214 					       gfp_t gfp)
215 {
216 	struct bucket_table *tbl = NULL;
217 	size_t size;
218 	int i;
219 
220 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
221 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
222 	    gfp != GFP_KERNEL)
223 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
224 	if (tbl == NULL && gfp == GFP_KERNEL)
225 		tbl = vzalloc(size);
226 
227 	size = nbuckets;
228 
229 	if (tbl == NULL && gfp != GFP_KERNEL) {
230 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
231 		nbuckets = 0;
232 	}
233 	if (tbl == NULL)
234 		return NULL;
235 
236 	tbl->size = size;
237 
238 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
239 		bucket_table_free(tbl);
240 		return NULL;
241 	}
242 
243 	INIT_LIST_HEAD(&tbl->walkers);
244 
245 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
246 
247 	for (i = 0; i < nbuckets; i++)
248 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
249 
250 	return tbl;
251 }
252 
253 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
254 						  struct bucket_table *tbl)
255 {
256 	struct bucket_table *new_tbl;
257 
258 	do {
259 		new_tbl = tbl;
260 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
261 	} while (tbl);
262 
263 	return new_tbl;
264 }
265 
266 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
267 {
268 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
269 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
270 		rht_dereference_rcu(old_tbl->future_tbl, ht));
271 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
272 	int err = -EAGAIN;
273 	struct rhash_head *head, *next, *entry;
274 	spinlock_t *new_bucket_lock;
275 	unsigned int new_hash;
276 
277 	if (new_tbl->nest)
278 		goto out;
279 
280 	err = -ENOENT;
281 
282 	rht_for_each(entry, old_tbl, old_hash) {
283 		err = 0;
284 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
285 
286 		if (rht_is_a_nulls(next))
287 			break;
288 
289 		pprev = &entry->next;
290 	}
291 
292 	if (err)
293 		goto out;
294 
295 	new_hash = head_hashfn(ht, new_tbl, entry);
296 
297 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
298 
299 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
300 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
301 				      new_tbl, new_hash);
302 
303 	RCU_INIT_POINTER(entry->next, head);
304 
305 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
306 	spin_unlock(new_bucket_lock);
307 
308 	rcu_assign_pointer(*pprev, next);
309 
310 out:
311 	return err;
312 }
313 
314 static int rhashtable_rehash_chain(struct rhashtable *ht,
315 				    unsigned int old_hash)
316 {
317 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
318 	spinlock_t *old_bucket_lock;
319 	int err;
320 
321 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
322 
323 	spin_lock_bh(old_bucket_lock);
324 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
325 		;
326 
327 	if (err == -ENOENT) {
328 		old_tbl->rehash++;
329 		err = 0;
330 	}
331 	spin_unlock_bh(old_bucket_lock);
332 
333 	return err;
334 }
335 
336 static int rhashtable_rehash_attach(struct rhashtable *ht,
337 				    struct bucket_table *old_tbl,
338 				    struct bucket_table *new_tbl)
339 {
340 	/* Protect future_tbl using the first bucket lock. */
341 	spin_lock_bh(old_tbl->locks);
342 
343 	/* Did somebody beat us to it? */
344 	if (rcu_access_pointer(old_tbl->future_tbl)) {
345 		spin_unlock_bh(old_tbl->locks);
346 		return -EEXIST;
347 	}
348 
349 	/* Make insertions go into the new, empty table right away. Deletions
350 	 * and lookups will be attempted in both tables until we synchronize.
351 	 */
352 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
353 
354 	spin_unlock_bh(old_tbl->locks);
355 
356 	return 0;
357 }
358 
359 static int rhashtable_rehash_table(struct rhashtable *ht)
360 {
361 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
362 	struct bucket_table *new_tbl;
363 	struct rhashtable_walker *walker;
364 	unsigned int old_hash;
365 	int err;
366 
367 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
368 	if (!new_tbl)
369 		return 0;
370 
371 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
372 		err = rhashtable_rehash_chain(ht, old_hash);
373 		if (err)
374 			return err;
375 	}
376 
377 	/* Publish the new table pointer. */
378 	rcu_assign_pointer(ht->tbl, new_tbl);
379 
380 	spin_lock(&ht->lock);
381 	list_for_each_entry(walker, &old_tbl->walkers, list)
382 		walker->tbl = NULL;
383 	spin_unlock(&ht->lock);
384 
385 	/* Wait for readers. All new readers will see the new
386 	 * table, and thus no references to the old table will
387 	 * remain.
388 	 */
389 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
390 
391 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
392 }
393 
394 static int rhashtable_rehash_alloc(struct rhashtable *ht,
395 				   struct bucket_table *old_tbl,
396 				   unsigned int size)
397 {
398 	struct bucket_table *new_tbl;
399 	int err;
400 
401 	ASSERT_RHT_MUTEX(ht);
402 
403 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
404 	if (new_tbl == NULL)
405 		return -ENOMEM;
406 
407 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
408 	if (err)
409 		bucket_table_free(new_tbl);
410 
411 	return err;
412 }
413 
414 /**
415  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
416  * @ht:		the hash table to shrink
417  *
418  * This function shrinks the hash table to fit, i.e., the smallest
419  * size would not cause it to expand right away automatically.
420  *
421  * The caller must ensure that no concurrent resizing occurs by holding
422  * ht->mutex.
423  *
424  * The caller must ensure that no concurrent table mutations take place.
425  * It is however valid to have concurrent lookups if they are RCU protected.
426  *
427  * It is valid to have concurrent insertions and deletions protected by per
428  * bucket locks or concurrent RCU protected lookups and traversals.
429  */
430 static int rhashtable_shrink(struct rhashtable *ht)
431 {
432 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
433 	unsigned int nelems = atomic_read(&ht->nelems);
434 	unsigned int size = 0;
435 
436 	if (nelems)
437 		size = roundup_pow_of_two(nelems * 3 / 2);
438 	if (size < ht->p.min_size)
439 		size = ht->p.min_size;
440 
441 	if (old_tbl->size <= size)
442 		return 0;
443 
444 	if (rht_dereference(old_tbl->future_tbl, ht))
445 		return -EEXIST;
446 
447 	return rhashtable_rehash_alloc(ht, old_tbl, size);
448 }
449 
450 static void rht_deferred_worker(struct work_struct *work)
451 {
452 	struct rhashtable *ht;
453 	struct bucket_table *tbl;
454 	int err = 0;
455 
456 	ht = container_of(work, struct rhashtable, run_work);
457 	mutex_lock(&ht->mutex);
458 
459 	tbl = rht_dereference(ht->tbl, ht);
460 	tbl = rhashtable_last_table(ht, tbl);
461 
462 	if (rht_grow_above_75(ht, tbl))
463 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
464 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
465 		err = rhashtable_shrink(ht);
466 	else if (tbl->nest)
467 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
468 
469 	if (!err)
470 		err = rhashtable_rehash_table(ht);
471 
472 	mutex_unlock(&ht->mutex);
473 
474 	if (err)
475 		schedule_work(&ht->run_work);
476 }
477 
478 static int rhashtable_insert_rehash(struct rhashtable *ht,
479 				    struct bucket_table *tbl)
480 {
481 	struct bucket_table *old_tbl;
482 	struct bucket_table *new_tbl;
483 	unsigned int size;
484 	int err;
485 
486 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
487 
488 	size = tbl->size;
489 
490 	err = -EBUSY;
491 
492 	if (rht_grow_above_75(ht, tbl))
493 		size *= 2;
494 	/* Do not schedule more than one rehash */
495 	else if (old_tbl != tbl)
496 		goto fail;
497 
498 	err = -ENOMEM;
499 
500 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
501 	if (new_tbl == NULL)
502 		goto fail;
503 
504 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
505 	if (err) {
506 		bucket_table_free(new_tbl);
507 		if (err == -EEXIST)
508 			err = 0;
509 	} else
510 		schedule_work(&ht->run_work);
511 
512 	return err;
513 
514 fail:
515 	/* Do not fail the insert if someone else did a rehash. */
516 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
517 		return 0;
518 
519 	/* Schedule async rehash to retry allocation in process context. */
520 	if (err == -ENOMEM)
521 		schedule_work(&ht->run_work);
522 
523 	return err;
524 }
525 
526 static void *rhashtable_lookup_one(struct rhashtable *ht,
527 				   struct bucket_table *tbl, unsigned int hash,
528 				   const void *key, struct rhash_head *obj)
529 {
530 	struct rhashtable_compare_arg arg = {
531 		.ht = ht,
532 		.key = key,
533 	};
534 	struct rhash_head __rcu **pprev;
535 	struct rhash_head *head;
536 	int elasticity;
537 
538 	elasticity = ht->elasticity;
539 	pprev = rht_bucket_var(tbl, hash);
540 	rht_for_each_continue(head, *pprev, tbl, hash) {
541 		struct rhlist_head *list;
542 		struct rhlist_head *plist;
543 
544 		elasticity--;
545 		if (!key ||
546 		    (ht->p.obj_cmpfn ?
547 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
548 		     rhashtable_compare(&arg, rht_obj(ht, head))))
549 			continue;
550 
551 		if (!ht->rhlist)
552 			return rht_obj(ht, head);
553 
554 		list = container_of(obj, struct rhlist_head, rhead);
555 		plist = container_of(head, struct rhlist_head, rhead);
556 
557 		RCU_INIT_POINTER(list->next, plist);
558 		head = rht_dereference_bucket(head->next, tbl, hash);
559 		RCU_INIT_POINTER(list->rhead.next, head);
560 		rcu_assign_pointer(*pprev, obj);
561 
562 		return NULL;
563 	}
564 
565 	if (elasticity <= 0)
566 		return ERR_PTR(-EAGAIN);
567 
568 	return ERR_PTR(-ENOENT);
569 }
570 
571 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
572 						  struct bucket_table *tbl,
573 						  unsigned int hash,
574 						  struct rhash_head *obj,
575 						  void *data)
576 {
577 	struct rhash_head __rcu **pprev;
578 	struct bucket_table *new_tbl;
579 	struct rhash_head *head;
580 
581 	if (!IS_ERR_OR_NULL(data))
582 		return ERR_PTR(-EEXIST);
583 
584 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
585 		return ERR_CAST(data);
586 
587 	new_tbl = rcu_dereference(tbl->future_tbl);
588 	if (new_tbl)
589 		return new_tbl;
590 
591 	if (PTR_ERR(data) != -ENOENT)
592 		return ERR_CAST(data);
593 
594 	if (unlikely(rht_grow_above_max(ht, tbl)))
595 		return ERR_PTR(-E2BIG);
596 
597 	if (unlikely(rht_grow_above_100(ht, tbl)))
598 		return ERR_PTR(-EAGAIN);
599 
600 	pprev = rht_bucket_insert(ht, tbl, hash);
601 	if (!pprev)
602 		return ERR_PTR(-ENOMEM);
603 
604 	head = rht_dereference_bucket(*pprev, tbl, hash);
605 
606 	RCU_INIT_POINTER(obj->next, head);
607 	if (ht->rhlist) {
608 		struct rhlist_head *list;
609 
610 		list = container_of(obj, struct rhlist_head, rhead);
611 		RCU_INIT_POINTER(list->next, NULL);
612 	}
613 
614 	rcu_assign_pointer(*pprev, obj);
615 
616 	atomic_inc(&ht->nelems);
617 	if (rht_grow_above_75(ht, tbl))
618 		schedule_work(&ht->run_work);
619 
620 	return NULL;
621 }
622 
623 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
624 				   struct rhash_head *obj)
625 {
626 	struct bucket_table *new_tbl;
627 	struct bucket_table *tbl;
628 	unsigned int hash;
629 	spinlock_t *lock;
630 	void *data;
631 
632 	tbl = rcu_dereference(ht->tbl);
633 
634 	/* All insertions must grab the oldest table containing
635 	 * the hashed bucket that is yet to be rehashed.
636 	 */
637 	for (;;) {
638 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
639 		lock = rht_bucket_lock(tbl, hash);
640 		spin_lock_bh(lock);
641 
642 		if (tbl->rehash <= hash)
643 			break;
644 
645 		spin_unlock_bh(lock);
646 		tbl = rcu_dereference(tbl->future_tbl);
647 	}
648 
649 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
650 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
651 	if (PTR_ERR(new_tbl) != -EEXIST)
652 		data = ERR_CAST(new_tbl);
653 
654 	while (!IS_ERR_OR_NULL(new_tbl)) {
655 		tbl = new_tbl;
656 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
657 		spin_lock_nested(rht_bucket_lock(tbl, hash),
658 				 SINGLE_DEPTH_NESTING);
659 
660 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
661 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
662 		if (PTR_ERR(new_tbl) != -EEXIST)
663 			data = ERR_CAST(new_tbl);
664 
665 		spin_unlock(rht_bucket_lock(tbl, hash));
666 	}
667 
668 	spin_unlock_bh(lock);
669 
670 	if (PTR_ERR(data) == -EAGAIN)
671 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
672 			       -EAGAIN);
673 
674 	return data;
675 }
676 
677 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
678 			     struct rhash_head *obj)
679 {
680 	void *data;
681 
682 	do {
683 		rcu_read_lock();
684 		data = rhashtable_try_insert(ht, key, obj);
685 		rcu_read_unlock();
686 	} while (PTR_ERR(data) == -EAGAIN);
687 
688 	return data;
689 }
690 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
691 
692 /**
693  * rhashtable_walk_enter - Initialise an iterator
694  * @ht:		Table to walk over
695  * @iter:	Hash table Iterator
696  *
697  * This function prepares a hash table walk.
698  *
699  * Note that if you restart a walk after rhashtable_walk_stop you
700  * may see the same object twice.  Also, you may miss objects if
701  * there are removals in between rhashtable_walk_stop and the next
702  * call to rhashtable_walk_start.
703  *
704  * For a completely stable walk you should construct your own data
705  * structure outside the hash table.
706  *
707  * This function may sleep so you must not call it from interrupt
708  * context or with spin locks held.
709  *
710  * You must call rhashtable_walk_exit after this function returns.
711  */
712 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
713 {
714 	iter->ht = ht;
715 	iter->p = NULL;
716 	iter->slot = 0;
717 	iter->skip = 0;
718 
719 	spin_lock(&ht->lock);
720 	iter->walker.tbl =
721 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
722 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
723 	spin_unlock(&ht->lock);
724 }
725 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
726 
727 /**
728  * rhashtable_walk_exit - Free an iterator
729  * @iter:	Hash table Iterator
730  *
731  * This function frees resources allocated by rhashtable_walk_init.
732  */
733 void rhashtable_walk_exit(struct rhashtable_iter *iter)
734 {
735 	spin_lock(&iter->ht->lock);
736 	if (iter->walker.tbl)
737 		list_del(&iter->walker.list);
738 	spin_unlock(&iter->ht->lock);
739 }
740 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
741 
742 /**
743  * rhashtable_walk_start - Start a hash table walk
744  * @iter:	Hash table iterator
745  *
746  * Start a hash table walk.  Note that we take the RCU lock in all
747  * cases including when we return an error.  So you must always call
748  * rhashtable_walk_stop to clean up.
749  *
750  * Returns zero if successful.
751  *
752  * Returns -EAGAIN if resize event occured.  Note that the iterator
753  * will rewind back to the beginning and you may use it immediately
754  * by calling rhashtable_walk_next.
755  */
756 int rhashtable_walk_start(struct rhashtable_iter *iter)
757 	__acquires(RCU)
758 {
759 	struct rhashtable *ht = iter->ht;
760 
761 	rcu_read_lock();
762 
763 	spin_lock(&ht->lock);
764 	if (iter->walker.tbl)
765 		list_del(&iter->walker.list);
766 	spin_unlock(&ht->lock);
767 
768 	if (!iter->walker.tbl) {
769 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
770 		return -EAGAIN;
771 	}
772 
773 	return 0;
774 }
775 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
776 
777 /**
778  * rhashtable_walk_next - Return the next object and advance the iterator
779  * @iter:	Hash table iterator
780  *
781  * Note that you must call rhashtable_walk_stop when you are finished
782  * with the walk.
783  *
784  * Returns the next object or NULL when the end of the table is reached.
785  *
786  * Returns -EAGAIN if resize event occured.  Note that the iterator
787  * will rewind back to the beginning and you may continue to use it.
788  */
789 void *rhashtable_walk_next(struct rhashtable_iter *iter)
790 {
791 	struct bucket_table *tbl = iter->walker.tbl;
792 	struct rhlist_head *list = iter->list;
793 	struct rhashtable *ht = iter->ht;
794 	struct rhash_head *p = iter->p;
795 	bool rhlist = ht->rhlist;
796 
797 	if (p) {
798 		if (!rhlist || !(list = rcu_dereference(list->next))) {
799 			p = rcu_dereference(p->next);
800 			list = container_of(p, struct rhlist_head, rhead);
801 		}
802 		goto next;
803 	}
804 
805 	for (; iter->slot < tbl->size; iter->slot++) {
806 		int skip = iter->skip;
807 
808 		rht_for_each_rcu(p, tbl, iter->slot) {
809 			if (rhlist) {
810 				list = container_of(p, struct rhlist_head,
811 						    rhead);
812 				do {
813 					if (!skip)
814 						goto next;
815 					skip--;
816 					list = rcu_dereference(list->next);
817 				} while (list);
818 
819 				continue;
820 			}
821 			if (!skip)
822 				break;
823 			skip--;
824 		}
825 
826 next:
827 		if (!rht_is_a_nulls(p)) {
828 			iter->skip++;
829 			iter->p = p;
830 			iter->list = list;
831 			return rht_obj(ht, rhlist ? &list->rhead : p);
832 		}
833 
834 		iter->skip = 0;
835 	}
836 
837 	iter->p = NULL;
838 
839 	/* Ensure we see any new tables. */
840 	smp_rmb();
841 
842 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
843 	if (iter->walker.tbl) {
844 		iter->slot = 0;
845 		iter->skip = 0;
846 		return ERR_PTR(-EAGAIN);
847 	}
848 
849 	return NULL;
850 }
851 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
852 
853 /**
854  * rhashtable_walk_stop - Finish a hash table walk
855  * @iter:	Hash table iterator
856  *
857  * Finish a hash table walk.
858  */
859 void rhashtable_walk_stop(struct rhashtable_iter *iter)
860 	__releases(RCU)
861 {
862 	struct rhashtable *ht;
863 	struct bucket_table *tbl = iter->walker.tbl;
864 
865 	if (!tbl)
866 		goto out;
867 
868 	ht = iter->ht;
869 
870 	spin_lock(&ht->lock);
871 	if (tbl->rehash < tbl->size)
872 		list_add(&iter->walker.list, &tbl->walkers);
873 	else
874 		iter->walker.tbl = NULL;
875 	spin_unlock(&ht->lock);
876 
877 	iter->p = NULL;
878 
879 out:
880 	rcu_read_unlock();
881 }
882 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
883 
884 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
885 {
886 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
887 		   (unsigned long)params->min_size);
888 }
889 
890 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
891 {
892 	return jhash2(key, length, seed);
893 }
894 
895 /**
896  * rhashtable_init - initialize a new hash table
897  * @ht:		hash table to be initialized
898  * @params:	configuration parameters
899  *
900  * Initializes a new hash table based on the provided configuration
901  * parameters. A table can be configured either with a variable or
902  * fixed length key:
903  *
904  * Configuration Example 1: Fixed length keys
905  * struct test_obj {
906  *	int			key;
907  *	void *			my_member;
908  *	struct rhash_head	node;
909  * };
910  *
911  * struct rhashtable_params params = {
912  *	.head_offset = offsetof(struct test_obj, node),
913  *	.key_offset = offsetof(struct test_obj, key),
914  *	.key_len = sizeof(int),
915  *	.hashfn = jhash,
916  *	.nulls_base = (1U << RHT_BASE_SHIFT),
917  * };
918  *
919  * Configuration Example 2: Variable length keys
920  * struct test_obj {
921  *	[...]
922  *	struct rhash_head	node;
923  * };
924  *
925  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
926  * {
927  *	struct test_obj *obj = data;
928  *
929  *	return [... hash ...];
930  * }
931  *
932  * struct rhashtable_params params = {
933  *	.head_offset = offsetof(struct test_obj, node),
934  *	.hashfn = jhash,
935  *	.obj_hashfn = my_hash_fn,
936  * };
937  */
938 int rhashtable_init(struct rhashtable *ht,
939 		    const struct rhashtable_params *params)
940 {
941 	struct bucket_table *tbl;
942 	size_t size;
943 
944 	size = HASH_DEFAULT_SIZE;
945 
946 	if ((!params->key_len && !params->obj_hashfn) ||
947 	    (params->obj_hashfn && !params->obj_cmpfn))
948 		return -EINVAL;
949 
950 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
951 		return -EINVAL;
952 
953 	memset(ht, 0, sizeof(*ht));
954 	mutex_init(&ht->mutex);
955 	spin_lock_init(&ht->lock);
956 	memcpy(&ht->p, params, sizeof(*params));
957 
958 	if (params->min_size)
959 		ht->p.min_size = roundup_pow_of_two(params->min_size);
960 
961 	if (params->max_size)
962 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
963 
964 	if (params->insecure_max_entries)
965 		ht->p.insecure_max_entries =
966 			rounddown_pow_of_two(params->insecure_max_entries);
967 	else
968 		ht->p.insecure_max_entries = ht->p.max_size * 2;
969 
970 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
971 
972 	if (params->nelem_hint)
973 		size = rounded_hashtable_size(&ht->p);
974 
975 	/* The maximum (not average) chain length grows with the
976 	 * size of the hash table, at a rate of (log N)/(log log N).
977 	 * The value of 16 is selected so that even if the hash
978 	 * table grew to 2^32 you would not expect the maximum
979 	 * chain length to exceed it unless we are under attack
980 	 * (or extremely unlucky).
981 	 *
982 	 * As this limit is only to detect attacks, we don't need
983 	 * to set it to a lower value as you'd need the chain
984 	 * length to vastly exceed 16 to have any real effect
985 	 * on the system.
986 	 */
987 	if (!params->insecure_elasticity)
988 		ht->elasticity = 16;
989 
990 	if (params->locks_mul)
991 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
992 	else
993 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
994 
995 	ht->key_len = ht->p.key_len;
996 	if (!params->hashfn) {
997 		ht->p.hashfn = jhash;
998 
999 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1000 			ht->key_len /= sizeof(u32);
1001 			ht->p.hashfn = rhashtable_jhash2;
1002 		}
1003 	}
1004 
1005 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1006 	if (tbl == NULL)
1007 		return -ENOMEM;
1008 
1009 	atomic_set(&ht->nelems, 0);
1010 
1011 	RCU_INIT_POINTER(ht->tbl, tbl);
1012 
1013 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1014 
1015 	return 0;
1016 }
1017 EXPORT_SYMBOL_GPL(rhashtable_init);
1018 
1019 /**
1020  * rhltable_init - initialize a new hash list table
1021  * @hlt:	hash list table to be initialized
1022  * @params:	configuration parameters
1023  *
1024  * Initializes a new hash list table.
1025  *
1026  * See documentation for rhashtable_init.
1027  */
1028 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1029 {
1030 	int err;
1031 
1032 	/* No rhlist NULLs marking for now. */
1033 	if (params->nulls_base)
1034 		return -EINVAL;
1035 
1036 	err = rhashtable_init(&hlt->ht, params);
1037 	hlt->ht.rhlist = true;
1038 	return err;
1039 }
1040 EXPORT_SYMBOL_GPL(rhltable_init);
1041 
1042 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1043 				void (*free_fn)(void *ptr, void *arg),
1044 				void *arg)
1045 {
1046 	struct rhlist_head *list;
1047 
1048 	if (!ht->rhlist) {
1049 		free_fn(rht_obj(ht, obj), arg);
1050 		return;
1051 	}
1052 
1053 	list = container_of(obj, struct rhlist_head, rhead);
1054 	do {
1055 		obj = &list->rhead;
1056 		list = rht_dereference(list->next, ht);
1057 		free_fn(rht_obj(ht, obj), arg);
1058 	} while (list);
1059 }
1060 
1061 /**
1062  * rhashtable_free_and_destroy - free elements and destroy hash table
1063  * @ht:		the hash table to destroy
1064  * @free_fn:	callback to release resources of element
1065  * @arg:	pointer passed to free_fn
1066  *
1067  * Stops an eventual async resize. If defined, invokes free_fn for each
1068  * element to releasal resources. Please note that RCU protected
1069  * readers may still be accessing the elements. Releasing of resources
1070  * must occur in a compatible manner. Then frees the bucket array.
1071  *
1072  * This function will eventually sleep to wait for an async resize
1073  * to complete. The caller is responsible that no further write operations
1074  * occurs in parallel.
1075  */
1076 void rhashtable_free_and_destroy(struct rhashtable *ht,
1077 				 void (*free_fn)(void *ptr, void *arg),
1078 				 void *arg)
1079 {
1080 	struct bucket_table *tbl;
1081 	unsigned int i;
1082 
1083 	cancel_work_sync(&ht->run_work);
1084 
1085 	mutex_lock(&ht->mutex);
1086 	tbl = rht_dereference(ht->tbl, ht);
1087 	if (free_fn) {
1088 		for (i = 0; i < tbl->size; i++) {
1089 			struct rhash_head *pos, *next;
1090 
1091 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1092 			     next = !rht_is_a_nulls(pos) ?
1093 					rht_dereference(pos->next, ht) : NULL;
1094 			     !rht_is_a_nulls(pos);
1095 			     pos = next,
1096 			     next = !rht_is_a_nulls(pos) ?
1097 					rht_dereference(pos->next, ht) : NULL)
1098 				rhashtable_free_one(ht, pos, free_fn, arg);
1099 		}
1100 	}
1101 
1102 	bucket_table_free(tbl);
1103 	mutex_unlock(&ht->mutex);
1104 }
1105 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1106 
1107 void rhashtable_destroy(struct rhashtable *ht)
1108 {
1109 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1110 }
1111 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1112 
1113 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1114 					    unsigned int hash)
1115 {
1116 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1117 	static struct rhash_head __rcu *rhnull =
1118 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1119 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1120 	unsigned int size = tbl->size >> tbl->nest;
1121 	unsigned int subhash = hash;
1122 	union nested_table *ntbl;
1123 
1124 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1125 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1126 	subhash >>= tbl->nest;
1127 
1128 	while (ntbl && size > (1 << shift)) {
1129 		index = subhash & ((1 << shift) - 1);
1130 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1131 						  tbl, hash);
1132 		size >>= shift;
1133 		subhash >>= shift;
1134 	}
1135 
1136 	if (!ntbl)
1137 		return &rhnull;
1138 
1139 	return &ntbl[subhash].bucket;
1140 
1141 }
1142 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1143 
1144 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1145 						   struct bucket_table *tbl,
1146 						   unsigned int hash)
1147 {
1148 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1149 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1150 	unsigned int size = tbl->size >> tbl->nest;
1151 	union nested_table *ntbl;
1152 	unsigned int shifted;
1153 	unsigned int nhash;
1154 
1155 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1156 	hash >>= tbl->nest;
1157 	nhash = index;
1158 	shifted = tbl->nest;
1159 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1160 				  size <= (1 << shift) ? shifted : 0, nhash);
1161 
1162 	while (ntbl && size > (1 << shift)) {
1163 		index = hash & ((1 << shift) - 1);
1164 		size >>= shift;
1165 		hash >>= shift;
1166 		nhash |= index << shifted;
1167 		shifted += shift;
1168 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1169 					  size <= (1 << shift) ? shifted : 0,
1170 					  nhash);
1171 	}
1172 
1173 	if (!ntbl)
1174 		return NULL;
1175 
1176 	return &ntbl[hash].bucket;
1177 
1178 }
1179 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1180