xref: /openbmc/linux/lib/rhashtable.c (revision d7a3d85e)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 
30 #define HASH_DEFAULT_SIZE	64UL
31 #define HASH_MIN_SIZE		4U
32 #define BUCKET_LOCKS_PER_CPU   128UL
33 
34 static u32 head_hashfn(struct rhashtable *ht,
35 		       const struct bucket_table *tbl,
36 		       const struct rhash_head *he)
37 {
38 	return rht_head_hashfn(ht, tbl, he, ht->p);
39 }
40 
41 #ifdef CONFIG_PROVE_LOCKING
42 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
43 
44 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
45 {
46 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
47 }
48 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
49 
50 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
51 {
52 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
53 
54 	return (debug_locks) ? lockdep_is_held(lock) : 1;
55 }
56 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
57 #else
58 #define ASSERT_RHT_MUTEX(HT)
59 #endif
60 
61 
62 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
63 			      gfp_t gfp)
64 {
65 	unsigned int i, size;
66 #if defined(CONFIG_PROVE_LOCKING)
67 	unsigned int nr_pcpus = 2;
68 #else
69 	unsigned int nr_pcpus = num_possible_cpus();
70 #endif
71 
72 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
73 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
74 
75 	/* Never allocate more than 0.5 locks per bucket */
76 	size = min_t(unsigned int, size, tbl->size >> 1);
77 
78 	if (sizeof(spinlock_t) != 0) {
79 #ifdef CONFIG_NUMA
80 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
81 		    gfp == GFP_KERNEL)
82 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
83 		else
84 #endif
85 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
86 					   gfp);
87 		if (!tbl->locks)
88 			return -ENOMEM;
89 		for (i = 0; i < size; i++)
90 			spin_lock_init(&tbl->locks[i]);
91 	}
92 	tbl->locks_mask = size - 1;
93 
94 	return 0;
95 }
96 
97 static void bucket_table_free(const struct bucket_table *tbl)
98 {
99 	if (tbl)
100 		kvfree(tbl->locks);
101 
102 	kvfree(tbl);
103 }
104 
105 static void bucket_table_free_rcu(struct rcu_head *head)
106 {
107 	bucket_table_free(container_of(head, struct bucket_table, rcu));
108 }
109 
110 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
111 					       size_t nbuckets,
112 					       gfp_t gfp)
113 {
114 	struct bucket_table *tbl = NULL;
115 	size_t size;
116 	int i;
117 
118 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
119 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
120 	    gfp != GFP_KERNEL)
121 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
122 	if (tbl == NULL && gfp == GFP_KERNEL)
123 		tbl = vzalloc(size);
124 	if (tbl == NULL)
125 		return NULL;
126 
127 	tbl->size = nbuckets;
128 
129 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
130 		bucket_table_free(tbl);
131 		return NULL;
132 	}
133 
134 	INIT_LIST_HEAD(&tbl->walkers);
135 
136 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
137 
138 	for (i = 0; i < nbuckets; i++)
139 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
140 
141 	return tbl;
142 }
143 
144 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
145 						  struct bucket_table *tbl)
146 {
147 	struct bucket_table *new_tbl;
148 
149 	do {
150 		new_tbl = tbl;
151 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
152 	} while (tbl);
153 
154 	return new_tbl;
155 }
156 
157 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
158 {
159 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
160 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
161 		rht_dereference_rcu(old_tbl->future_tbl, ht));
162 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
163 	int err = -ENOENT;
164 	struct rhash_head *head, *next, *entry;
165 	spinlock_t *new_bucket_lock;
166 	unsigned int new_hash;
167 
168 	rht_for_each(entry, old_tbl, old_hash) {
169 		err = 0;
170 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
171 
172 		if (rht_is_a_nulls(next))
173 			break;
174 
175 		pprev = &entry->next;
176 	}
177 
178 	if (err)
179 		goto out;
180 
181 	new_hash = head_hashfn(ht, new_tbl, entry);
182 
183 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
184 
185 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
186 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
187 				      new_tbl, new_hash);
188 
189 	if (rht_is_a_nulls(head))
190 		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
191 	else
192 		RCU_INIT_POINTER(entry->next, head);
193 
194 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
195 	spin_unlock(new_bucket_lock);
196 
197 	rcu_assign_pointer(*pprev, next);
198 
199 out:
200 	return err;
201 }
202 
203 static void rhashtable_rehash_chain(struct rhashtable *ht,
204 				    unsigned int old_hash)
205 {
206 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
207 	spinlock_t *old_bucket_lock;
208 
209 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
210 
211 	spin_lock_bh(old_bucket_lock);
212 	while (!rhashtable_rehash_one(ht, old_hash))
213 		;
214 	old_tbl->rehash++;
215 	spin_unlock_bh(old_bucket_lock);
216 }
217 
218 static int rhashtable_rehash_attach(struct rhashtable *ht,
219 				    struct bucket_table *old_tbl,
220 				    struct bucket_table *new_tbl)
221 {
222 	/* Protect future_tbl using the first bucket lock. */
223 	spin_lock_bh(old_tbl->locks);
224 
225 	/* Did somebody beat us to it? */
226 	if (rcu_access_pointer(old_tbl->future_tbl)) {
227 		spin_unlock_bh(old_tbl->locks);
228 		return -EEXIST;
229 	}
230 
231 	/* Make insertions go into the new, empty table right away. Deletions
232 	 * and lookups will be attempted in both tables until we synchronize.
233 	 */
234 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
235 
236 	/* Ensure the new table is visible to readers. */
237 	smp_wmb();
238 
239 	spin_unlock_bh(old_tbl->locks);
240 
241 	return 0;
242 }
243 
244 static int rhashtable_rehash_table(struct rhashtable *ht)
245 {
246 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
247 	struct bucket_table *new_tbl;
248 	struct rhashtable_walker *walker;
249 	unsigned int old_hash;
250 
251 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
252 	if (!new_tbl)
253 		return 0;
254 
255 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
256 		rhashtable_rehash_chain(ht, old_hash);
257 
258 	/* Publish the new table pointer. */
259 	rcu_assign_pointer(ht->tbl, new_tbl);
260 
261 	spin_lock(&ht->lock);
262 	list_for_each_entry(walker, &old_tbl->walkers, list)
263 		walker->tbl = NULL;
264 	spin_unlock(&ht->lock);
265 
266 	/* Wait for readers. All new readers will see the new
267 	 * table, and thus no references to the old table will
268 	 * remain.
269 	 */
270 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
271 
272 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
273 }
274 
275 /**
276  * rhashtable_expand - Expand hash table while allowing concurrent lookups
277  * @ht:		the hash table to expand
278  *
279  * A secondary bucket array is allocated and the hash entries are migrated.
280  *
281  * This function may only be called in a context where it is safe to call
282  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
283  *
284  * The caller must ensure that no concurrent resizing occurs by holding
285  * ht->mutex.
286  *
287  * It is valid to have concurrent insertions and deletions protected by per
288  * bucket locks or concurrent RCU protected lookups and traversals.
289  */
290 static int rhashtable_expand(struct rhashtable *ht)
291 {
292 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
293 	int err;
294 
295 	ASSERT_RHT_MUTEX(ht);
296 
297 	old_tbl = rhashtable_last_table(ht, old_tbl);
298 
299 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
300 	if (new_tbl == NULL)
301 		return -ENOMEM;
302 
303 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
304 	if (err)
305 		bucket_table_free(new_tbl);
306 
307 	return err;
308 }
309 
310 /**
311  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
312  * @ht:		the hash table to shrink
313  *
314  * This function shrinks the hash table to fit, i.e., the smallest
315  * size would not cause it to expand right away automatically.
316  *
317  * The caller must ensure that no concurrent resizing occurs by holding
318  * ht->mutex.
319  *
320  * The caller must ensure that no concurrent table mutations take place.
321  * It is however valid to have concurrent lookups if they are RCU protected.
322  *
323  * It is valid to have concurrent insertions and deletions protected by per
324  * bucket locks or concurrent RCU protected lookups and traversals.
325  */
326 static int rhashtable_shrink(struct rhashtable *ht)
327 {
328 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
329 	unsigned int size;
330 	int err;
331 
332 	ASSERT_RHT_MUTEX(ht);
333 
334 	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
335 	if (size < ht->p.min_size)
336 		size = ht->p.min_size;
337 
338 	if (old_tbl->size <= size)
339 		return 0;
340 
341 	if (rht_dereference(old_tbl->future_tbl, ht))
342 		return -EEXIST;
343 
344 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
345 	if (new_tbl == NULL)
346 		return -ENOMEM;
347 
348 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
349 	if (err)
350 		bucket_table_free(new_tbl);
351 
352 	return err;
353 }
354 
355 static void rht_deferred_worker(struct work_struct *work)
356 {
357 	struct rhashtable *ht;
358 	struct bucket_table *tbl;
359 	int err = 0;
360 
361 	ht = container_of(work, struct rhashtable, run_work);
362 	mutex_lock(&ht->mutex);
363 
364 	tbl = rht_dereference(ht->tbl, ht);
365 	tbl = rhashtable_last_table(ht, tbl);
366 
367 	if (rht_grow_above_75(ht, tbl))
368 		rhashtable_expand(ht);
369 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
370 		rhashtable_shrink(ht);
371 
372 	err = rhashtable_rehash_table(ht);
373 
374 	mutex_unlock(&ht->mutex);
375 
376 	if (err)
377 		schedule_work(&ht->run_work);
378 }
379 
380 static bool rhashtable_check_elasticity(struct rhashtable *ht,
381 					struct bucket_table *tbl,
382 					unsigned int hash)
383 {
384 	unsigned int elasticity = ht->elasticity;
385 	struct rhash_head *head;
386 
387 	rht_for_each(head, tbl, hash)
388 		if (!--elasticity)
389 			return true;
390 
391 	return false;
392 }
393 
394 int rhashtable_insert_rehash(struct rhashtable *ht)
395 {
396 	struct bucket_table *old_tbl;
397 	struct bucket_table *new_tbl;
398 	struct bucket_table *tbl;
399 	unsigned int size;
400 	int err;
401 
402 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
403 	tbl = rhashtable_last_table(ht, old_tbl);
404 
405 	size = tbl->size;
406 
407 	if (rht_grow_above_75(ht, tbl))
408 		size *= 2;
409 	/* Do not schedule more than one rehash */
410 	else if (old_tbl != tbl)
411 		return -EBUSY;
412 
413 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
414 	if (new_tbl == NULL) {
415 		/* Schedule async resize/rehash to try allocation
416 		 * non-atomic context.
417 		 */
418 		schedule_work(&ht->run_work);
419 		return -ENOMEM;
420 	}
421 
422 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
423 	if (err) {
424 		bucket_table_free(new_tbl);
425 		if (err == -EEXIST)
426 			err = 0;
427 	} else
428 		schedule_work(&ht->run_work);
429 
430 	return err;
431 }
432 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
433 
434 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
435 			   struct rhash_head *obj,
436 			   struct bucket_table *tbl)
437 {
438 	struct rhash_head *head;
439 	unsigned int hash;
440 	int err;
441 
442 	tbl = rhashtable_last_table(ht, tbl);
443 	hash = head_hashfn(ht, tbl, obj);
444 	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
445 
446 	err = -EEXIST;
447 	if (key && rhashtable_lookup_fast(ht, key, ht->p))
448 		goto exit;
449 
450 	err = -E2BIG;
451 	if (unlikely(rht_grow_above_max(ht, tbl)))
452 		goto exit;
453 
454 	err = -EAGAIN;
455 	if (rhashtable_check_elasticity(ht, tbl, hash) ||
456 	    rht_grow_above_100(ht, tbl))
457 		goto exit;
458 
459 	err = 0;
460 
461 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
462 
463 	RCU_INIT_POINTER(obj->next, head);
464 
465 	rcu_assign_pointer(tbl->buckets[hash], obj);
466 
467 	atomic_inc(&ht->nelems);
468 
469 exit:
470 	spin_unlock(rht_bucket_lock(tbl, hash));
471 
472 	return err;
473 }
474 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
475 
476 /**
477  * rhashtable_walk_init - Initialise an iterator
478  * @ht:		Table to walk over
479  * @iter:	Hash table Iterator
480  *
481  * This function prepares a hash table walk.
482  *
483  * Note that if you restart a walk after rhashtable_walk_stop you
484  * may see the same object twice.  Also, you may miss objects if
485  * there are removals in between rhashtable_walk_stop and the next
486  * call to rhashtable_walk_start.
487  *
488  * For a completely stable walk you should construct your own data
489  * structure outside the hash table.
490  *
491  * This function may sleep so you must not call it from interrupt
492  * context or with spin locks held.
493  *
494  * You must call rhashtable_walk_exit if this function returns
495  * successfully.
496  */
497 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
498 {
499 	iter->ht = ht;
500 	iter->p = NULL;
501 	iter->slot = 0;
502 	iter->skip = 0;
503 
504 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
505 	if (!iter->walker)
506 		return -ENOMEM;
507 
508 	mutex_lock(&ht->mutex);
509 	iter->walker->tbl = rht_dereference(ht->tbl, ht);
510 	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
511 	mutex_unlock(&ht->mutex);
512 
513 	return 0;
514 }
515 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
516 
517 /**
518  * rhashtable_walk_exit - Free an iterator
519  * @iter:	Hash table Iterator
520  *
521  * This function frees resources allocated by rhashtable_walk_init.
522  */
523 void rhashtable_walk_exit(struct rhashtable_iter *iter)
524 {
525 	mutex_lock(&iter->ht->mutex);
526 	if (iter->walker->tbl)
527 		list_del(&iter->walker->list);
528 	mutex_unlock(&iter->ht->mutex);
529 	kfree(iter->walker);
530 }
531 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
532 
533 /**
534  * rhashtable_walk_start - Start a hash table walk
535  * @iter:	Hash table iterator
536  *
537  * Start a hash table walk.  Note that we take the RCU lock in all
538  * cases including when we return an error.  So you must always call
539  * rhashtable_walk_stop to clean up.
540  *
541  * Returns zero if successful.
542  *
543  * Returns -EAGAIN if resize event occured.  Note that the iterator
544  * will rewind back to the beginning and you may use it immediately
545  * by calling rhashtable_walk_next.
546  */
547 int rhashtable_walk_start(struct rhashtable_iter *iter)
548 	__acquires(RCU)
549 {
550 	struct rhashtable *ht = iter->ht;
551 
552 	mutex_lock(&ht->mutex);
553 
554 	if (iter->walker->tbl)
555 		list_del(&iter->walker->list);
556 
557 	rcu_read_lock();
558 
559 	mutex_unlock(&ht->mutex);
560 
561 	if (!iter->walker->tbl) {
562 		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
563 		return -EAGAIN;
564 	}
565 
566 	return 0;
567 }
568 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
569 
570 /**
571  * rhashtable_walk_next - Return the next object and advance the iterator
572  * @iter:	Hash table iterator
573  *
574  * Note that you must call rhashtable_walk_stop when you are finished
575  * with the walk.
576  *
577  * Returns the next object or NULL when the end of the table is reached.
578  *
579  * Returns -EAGAIN if resize event occured.  Note that the iterator
580  * will rewind back to the beginning and you may continue to use it.
581  */
582 void *rhashtable_walk_next(struct rhashtable_iter *iter)
583 {
584 	struct bucket_table *tbl = iter->walker->tbl;
585 	struct rhashtable *ht = iter->ht;
586 	struct rhash_head *p = iter->p;
587 	void *obj = NULL;
588 
589 	if (p) {
590 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
591 		goto next;
592 	}
593 
594 	for (; iter->slot < tbl->size; iter->slot++) {
595 		int skip = iter->skip;
596 
597 		rht_for_each_rcu(p, tbl, iter->slot) {
598 			if (!skip)
599 				break;
600 			skip--;
601 		}
602 
603 next:
604 		if (!rht_is_a_nulls(p)) {
605 			iter->skip++;
606 			iter->p = p;
607 			obj = rht_obj(ht, p);
608 			goto out;
609 		}
610 
611 		iter->skip = 0;
612 	}
613 
614 	/* Ensure we see any new tables. */
615 	smp_rmb();
616 
617 	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
618 	if (iter->walker->tbl) {
619 		iter->slot = 0;
620 		iter->skip = 0;
621 		return ERR_PTR(-EAGAIN);
622 	}
623 
624 	iter->p = NULL;
625 
626 out:
627 
628 	return obj;
629 }
630 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
631 
632 /**
633  * rhashtable_walk_stop - Finish a hash table walk
634  * @iter:	Hash table iterator
635  *
636  * Finish a hash table walk.
637  */
638 void rhashtable_walk_stop(struct rhashtable_iter *iter)
639 	__releases(RCU)
640 {
641 	struct rhashtable *ht;
642 	struct bucket_table *tbl = iter->walker->tbl;
643 
644 	if (!tbl)
645 		goto out;
646 
647 	ht = iter->ht;
648 
649 	spin_lock(&ht->lock);
650 	if (tbl->rehash < tbl->size)
651 		list_add(&iter->walker->list, &tbl->walkers);
652 	else
653 		iter->walker->tbl = NULL;
654 	spin_unlock(&ht->lock);
655 
656 	iter->p = NULL;
657 
658 out:
659 	rcu_read_unlock();
660 }
661 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
662 
663 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
664 {
665 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
666 		   (unsigned long)params->min_size);
667 }
668 
669 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
670 {
671 	return jhash2(key, length, seed);
672 }
673 
674 /**
675  * rhashtable_init - initialize a new hash table
676  * @ht:		hash table to be initialized
677  * @params:	configuration parameters
678  *
679  * Initializes a new hash table based on the provided configuration
680  * parameters. A table can be configured either with a variable or
681  * fixed length key:
682  *
683  * Configuration Example 1: Fixed length keys
684  * struct test_obj {
685  *	int			key;
686  *	void *			my_member;
687  *	struct rhash_head	node;
688  * };
689  *
690  * struct rhashtable_params params = {
691  *	.head_offset = offsetof(struct test_obj, node),
692  *	.key_offset = offsetof(struct test_obj, key),
693  *	.key_len = sizeof(int),
694  *	.hashfn = jhash,
695  *	.nulls_base = (1U << RHT_BASE_SHIFT),
696  * };
697  *
698  * Configuration Example 2: Variable length keys
699  * struct test_obj {
700  *	[...]
701  *	struct rhash_head	node;
702  * };
703  *
704  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
705  * {
706  *	struct test_obj *obj = data;
707  *
708  *	return [... hash ...];
709  * }
710  *
711  * struct rhashtable_params params = {
712  *	.head_offset = offsetof(struct test_obj, node),
713  *	.hashfn = jhash,
714  *	.obj_hashfn = my_hash_fn,
715  * };
716  */
717 int rhashtable_init(struct rhashtable *ht,
718 		    const struct rhashtable_params *params)
719 {
720 	struct bucket_table *tbl;
721 	size_t size;
722 
723 	size = HASH_DEFAULT_SIZE;
724 
725 	if ((!params->key_len && !params->obj_hashfn) ||
726 	    (params->obj_hashfn && !params->obj_cmpfn))
727 		return -EINVAL;
728 
729 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
730 		return -EINVAL;
731 
732 	if (params->nelem_hint)
733 		size = rounded_hashtable_size(params);
734 
735 	memset(ht, 0, sizeof(*ht));
736 	mutex_init(&ht->mutex);
737 	spin_lock_init(&ht->lock);
738 	memcpy(&ht->p, params, sizeof(*params));
739 
740 	if (params->min_size)
741 		ht->p.min_size = roundup_pow_of_two(params->min_size);
742 
743 	if (params->max_size)
744 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
745 
746 	if (params->insecure_max_entries)
747 		ht->p.insecure_max_entries =
748 			rounddown_pow_of_two(params->insecure_max_entries);
749 	else
750 		ht->p.insecure_max_entries = ht->p.max_size * 2;
751 
752 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
753 
754 	/* The maximum (not average) chain length grows with the
755 	 * size of the hash table, at a rate of (log N)/(log log N).
756 	 * The value of 16 is selected so that even if the hash
757 	 * table grew to 2^32 you would not expect the maximum
758 	 * chain length to exceed it unless we are under attack
759 	 * (or extremely unlucky).
760 	 *
761 	 * As this limit is only to detect attacks, we don't need
762 	 * to set it to a lower value as you'd need the chain
763 	 * length to vastly exceed 16 to have any real effect
764 	 * on the system.
765 	 */
766 	if (!params->insecure_elasticity)
767 		ht->elasticity = 16;
768 
769 	if (params->locks_mul)
770 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
771 	else
772 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
773 
774 	ht->key_len = ht->p.key_len;
775 	if (!params->hashfn) {
776 		ht->p.hashfn = jhash;
777 
778 		if (!(ht->key_len & (sizeof(u32) - 1))) {
779 			ht->key_len /= sizeof(u32);
780 			ht->p.hashfn = rhashtable_jhash2;
781 		}
782 	}
783 
784 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
785 	if (tbl == NULL)
786 		return -ENOMEM;
787 
788 	atomic_set(&ht->nelems, 0);
789 
790 	RCU_INIT_POINTER(ht->tbl, tbl);
791 
792 	INIT_WORK(&ht->run_work, rht_deferred_worker);
793 
794 	return 0;
795 }
796 EXPORT_SYMBOL_GPL(rhashtable_init);
797 
798 /**
799  * rhashtable_free_and_destroy - free elements and destroy hash table
800  * @ht:		the hash table to destroy
801  * @free_fn:	callback to release resources of element
802  * @arg:	pointer passed to free_fn
803  *
804  * Stops an eventual async resize. If defined, invokes free_fn for each
805  * element to releasal resources. Please note that RCU protected
806  * readers may still be accessing the elements. Releasing of resources
807  * must occur in a compatible manner. Then frees the bucket array.
808  *
809  * This function will eventually sleep to wait for an async resize
810  * to complete. The caller is responsible that no further write operations
811  * occurs in parallel.
812  */
813 void rhashtable_free_and_destroy(struct rhashtable *ht,
814 				 void (*free_fn)(void *ptr, void *arg),
815 				 void *arg)
816 {
817 	const struct bucket_table *tbl;
818 	unsigned int i;
819 
820 	cancel_work_sync(&ht->run_work);
821 
822 	mutex_lock(&ht->mutex);
823 	tbl = rht_dereference(ht->tbl, ht);
824 	if (free_fn) {
825 		for (i = 0; i < tbl->size; i++) {
826 			struct rhash_head *pos, *next;
827 
828 			for (pos = rht_dereference(tbl->buckets[i], ht),
829 			     next = !rht_is_a_nulls(pos) ?
830 					rht_dereference(pos->next, ht) : NULL;
831 			     !rht_is_a_nulls(pos);
832 			     pos = next,
833 			     next = !rht_is_a_nulls(pos) ?
834 					rht_dereference(pos->next, ht) : NULL)
835 				free_fn(rht_obj(ht, pos), arg);
836 		}
837 	}
838 
839 	bucket_table_free(tbl);
840 	mutex_unlock(&ht->mutex);
841 }
842 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
843 
844 void rhashtable_destroy(struct rhashtable *ht)
845 {
846 	return rhashtable_free_and_destroy(ht, NULL, NULL);
847 }
848 EXPORT_SYMBOL_GPL(rhashtable_destroy);
849