1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/rculist.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/mm.h> 26 #include <linux/jhash.h> 27 #include <linux/random.h> 28 #include <linux/rhashtable.h> 29 #include <linux/err.h> 30 #include <linux/export.h> 31 32 #define HASH_DEFAULT_SIZE 64UL 33 #define HASH_MIN_SIZE 4U 34 #define BUCKET_LOCKS_PER_CPU 32UL 35 36 union nested_table { 37 union nested_table __rcu *table; 38 struct rhash_head __rcu *bucket; 39 }; 40 41 static u32 head_hashfn(struct rhashtable *ht, 42 const struct bucket_table *tbl, 43 const struct rhash_head *he) 44 { 45 return rht_head_hashfn(ht, tbl, he, ht->p); 46 } 47 48 #ifdef CONFIG_PROVE_LOCKING 49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 50 51 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 52 { 53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 54 } 55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 56 57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 58 { 59 spinlock_t *lock = rht_bucket_lock(tbl, hash); 60 61 return (debug_locks) ? lockdep_is_held(lock) : 1; 62 } 63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 64 #else 65 #define ASSERT_RHT_MUTEX(HT) 66 #endif 67 68 static void nested_table_free(union nested_table *ntbl, unsigned int size) 69 { 70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 71 const unsigned int len = 1 << shift; 72 unsigned int i; 73 74 ntbl = rcu_dereference_raw(ntbl->table); 75 if (!ntbl) 76 return; 77 78 if (size > len) { 79 size >>= shift; 80 for (i = 0; i < len; i++) 81 nested_table_free(ntbl + i, size); 82 } 83 84 kfree(ntbl); 85 } 86 87 static void nested_bucket_table_free(const struct bucket_table *tbl) 88 { 89 unsigned int size = tbl->size >> tbl->nest; 90 unsigned int len = 1 << tbl->nest; 91 union nested_table *ntbl; 92 unsigned int i; 93 94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 95 96 for (i = 0; i < len; i++) 97 nested_table_free(ntbl + i, size); 98 99 kfree(ntbl); 100 } 101 102 static void bucket_table_free(const struct bucket_table *tbl) 103 { 104 if (tbl->nest) 105 nested_bucket_table_free(tbl); 106 107 free_bucket_spinlocks(tbl->locks); 108 kvfree(tbl); 109 } 110 111 static void bucket_table_free_rcu(struct rcu_head *head) 112 { 113 bucket_table_free(container_of(head, struct bucket_table, rcu)); 114 } 115 116 static union nested_table *nested_table_alloc(struct rhashtable *ht, 117 union nested_table __rcu **prev, 118 bool leaf) 119 { 120 union nested_table *ntbl; 121 int i; 122 123 ntbl = rcu_dereference(*prev); 124 if (ntbl) 125 return ntbl; 126 127 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); 128 129 if (ntbl && leaf) { 130 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) 131 INIT_RHT_NULLS_HEAD(ntbl[i].bucket); 132 } 133 134 rcu_assign_pointer(*prev, ntbl); 135 136 return ntbl; 137 } 138 139 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 140 size_t nbuckets, 141 gfp_t gfp) 142 { 143 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 144 struct bucket_table *tbl; 145 size_t size; 146 147 if (nbuckets < (1 << (shift + 1))) 148 return NULL; 149 150 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 151 152 tbl = kzalloc(size, gfp); 153 if (!tbl) 154 return NULL; 155 156 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 157 false)) { 158 kfree(tbl); 159 return NULL; 160 } 161 162 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 163 164 return tbl; 165 } 166 167 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 168 size_t nbuckets, 169 gfp_t gfp) 170 { 171 struct bucket_table *tbl = NULL; 172 size_t size, max_locks; 173 int i; 174 175 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 176 tbl = kvzalloc(size, gfp); 177 178 size = nbuckets; 179 180 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { 181 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 182 nbuckets = 0; 183 } 184 185 if (tbl == NULL) 186 return NULL; 187 188 tbl->size = size; 189 190 max_locks = size >> 1; 191 if (tbl->nest) 192 max_locks = min_t(size_t, max_locks, 1U << tbl->nest); 193 194 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks, 195 ht->p.locks_mul, gfp) < 0) { 196 bucket_table_free(tbl); 197 return NULL; 198 } 199 200 INIT_LIST_HEAD(&tbl->walkers); 201 202 tbl->hash_rnd = get_random_u32(); 203 204 for (i = 0; i < nbuckets; i++) 205 INIT_RHT_NULLS_HEAD(tbl->buckets[i]); 206 207 return tbl; 208 } 209 210 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 211 struct bucket_table *tbl) 212 { 213 struct bucket_table *new_tbl; 214 215 do { 216 new_tbl = tbl; 217 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 218 } while (tbl); 219 220 return new_tbl; 221 } 222 223 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 224 { 225 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 226 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); 227 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash); 228 int err = -EAGAIN; 229 struct rhash_head *head, *next, *entry; 230 spinlock_t *new_bucket_lock; 231 unsigned int new_hash; 232 233 if (new_tbl->nest) 234 goto out; 235 236 err = -ENOENT; 237 238 rht_for_each(entry, old_tbl, old_hash) { 239 err = 0; 240 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 241 242 if (rht_is_a_nulls(next)) 243 break; 244 245 pprev = &entry->next; 246 } 247 248 if (err) 249 goto out; 250 251 new_hash = head_hashfn(ht, new_tbl, entry); 252 253 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 254 255 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 256 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 257 new_tbl, new_hash); 258 259 RCU_INIT_POINTER(entry->next, head); 260 261 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 262 spin_unlock(new_bucket_lock); 263 264 rcu_assign_pointer(*pprev, next); 265 266 out: 267 return err; 268 } 269 270 static int rhashtable_rehash_chain(struct rhashtable *ht, 271 unsigned int old_hash) 272 { 273 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 274 spinlock_t *old_bucket_lock; 275 int err; 276 277 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 278 279 spin_lock_bh(old_bucket_lock); 280 while (!(err = rhashtable_rehash_one(ht, old_hash))) 281 ; 282 283 if (err == -ENOENT) { 284 old_tbl->rehash++; 285 err = 0; 286 } 287 spin_unlock_bh(old_bucket_lock); 288 289 return err; 290 } 291 292 static int rhashtable_rehash_attach(struct rhashtable *ht, 293 struct bucket_table *old_tbl, 294 struct bucket_table *new_tbl) 295 { 296 /* Make insertions go into the new, empty table right away. Deletions 297 * and lookups will be attempted in both tables until we synchronize. 298 * As cmpxchg() provides strong barriers, we do not need 299 * rcu_assign_pointer(). 300 */ 301 302 if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL) 303 return -EEXIST; 304 305 return 0; 306 } 307 308 static int rhashtable_rehash_table(struct rhashtable *ht) 309 { 310 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 311 struct bucket_table *new_tbl; 312 struct rhashtable_walker *walker; 313 unsigned int old_hash; 314 int err; 315 316 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 317 if (!new_tbl) 318 return 0; 319 320 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 321 err = rhashtable_rehash_chain(ht, old_hash); 322 if (err) 323 return err; 324 cond_resched(); 325 } 326 327 /* Publish the new table pointer. */ 328 rcu_assign_pointer(ht->tbl, new_tbl); 329 330 spin_lock(&ht->lock); 331 list_for_each_entry(walker, &old_tbl->walkers, list) 332 walker->tbl = NULL; 333 spin_unlock(&ht->lock); 334 335 /* Wait for readers. All new readers will see the new 336 * table, and thus no references to the old table will 337 * remain. 338 */ 339 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 340 341 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 342 } 343 344 static int rhashtable_rehash_alloc(struct rhashtable *ht, 345 struct bucket_table *old_tbl, 346 unsigned int size) 347 { 348 struct bucket_table *new_tbl; 349 int err; 350 351 ASSERT_RHT_MUTEX(ht); 352 353 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 354 if (new_tbl == NULL) 355 return -ENOMEM; 356 357 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 358 if (err) 359 bucket_table_free(new_tbl); 360 361 return err; 362 } 363 364 /** 365 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 366 * @ht: the hash table to shrink 367 * 368 * This function shrinks the hash table to fit, i.e., the smallest 369 * size would not cause it to expand right away automatically. 370 * 371 * The caller must ensure that no concurrent resizing occurs by holding 372 * ht->mutex. 373 * 374 * The caller must ensure that no concurrent table mutations take place. 375 * It is however valid to have concurrent lookups if they are RCU protected. 376 * 377 * It is valid to have concurrent insertions and deletions protected by per 378 * bucket locks or concurrent RCU protected lookups and traversals. 379 */ 380 static int rhashtable_shrink(struct rhashtable *ht) 381 { 382 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 383 unsigned int nelems = atomic_read(&ht->nelems); 384 unsigned int size = 0; 385 386 if (nelems) 387 size = roundup_pow_of_two(nelems * 3 / 2); 388 if (size < ht->p.min_size) 389 size = ht->p.min_size; 390 391 if (old_tbl->size <= size) 392 return 0; 393 394 if (rht_dereference(old_tbl->future_tbl, ht)) 395 return -EEXIST; 396 397 return rhashtable_rehash_alloc(ht, old_tbl, size); 398 } 399 400 static void rht_deferred_worker(struct work_struct *work) 401 { 402 struct rhashtable *ht; 403 struct bucket_table *tbl; 404 int err = 0; 405 406 ht = container_of(work, struct rhashtable, run_work); 407 mutex_lock(&ht->mutex); 408 409 tbl = rht_dereference(ht->tbl, ht); 410 tbl = rhashtable_last_table(ht, tbl); 411 412 if (rht_grow_above_75(ht, tbl)) 413 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 414 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 415 err = rhashtable_shrink(ht); 416 else if (tbl->nest) 417 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 418 419 if (!err) 420 err = rhashtable_rehash_table(ht); 421 422 mutex_unlock(&ht->mutex); 423 424 if (err) 425 schedule_work(&ht->run_work); 426 } 427 428 static int rhashtable_insert_rehash(struct rhashtable *ht, 429 struct bucket_table *tbl) 430 { 431 struct bucket_table *old_tbl; 432 struct bucket_table *new_tbl; 433 unsigned int size; 434 int err; 435 436 old_tbl = rht_dereference_rcu(ht->tbl, ht); 437 438 size = tbl->size; 439 440 err = -EBUSY; 441 442 if (rht_grow_above_75(ht, tbl)) 443 size *= 2; 444 /* Do not schedule more than one rehash */ 445 else if (old_tbl != tbl) 446 goto fail; 447 448 err = -ENOMEM; 449 450 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); 451 if (new_tbl == NULL) 452 goto fail; 453 454 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 455 if (err) { 456 bucket_table_free(new_tbl); 457 if (err == -EEXIST) 458 err = 0; 459 } else 460 schedule_work(&ht->run_work); 461 462 return err; 463 464 fail: 465 /* Do not fail the insert if someone else did a rehash. */ 466 if (likely(rcu_access_pointer(tbl->future_tbl))) 467 return 0; 468 469 /* Schedule async rehash to retry allocation in process context. */ 470 if (err == -ENOMEM) 471 schedule_work(&ht->run_work); 472 473 return err; 474 } 475 476 static void *rhashtable_lookup_one(struct rhashtable *ht, 477 struct bucket_table *tbl, unsigned int hash, 478 const void *key, struct rhash_head *obj) 479 { 480 struct rhashtable_compare_arg arg = { 481 .ht = ht, 482 .key = key, 483 }; 484 struct rhash_head __rcu **pprev; 485 struct rhash_head *head; 486 int elasticity; 487 488 elasticity = RHT_ELASTICITY; 489 pprev = rht_bucket_var(tbl, hash); 490 rht_for_each_continue(head, *pprev, tbl, hash) { 491 struct rhlist_head *list; 492 struct rhlist_head *plist; 493 494 elasticity--; 495 if (!key || 496 (ht->p.obj_cmpfn ? 497 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 498 rhashtable_compare(&arg, rht_obj(ht, head)))) { 499 pprev = &head->next; 500 continue; 501 } 502 503 if (!ht->rhlist) 504 return rht_obj(ht, head); 505 506 list = container_of(obj, struct rhlist_head, rhead); 507 plist = container_of(head, struct rhlist_head, rhead); 508 509 RCU_INIT_POINTER(list->next, plist); 510 head = rht_dereference_bucket(head->next, tbl, hash); 511 RCU_INIT_POINTER(list->rhead.next, head); 512 rcu_assign_pointer(*pprev, obj); 513 514 return NULL; 515 } 516 517 if (elasticity <= 0) 518 return ERR_PTR(-EAGAIN); 519 520 return ERR_PTR(-ENOENT); 521 } 522 523 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht, 524 struct bucket_table *tbl, 525 unsigned int hash, 526 struct rhash_head *obj, 527 void *data) 528 { 529 struct rhash_head __rcu **pprev; 530 struct bucket_table *new_tbl; 531 struct rhash_head *head; 532 533 if (!IS_ERR_OR_NULL(data)) 534 return ERR_PTR(-EEXIST); 535 536 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 537 return ERR_CAST(data); 538 539 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 540 if (new_tbl) 541 return new_tbl; 542 543 if (PTR_ERR(data) != -ENOENT) 544 return ERR_CAST(data); 545 546 if (unlikely(rht_grow_above_max(ht, tbl))) 547 return ERR_PTR(-E2BIG); 548 549 if (unlikely(rht_grow_above_100(ht, tbl))) 550 return ERR_PTR(-EAGAIN); 551 552 pprev = rht_bucket_insert(ht, tbl, hash); 553 if (!pprev) 554 return ERR_PTR(-ENOMEM); 555 556 head = rht_dereference_bucket(*pprev, tbl, hash); 557 558 RCU_INIT_POINTER(obj->next, head); 559 if (ht->rhlist) { 560 struct rhlist_head *list; 561 562 list = container_of(obj, struct rhlist_head, rhead); 563 RCU_INIT_POINTER(list->next, NULL); 564 } 565 566 rcu_assign_pointer(*pprev, obj); 567 568 atomic_inc(&ht->nelems); 569 if (rht_grow_above_75(ht, tbl)) 570 schedule_work(&ht->run_work); 571 572 return NULL; 573 } 574 575 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 576 struct rhash_head *obj) 577 { 578 struct bucket_table *new_tbl; 579 struct bucket_table *tbl; 580 unsigned int hash; 581 spinlock_t *lock; 582 void *data; 583 584 tbl = rcu_dereference(ht->tbl); 585 586 /* All insertions must grab the oldest table containing 587 * the hashed bucket that is yet to be rehashed. 588 */ 589 for (;;) { 590 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 591 lock = rht_bucket_lock(tbl, hash); 592 spin_lock_bh(lock); 593 594 if (tbl->rehash <= hash) 595 break; 596 597 spin_unlock_bh(lock); 598 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 599 } 600 601 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 602 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 603 if (PTR_ERR(new_tbl) != -EEXIST) 604 data = ERR_CAST(new_tbl); 605 606 while (!IS_ERR_OR_NULL(new_tbl)) { 607 tbl = new_tbl; 608 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 609 spin_lock_nested(rht_bucket_lock(tbl, hash), 610 SINGLE_DEPTH_NESTING); 611 612 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 613 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 614 if (PTR_ERR(new_tbl) != -EEXIST) 615 data = ERR_CAST(new_tbl); 616 617 spin_unlock(rht_bucket_lock(tbl, hash)); 618 } 619 620 spin_unlock_bh(lock); 621 622 if (PTR_ERR(data) == -EAGAIN) 623 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 624 -EAGAIN); 625 626 return data; 627 } 628 629 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 630 struct rhash_head *obj) 631 { 632 void *data; 633 634 do { 635 rcu_read_lock(); 636 data = rhashtable_try_insert(ht, key, obj); 637 rcu_read_unlock(); 638 } while (PTR_ERR(data) == -EAGAIN); 639 640 return data; 641 } 642 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 643 644 /** 645 * rhashtable_walk_enter - Initialise an iterator 646 * @ht: Table to walk over 647 * @iter: Hash table Iterator 648 * 649 * This function prepares a hash table walk. 650 * 651 * Note that if you restart a walk after rhashtable_walk_stop you 652 * may see the same object twice. Also, you may miss objects if 653 * there are removals in between rhashtable_walk_stop and the next 654 * call to rhashtable_walk_start. 655 * 656 * For a completely stable walk you should construct your own data 657 * structure outside the hash table. 658 * 659 * This function may be called from any process context, including 660 * non-preemptable context, but cannot be called from softirq or 661 * hardirq context. 662 * 663 * You must call rhashtable_walk_exit after this function returns. 664 */ 665 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 666 { 667 iter->ht = ht; 668 iter->p = NULL; 669 iter->slot = 0; 670 iter->skip = 0; 671 iter->end_of_table = 0; 672 673 spin_lock(&ht->lock); 674 iter->walker.tbl = 675 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 676 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 677 spin_unlock(&ht->lock); 678 } 679 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 680 681 /** 682 * rhashtable_walk_exit - Free an iterator 683 * @iter: Hash table Iterator 684 * 685 * This function frees resources allocated by rhashtable_walk_enter. 686 */ 687 void rhashtable_walk_exit(struct rhashtable_iter *iter) 688 { 689 spin_lock(&iter->ht->lock); 690 if (iter->walker.tbl) 691 list_del(&iter->walker.list); 692 spin_unlock(&iter->ht->lock); 693 } 694 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 695 696 /** 697 * rhashtable_walk_start_check - Start a hash table walk 698 * @iter: Hash table iterator 699 * 700 * Start a hash table walk at the current iterator position. Note that we take 701 * the RCU lock in all cases including when we return an error. So you must 702 * always call rhashtable_walk_stop to clean up. 703 * 704 * Returns zero if successful. 705 * 706 * Returns -EAGAIN if resize event occured. Note that the iterator 707 * will rewind back to the beginning and you may use it immediately 708 * by calling rhashtable_walk_next. 709 * 710 * rhashtable_walk_start is defined as an inline variant that returns 711 * void. This is preferred in cases where the caller would ignore 712 * resize events and always continue. 713 */ 714 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 715 __acquires(RCU) 716 { 717 struct rhashtable *ht = iter->ht; 718 bool rhlist = ht->rhlist; 719 720 rcu_read_lock(); 721 722 spin_lock(&ht->lock); 723 if (iter->walker.tbl) 724 list_del(&iter->walker.list); 725 spin_unlock(&ht->lock); 726 727 if (iter->end_of_table) 728 return 0; 729 if (!iter->walker.tbl) { 730 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 731 iter->slot = 0; 732 iter->skip = 0; 733 return -EAGAIN; 734 } 735 736 if (iter->p && !rhlist) { 737 /* 738 * We need to validate that 'p' is still in the table, and 739 * if so, update 'skip' 740 */ 741 struct rhash_head *p; 742 int skip = 0; 743 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 744 skip++; 745 if (p == iter->p) { 746 iter->skip = skip; 747 goto found; 748 } 749 } 750 iter->p = NULL; 751 } else if (iter->p && rhlist) { 752 /* Need to validate that 'list' is still in the table, and 753 * if so, update 'skip' and 'p'. 754 */ 755 struct rhash_head *p; 756 struct rhlist_head *list; 757 int skip = 0; 758 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 759 for (list = container_of(p, struct rhlist_head, rhead); 760 list; 761 list = rcu_dereference(list->next)) { 762 skip++; 763 if (list == iter->list) { 764 iter->p = p; 765 iter->skip = skip; 766 goto found; 767 } 768 } 769 } 770 iter->p = NULL; 771 } 772 found: 773 return 0; 774 } 775 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 776 777 /** 778 * __rhashtable_walk_find_next - Find the next element in a table (or the first 779 * one in case of a new walk). 780 * 781 * @iter: Hash table iterator 782 * 783 * Returns the found object or NULL when the end of the table is reached. 784 * 785 * Returns -EAGAIN if resize event occurred. 786 */ 787 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 788 { 789 struct bucket_table *tbl = iter->walker.tbl; 790 struct rhlist_head *list = iter->list; 791 struct rhashtable *ht = iter->ht; 792 struct rhash_head *p = iter->p; 793 bool rhlist = ht->rhlist; 794 795 if (!tbl) 796 return NULL; 797 798 for (; iter->slot < tbl->size; iter->slot++) { 799 int skip = iter->skip; 800 801 rht_for_each_rcu(p, tbl, iter->slot) { 802 if (rhlist) { 803 list = container_of(p, struct rhlist_head, 804 rhead); 805 do { 806 if (!skip) 807 goto next; 808 skip--; 809 list = rcu_dereference(list->next); 810 } while (list); 811 812 continue; 813 } 814 if (!skip) 815 break; 816 skip--; 817 } 818 819 next: 820 if (!rht_is_a_nulls(p)) { 821 iter->skip++; 822 iter->p = p; 823 iter->list = list; 824 return rht_obj(ht, rhlist ? &list->rhead : p); 825 } 826 827 iter->skip = 0; 828 } 829 830 iter->p = NULL; 831 832 /* Ensure we see any new tables. */ 833 smp_rmb(); 834 835 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 836 if (iter->walker.tbl) { 837 iter->slot = 0; 838 iter->skip = 0; 839 return ERR_PTR(-EAGAIN); 840 } else { 841 iter->end_of_table = true; 842 } 843 844 return NULL; 845 } 846 847 /** 848 * rhashtable_walk_next - Return the next object and advance the iterator 849 * @iter: Hash table iterator 850 * 851 * Note that you must call rhashtable_walk_stop when you are finished 852 * with the walk. 853 * 854 * Returns the next object or NULL when the end of the table is reached. 855 * 856 * Returns -EAGAIN if resize event occurred. Note that the iterator 857 * will rewind back to the beginning and you may continue to use it. 858 */ 859 void *rhashtable_walk_next(struct rhashtable_iter *iter) 860 { 861 struct rhlist_head *list = iter->list; 862 struct rhashtable *ht = iter->ht; 863 struct rhash_head *p = iter->p; 864 bool rhlist = ht->rhlist; 865 866 if (p) { 867 if (!rhlist || !(list = rcu_dereference(list->next))) { 868 p = rcu_dereference(p->next); 869 list = container_of(p, struct rhlist_head, rhead); 870 } 871 if (!rht_is_a_nulls(p)) { 872 iter->skip++; 873 iter->p = p; 874 iter->list = list; 875 return rht_obj(ht, rhlist ? &list->rhead : p); 876 } 877 878 /* At the end of this slot, switch to next one and then find 879 * next entry from that point. 880 */ 881 iter->skip = 0; 882 iter->slot++; 883 } 884 885 return __rhashtable_walk_find_next(iter); 886 } 887 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 888 889 /** 890 * rhashtable_walk_peek - Return the next object but don't advance the iterator 891 * @iter: Hash table iterator 892 * 893 * Returns the next object or NULL when the end of the table is reached. 894 * 895 * Returns -EAGAIN if resize event occurred. Note that the iterator 896 * will rewind back to the beginning and you may continue to use it. 897 */ 898 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 899 { 900 struct rhlist_head *list = iter->list; 901 struct rhashtable *ht = iter->ht; 902 struct rhash_head *p = iter->p; 903 904 if (p) 905 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 906 907 /* No object found in current iter, find next one in the table. */ 908 909 if (iter->skip) { 910 /* A nonzero skip value points to the next entry in the table 911 * beyond that last one that was found. Decrement skip so 912 * we find the current value. __rhashtable_walk_find_next 913 * will restore the original value of skip assuming that 914 * the table hasn't changed. 915 */ 916 iter->skip--; 917 } 918 919 return __rhashtable_walk_find_next(iter); 920 } 921 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 922 923 /** 924 * rhashtable_walk_stop - Finish a hash table walk 925 * @iter: Hash table iterator 926 * 927 * Finish a hash table walk. Does not reset the iterator to the start of the 928 * hash table. 929 */ 930 void rhashtable_walk_stop(struct rhashtable_iter *iter) 931 __releases(RCU) 932 { 933 struct rhashtable *ht; 934 struct bucket_table *tbl = iter->walker.tbl; 935 936 if (!tbl) 937 goto out; 938 939 ht = iter->ht; 940 941 spin_lock(&ht->lock); 942 if (tbl->rehash < tbl->size) 943 list_add(&iter->walker.list, &tbl->walkers); 944 else 945 iter->walker.tbl = NULL; 946 spin_unlock(&ht->lock); 947 948 out: 949 rcu_read_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 952 953 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 954 { 955 size_t retsize; 956 957 if (params->nelem_hint) 958 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 959 (unsigned long)params->min_size); 960 else 961 retsize = max(HASH_DEFAULT_SIZE, 962 (unsigned long)params->min_size); 963 964 return retsize; 965 } 966 967 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 968 { 969 return jhash2(key, length, seed); 970 } 971 972 /** 973 * rhashtable_init - initialize a new hash table 974 * @ht: hash table to be initialized 975 * @params: configuration parameters 976 * 977 * Initializes a new hash table based on the provided configuration 978 * parameters. A table can be configured either with a variable or 979 * fixed length key: 980 * 981 * Configuration Example 1: Fixed length keys 982 * struct test_obj { 983 * int key; 984 * void * my_member; 985 * struct rhash_head node; 986 * }; 987 * 988 * struct rhashtable_params params = { 989 * .head_offset = offsetof(struct test_obj, node), 990 * .key_offset = offsetof(struct test_obj, key), 991 * .key_len = sizeof(int), 992 * .hashfn = jhash, 993 * }; 994 * 995 * Configuration Example 2: Variable length keys 996 * struct test_obj { 997 * [...] 998 * struct rhash_head node; 999 * }; 1000 * 1001 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 1002 * { 1003 * struct test_obj *obj = data; 1004 * 1005 * return [... hash ...]; 1006 * } 1007 * 1008 * struct rhashtable_params params = { 1009 * .head_offset = offsetof(struct test_obj, node), 1010 * .hashfn = jhash, 1011 * .obj_hashfn = my_hash_fn, 1012 * }; 1013 */ 1014 int rhashtable_init(struct rhashtable *ht, 1015 const struct rhashtable_params *params) 1016 { 1017 struct bucket_table *tbl; 1018 size_t size; 1019 1020 if ((!params->key_len && !params->obj_hashfn) || 1021 (params->obj_hashfn && !params->obj_cmpfn)) 1022 return -EINVAL; 1023 1024 memset(ht, 0, sizeof(*ht)); 1025 mutex_init(&ht->mutex); 1026 spin_lock_init(&ht->lock); 1027 memcpy(&ht->p, params, sizeof(*params)); 1028 1029 if (params->min_size) 1030 ht->p.min_size = roundup_pow_of_two(params->min_size); 1031 1032 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1033 ht->max_elems = 1u << 31; 1034 1035 if (params->max_size) { 1036 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1037 if (ht->p.max_size < ht->max_elems / 2) 1038 ht->max_elems = ht->p.max_size * 2; 1039 } 1040 1041 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1042 1043 size = rounded_hashtable_size(&ht->p); 1044 1045 if (params->locks_mul) 1046 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 1047 else 1048 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 1049 1050 ht->key_len = ht->p.key_len; 1051 if (!params->hashfn) { 1052 ht->p.hashfn = jhash; 1053 1054 if (!(ht->key_len & (sizeof(u32) - 1))) { 1055 ht->key_len /= sizeof(u32); 1056 ht->p.hashfn = rhashtable_jhash2; 1057 } 1058 } 1059 1060 /* 1061 * This is api initialization and thus we need to guarantee the 1062 * initial rhashtable allocation. Upon failure, retry with the 1063 * smallest possible size with __GFP_NOFAIL semantics. 1064 */ 1065 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1066 if (unlikely(tbl == NULL)) { 1067 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1068 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); 1069 } 1070 1071 atomic_set(&ht->nelems, 0); 1072 1073 RCU_INIT_POINTER(ht->tbl, tbl); 1074 1075 INIT_WORK(&ht->run_work, rht_deferred_worker); 1076 1077 return 0; 1078 } 1079 EXPORT_SYMBOL_GPL(rhashtable_init); 1080 1081 /** 1082 * rhltable_init - initialize a new hash list table 1083 * @hlt: hash list table to be initialized 1084 * @params: configuration parameters 1085 * 1086 * Initializes a new hash list table. 1087 * 1088 * See documentation for rhashtable_init. 1089 */ 1090 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) 1091 { 1092 int err; 1093 1094 err = rhashtable_init(&hlt->ht, params); 1095 hlt->ht.rhlist = true; 1096 return err; 1097 } 1098 EXPORT_SYMBOL_GPL(rhltable_init); 1099 1100 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1101 void (*free_fn)(void *ptr, void *arg), 1102 void *arg) 1103 { 1104 struct rhlist_head *list; 1105 1106 if (!ht->rhlist) { 1107 free_fn(rht_obj(ht, obj), arg); 1108 return; 1109 } 1110 1111 list = container_of(obj, struct rhlist_head, rhead); 1112 do { 1113 obj = &list->rhead; 1114 list = rht_dereference(list->next, ht); 1115 free_fn(rht_obj(ht, obj), arg); 1116 } while (list); 1117 } 1118 1119 /** 1120 * rhashtable_free_and_destroy - free elements and destroy hash table 1121 * @ht: the hash table to destroy 1122 * @free_fn: callback to release resources of element 1123 * @arg: pointer passed to free_fn 1124 * 1125 * Stops an eventual async resize. If defined, invokes free_fn for each 1126 * element to releasal resources. Please note that RCU protected 1127 * readers may still be accessing the elements. Releasing of resources 1128 * must occur in a compatible manner. Then frees the bucket array. 1129 * 1130 * This function will eventually sleep to wait for an async resize 1131 * to complete. The caller is responsible that no further write operations 1132 * occurs in parallel. 1133 */ 1134 void rhashtable_free_and_destroy(struct rhashtable *ht, 1135 void (*free_fn)(void *ptr, void *arg), 1136 void *arg) 1137 { 1138 struct bucket_table *tbl, *next_tbl; 1139 unsigned int i; 1140 1141 cancel_work_sync(&ht->run_work); 1142 1143 mutex_lock(&ht->mutex); 1144 tbl = rht_dereference(ht->tbl, ht); 1145 restart: 1146 if (free_fn) { 1147 for (i = 0; i < tbl->size; i++) { 1148 struct rhash_head *pos, *next; 1149 1150 cond_resched(); 1151 for (pos = rht_dereference(*rht_bucket(tbl, i), ht), 1152 next = !rht_is_a_nulls(pos) ? 1153 rht_dereference(pos->next, ht) : NULL; 1154 !rht_is_a_nulls(pos); 1155 pos = next, 1156 next = !rht_is_a_nulls(pos) ? 1157 rht_dereference(pos->next, ht) : NULL) 1158 rhashtable_free_one(ht, pos, free_fn, arg); 1159 } 1160 } 1161 1162 next_tbl = rht_dereference(tbl->future_tbl, ht); 1163 bucket_table_free(tbl); 1164 if (next_tbl) { 1165 tbl = next_tbl; 1166 goto restart; 1167 } 1168 mutex_unlock(&ht->mutex); 1169 } 1170 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1171 1172 void rhashtable_destroy(struct rhashtable *ht) 1173 { 1174 return rhashtable_free_and_destroy(ht, NULL, NULL); 1175 } 1176 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1177 1178 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl, 1179 unsigned int hash) 1180 { 1181 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1182 static struct rhash_head __rcu *rhnull; 1183 unsigned int index = hash & ((1 << tbl->nest) - 1); 1184 unsigned int size = tbl->size >> tbl->nest; 1185 unsigned int subhash = hash; 1186 union nested_table *ntbl; 1187 1188 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1189 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1190 subhash >>= tbl->nest; 1191 1192 while (ntbl && size > (1 << shift)) { 1193 index = subhash & ((1 << shift) - 1); 1194 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1195 tbl, hash); 1196 size >>= shift; 1197 subhash >>= shift; 1198 } 1199 1200 if (!ntbl) { 1201 if (!rhnull) 1202 INIT_RHT_NULLS_HEAD(rhnull); 1203 return &rhnull; 1204 } 1205 1206 return &ntbl[subhash].bucket; 1207 1208 } 1209 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1210 1211 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht, 1212 struct bucket_table *tbl, 1213 unsigned int hash) 1214 { 1215 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1216 unsigned int index = hash & ((1 << tbl->nest) - 1); 1217 unsigned int size = tbl->size >> tbl->nest; 1218 union nested_table *ntbl; 1219 1220 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1221 hash >>= tbl->nest; 1222 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1223 size <= (1 << shift)); 1224 1225 while (ntbl && size > (1 << shift)) { 1226 index = hash & ((1 << shift) - 1); 1227 size >>= shift; 1228 hash >>= shift; 1229 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1230 size <= (1 << shift)); 1231 } 1232 1233 if (!ntbl) 1234 return NULL; 1235 1236 return &ntbl[hash].bucket; 1237 1238 } 1239 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1240