xref: /openbmc/linux/lib/rhashtable.c (revision a36954f5)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
68 
69 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
70 			      gfp_t gfp)
71 {
72 	unsigned int i, size;
73 #if defined(CONFIG_PROVE_LOCKING)
74 	unsigned int nr_pcpus = 2;
75 #else
76 	unsigned int nr_pcpus = num_possible_cpus();
77 #endif
78 
79 	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
80 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
81 
82 	/* Never allocate more than 0.5 locks per bucket */
83 	size = min_t(unsigned int, size, tbl->size >> 1);
84 
85 	if (tbl->nest)
86 		size = min(size, 1U << tbl->nest);
87 
88 	if (sizeof(spinlock_t) != 0) {
89 		if (gfpflags_allow_blocking(gfp))
90 			tbl->locks = kvmalloc(size * sizeof(spinlock_t), gfp);
91 		else
92 			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
93 						   gfp);
94 		if (!tbl->locks)
95 			return -ENOMEM;
96 		for (i = 0; i < size; i++)
97 			spin_lock_init(&tbl->locks[i]);
98 	}
99 	tbl->locks_mask = size - 1;
100 
101 	return 0;
102 }
103 
104 static void nested_table_free(union nested_table *ntbl, unsigned int size)
105 {
106 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
107 	const unsigned int len = 1 << shift;
108 	unsigned int i;
109 
110 	ntbl = rcu_dereference_raw(ntbl->table);
111 	if (!ntbl)
112 		return;
113 
114 	if (size > len) {
115 		size >>= shift;
116 		for (i = 0; i < len; i++)
117 			nested_table_free(ntbl + i, size);
118 	}
119 
120 	kfree(ntbl);
121 }
122 
123 static void nested_bucket_table_free(const struct bucket_table *tbl)
124 {
125 	unsigned int size = tbl->size >> tbl->nest;
126 	unsigned int len = 1 << tbl->nest;
127 	union nested_table *ntbl;
128 	unsigned int i;
129 
130 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
131 
132 	for (i = 0; i < len; i++)
133 		nested_table_free(ntbl + i, size);
134 
135 	kfree(ntbl);
136 }
137 
138 static void bucket_table_free(const struct bucket_table *tbl)
139 {
140 	if (tbl->nest)
141 		nested_bucket_table_free(tbl);
142 
143 	kvfree(tbl->locks);
144 	kvfree(tbl);
145 }
146 
147 static void bucket_table_free_rcu(struct rcu_head *head)
148 {
149 	bucket_table_free(container_of(head, struct bucket_table, rcu));
150 }
151 
152 static union nested_table *nested_table_alloc(struct rhashtable *ht,
153 					      union nested_table __rcu **prev,
154 					      unsigned int shifted,
155 					      unsigned int nhash)
156 {
157 	union nested_table *ntbl;
158 	int i;
159 
160 	ntbl = rcu_dereference(*prev);
161 	if (ntbl)
162 		return ntbl;
163 
164 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
165 
166 	if (ntbl && shifted) {
167 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
168 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
169 					    (i << shifted) | nhash);
170 	}
171 
172 	rcu_assign_pointer(*prev, ntbl);
173 
174 	return ntbl;
175 }
176 
177 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
178 						      size_t nbuckets,
179 						      gfp_t gfp)
180 {
181 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
182 	struct bucket_table *tbl;
183 	size_t size;
184 
185 	if (nbuckets < (1 << (shift + 1)))
186 		return NULL;
187 
188 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
189 
190 	tbl = kzalloc(size, gfp);
191 	if (!tbl)
192 		return NULL;
193 
194 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
195 				0, 0)) {
196 		kfree(tbl);
197 		return NULL;
198 	}
199 
200 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
201 
202 	return tbl;
203 }
204 
205 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
206 					       size_t nbuckets,
207 					       gfp_t gfp)
208 {
209 	struct bucket_table *tbl = NULL;
210 	size_t size;
211 	int i;
212 
213 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
214 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
215 	    gfp != GFP_KERNEL)
216 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
217 	if (tbl == NULL && gfp == GFP_KERNEL)
218 		tbl = vzalloc(size);
219 
220 	size = nbuckets;
221 
222 	if (tbl == NULL && gfp != GFP_KERNEL) {
223 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
224 		nbuckets = 0;
225 	}
226 	if (tbl == NULL)
227 		return NULL;
228 
229 	tbl->size = size;
230 
231 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
232 		bucket_table_free(tbl);
233 		return NULL;
234 	}
235 
236 	INIT_LIST_HEAD(&tbl->walkers);
237 
238 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
239 
240 	for (i = 0; i < nbuckets; i++)
241 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
242 
243 	return tbl;
244 }
245 
246 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
247 						  struct bucket_table *tbl)
248 {
249 	struct bucket_table *new_tbl;
250 
251 	do {
252 		new_tbl = tbl;
253 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
254 	} while (tbl);
255 
256 	return new_tbl;
257 }
258 
259 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
260 {
261 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
262 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
263 		rht_dereference_rcu(old_tbl->future_tbl, ht));
264 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
265 	int err = -EAGAIN;
266 	struct rhash_head *head, *next, *entry;
267 	spinlock_t *new_bucket_lock;
268 	unsigned int new_hash;
269 
270 	if (new_tbl->nest)
271 		goto out;
272 
273 	err = -ENOENT;
274 
275 	rht_for_each(entry, old_tbl, old_hash) {
276 		err = 0;
277 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
278 
279 		if (rht_is_a_nulls(next))
280 			break;
281 
282 		pprev = &entry->next;
283 	}
284 
285 	if (err)
286 		goto out;
287 
288 	new_hash = head_hashfn(ht, new_tbl, entry);
289 
290 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
291 
292 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
293 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
294 				      new_tbl, new_hash);
295 
296 	RCU_INIT_POINTER(entry->next, head);
297 
298 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
299 	spin_unlock(new_bucket_lock);
300 
301 	rcu_assign_pointer(*pprev, next);
302 
303 out:
304 	return err;
305 }
306 
307 static int rhashtable_rehash_chain(struct rhashtable *ht,
308 				    unsigned int old_hash)
309 {
310 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
311 	spinlock_t *old_bucket_lock;
312 	int err;
313 
314 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
315 
316 	spin_lock_bh(old_bucket_lock);
317 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
318 		;
319 
320 	if (err == -ENOENT) {
321 		old_tbl->rehash++;
322 		err = 0;
323 	}
324 	spin_unlock_bh(old_bucket_lock);
325 
326 	return err;
327 }
328 
329 static int rhashtable_rehash_attach(struct rhashtable *ht,
330 				    struct bucket_table *old_tbl,
331 				    struct bucket_table *new_tbl)
332 {
333 	/* Protect future_tbl using the first bucket lock. */
334 	spin_lock_bh(old_tbl->locks);
335 
336 	/* Did somebody beat us to it? */
337 	if (rcu_access_pointer(old_tbl->future_tbl)) {
338 		spin_unlock_bh(old_tbl->locks);
339 		return -EEXIST;
340 	}
341 
342 	/* Make insertions go into the new, empty table right away. Deletions
343 	 * and lookups will be attempted in both tables until we synchronize.
344 	 */
345 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
346 
347 	spin_unlock_bh(old_tbl->locks);
348 
349 	return 0;
350 }
351 
352 static int rhashtable_rehash_table(struct rhashtable *ht)
353 {
354 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
355 	struct bucket_table *new_tbl;
356 	struct rhashtable_walker *walker;
357 	unsigned int old_hash;
358 	int err;
359 
360 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
361 	if (!new_tbl)
362 		return 0;
363 
364 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
365 		err = rhashtable_rehash_chain(ht, old_hash);
366 		if (err)
367 			return err;
368 	}
369 
370 	/* Publish the new table pointer. */
371 	rcu_assign_pointer(ht->tbl, new_tbl);
372 
373 	spin_lock(&ht->lock);
374 	list_for_each_entry(walker, &old_tbl->walkers, list)
375 		walker->tbl = NULL;
376 	spin_unlock(&ht->lock);
377 
378 	/* Wait for readers. All new readers will see the new
379 	 * table, and thus no references to the old table will
380 	 * remain.
381 	 */
382 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
383 
384 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
385 }
386 
387 static int rhashtable_rehash_alloc(struct rhashtable *ht,
388 				   struct bucket_table *old_tbl,
389 				   unsigned int size)
390 {
391 	struct bucket_table *new_tbl;
392 	int err;
393 
394 	ASSERT_RHT_MUTEX(ht);
395 
396 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
397 	if (new_tbl == NULL)
398 		return -ENOMEM;
399 
400 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
401 	if (err)
402 		bucket_table_free(new_tbl);
403 
404 	return err;
405 }
406 
407 /**
408  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
409  * @ht:		the hash table to shrink
410  *
411  * This function shrinks the hash table to fit, i.e., the smallest
412  * size would not cause it to expand right away automatically.
413  *
414  * The caller must ensure that no concurrent resizing occurs by holding
415  * ht->mutex.
416  *
417  * The caller must ensure that no concurrent table mutations take place.
418  * It is however valid to have concurrent lookups if they are RCU protected.
419  *
420  * It is valid to have concurrent insertions and deletions protected by per
421  * bucket locks or concurrent RCU protected lookups and traversals.
422  */
423 static int rhashtable_shrink(struct rhashtable *ht)
424 {
425 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
426 	unsigned int nelems = atomic_read(&ht->nelems);
427 	unsigned int size = 0;
428 
429 	if (nelems)
430 		size = roundup_pow_of_two(nelems * 3 / 2);
431 	if (size < ht->p.min_size)
432 		size = ht->p.min_size;
433 
434 	if (old_tbl->size <= size)
435 		return 0;
436 
437 	if (rht_dereference(old_tbl->future_tbl, ht))
438 		return -EEXIST;
439 
440 	return rhashtable_rehash_alloc(ht, old_tbl, size);
441 }
442 
443 static void rht_deferred_worker(struct work_struct *work)
444 {
445 	struct rhashtable *ht;
446 	struct bucket_table *tbl;
447 	int err = 0;
448 
449 	ht = container_of(work, struct rhashtable, run_work);
450 	mutex_lock(&ht->mutex);
451 
452 	tbl = rht_dereference(ht->tbl, ht);
453 	tbl = rhashtable_last_table(ht, tbl);
454 
455 	if (rht_grow_above_75(ht, tbl))
456 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
457 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
458 		err = rhashtable_shrink(ht);
459 	else if (tbl->nest)
460 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
461 
462 	if (!err)
463 		err = rhashtable_rehash_table(ht);
464 
465 	mutex_unlock(&ht->mutex);
466 
467 	if (err)
468 		schedule_work(&ht->run_work);
469 }
470 
471 static int rhashtable_insert_rehash(struct rhashtable *ht,
472 				    struct bucket_table *tbl)
473 {
474 	struct bucket_table *old_tbl;
475 	struct bucket_table *new_tbl;
476 	unsigned int size;
477 	int err;
478 
479 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
480 
481 	size = tbl->size;
482 
483 	err = -EBUSY;
484 
485 	if (rht_grow_above_75(ht, tbl))
486 		size *= 2;
487 	/* Do not schedule more than one rehash */
488 	else if (old_tbl != tbl)
489 		goto fail;
490 
491 	err = -ENOMEM;
492 
493 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
494 	if (new_tbl == NULL)
495 		goto fail;
496 
497 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
498 	if (err) {
499 		bucket_table_free(new_tbl);
500 		if (err == -EEXIST)
501 			err = 0;
502 	} else
503 		schedule_work(&ht->run_work);
504 
505 	return err;
506 
507 fail:
508 	/* Do not fail the insert if someone else did a rehash. */
509 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
510 		return 0;
511 
512 	/* Schedule async rehash to retry allocation in process context. */
513 	if (err == -ENOMEM)
514 		schedule_work(&ht->run_work);
515 
516 	return err;
517 }
518 
519 static void *rhashtable_lookup_one(struct rhashtable *ht,
520 				   struct bucket_table *tbl, unsigned int hash,
521 				   const void *key, struct rhash_head *obj)
522 {
523 	struct rhashtable_compare_arg arg = {
524 		.ht = ht,
525 		.key = key,
526 	};
527 	struct rhash_head __rcu **pprev;
528 	struct rhash_head *head;
529 	int elasticity;
530 
531 	elasticity = RHT_ELASTICITY;
532 	pprev = rht_bucket_var(tbl, hash);
533 	rht_for_each_continue(head, *pprev, tbl, hash) {
534 		struct rhlist_head *list;
535 		struct rhlist_head *plist;
536 
537 		elasticity--;
538 		if (!key ||
539 		    (ht->p.obj_cmpfn ?
540 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
541 		     rhashtable_compare(&arg, rht_obj(ht, head))))
542 			continue;
543 
544 		if (!ht->rhlist)
545 			return rht_obj(ht, head);
546 
547 		list = container_of(obj, struct rhlist_head, rhead);
548 		plist = container_of(head, struct rhlist_head, rhead);
549 
550 		RCU_INIT_POINTER(list->next, plist);
551 		head = rht_dereference_bucket(head->next, tbl, hash);
552 		RCU_INIT_POINTER(list->rhead.next, head);
553 		rcu_assign_pointer(*pprev, obj);
554 
555 		return NULL;
556 	}
557 
558 	if (elasticity <= 0)
559 		return ERR_PTR(-EAGAIN);
560 
561 	return ERR_PTR(-ENOENT);
562 }
563 
564 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
565 						  struct bucket_table *tbl,
566 						  unsigned int hash,
567 						  struct rhash_head *obj,
568 						  void *data)
569 {
570 	struct rhash_head __rcu **pprev;
571 	struct bucket_table *new_tbl;
572 	struct rhash_head *head;
573 
574 	if (!IS_ERR_OR_NULL(data))
575 		return ERR_PTR(-EEXIST);
576 
577 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
578 		return ERR_CAST(data);
579 
580 	new_tbl = rcu_dereference(tbl->future_tbl);
581 	if (new_tbl)
582 		return new_tbl;
583 
584 	if (PTR_ERR(data) != -ENOENT)
585 		return ERR_CAST(data);
586 
587 	if (unlikely(rht_grow_above_max(ht, tbl)))
588 		return ERR_PTR(-E2BIG);
589 
590 	if (unlikely(rht_grow_above_100(ht, tbl)))
591 		return ERR_PTR(-EAGAIN);
592 
593 	pprev = rht_bucket_insert(ht, tbl, hash);
594 	if (!pprev)
595 		return ERR_PTR(-ENOMEM);
596 
597 	head = rht_dereference_bucket(*pprev, tbl, hash);
598 
599 	RCU_INIT_POINTER(obj->next, head);
600 	if (ht->rhlist) {
601 		struct rhlist_head *list;
602 
603 		list = container_of(obj, struct rhlist_head, rhead);
604 		RCU_INIT_POINTER(list->next, NULL);
605 	}
606 
607 	rcu_assign_pointer(*pprev, obj);
608 
609 	atomic_inc(&ht->nelems);
610 	if (rht_grow_above_75(ht, tbl))
611 		schedule_work(&ht->run_work);
612 
613 	return NULL;
614 }
615 
616 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
617 				   struct rhash_head *obj)
618 {
619 	struct bucket_table *new_tbl;
620 	struct bucket_table *tbl;
621 	unsigned int hash;
622 	spinlock_t *lock;
623 	void *data;
624 
625 	tbl = rcu_dereference(ht->tbl);
626 
627 	/* All insertions must grab the oldest table containing
628 	 * the hashed bucket that is yet to be rehashed.
629 	 */
630 	for (;;) {
631 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
632 		lock = rht_bucket_lock(tbl, hash);
633 		spin_lock_bh(lock);
634 
635 		if (tbl->rehash <= hash)
636 			break;
637 
638 		spin_unlock_bh(lock);
639 		tbl = rcu_dereference(tbl->future_tbl);
640 	}
641 
642 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
643 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
644 	if (PTR_ERR(new_tbl) != -EEXIST)
645 		data = ERR_CAST(new_tbl);
646 
647 	while (!IS_ERR_OR_NULL(new_tbl)) {
648 		tbl = new_tbl;
649 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
650 		spin_lock_nested(rht_bucket_lock(tbl, hash),
651 				 SINGLE_DEPTH_NESTING);
652 
653 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
654 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
655 		if (PTR_ERR(new_tbl) != -EEXIST)
656 			data = ERR_CAST(new_tbl);
657 
658 		spin_unlock(rht_bucket_lock(tbl, hash));
659 	}
660 
661 	spin_unlock_bh(lock);
662 
663 	if (PTR_ERR(data) == -EAGAIN)
664 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
665 			       -EAGAIN);
666 
667 	return data;
668 }
669 
670 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
671 			     struct rhash_head *obj)
672 {
673 	void *data;
674 
675 	do {
676 		rcu_read_lock();
677 		data = rhashtable_try_insert(ht, key, obj);
678 		rcu_read_unlock();
679 	} while (PTR_ERR(data) == -EAGAIN);
680 
681 	return data;
682 }
683 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
684 
685 /**
686  * rhashtable_walk_enter - Initialise an iterator
687  * @ht:		Table to walk over
688  * @iter:	Hash table Iterator
689  *
690  * This function prepares a hash table walk.
691  *
692  * Note that if you restart a walk after rhashtable_walk_stop you
693  * may see the same object twice.  Also, you may miss objects if
694  * there are removals in between rhashtable_walk_stop and the next
695  * call to rhashtable_walk_start.
696  *
697  * For a completely stable walk you should construct your own data
698  * structure outside the hash table.
699  *
700  * This function may sleep so you must not call it from interrupt
701  * context or with spin locks held.
702  *
703  * You must call rhashtable_walk_exit after this function returns.
704  */
705 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
706 {
707 	iter->ht = ht;
708 	iter->p = NULL;
709 	iter->slot = 0;
710 	iter->skip = 0;
711 
712 	spin_lock(&ht->lock);
713 	iter->walker.tbl =
714 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
715 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
716 	spin_unlock(&ht->lock);
717 }
718 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
719 
720 /**
721  * rhashtable_walk_exit - Free an iterator
722  * @iter:	Hash table Iterator
723  *
724  * This function frees resources allocated by rhashtable_walk_init.
725  */
726 void rhashtable_walk_exit(struct rhashtable_iter *iter)
727 {
728 	spin_lock(&iter->ht->lock);
729 	if (iter->walker.tbl)
730 		list_del(&iter->walker.list);
731 	spin_unlock(&iter->ht->lock);
732 }
733 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
734 
735 /**
736  * rhashtable_walk_start - Start a hash table walk
737  * @iter:	Hash table iterator
738  *
739  * Start a hash table walk.  Note that we take the RCU lock in all
740  * cases including when we return an error.  So you must always call
741  * rhashtable_walk_stop to clean up.
742  *
743  * Returns zero if successful.
744  *
745  * Returns -EAGAIN if resize event occured.  Note that the iterator
746  * will rewind back to the beginning and you may use it immediately
747  * by calling rhashtable_walk_next.
748  */
749 int rhashtable_walk_start(struct rhashtable_iter *iter)
750 	__acquires(RCU)
751 {
752 	struct rhashtable *ht = iter->ht;
753 
754 	rcu_read_lock();
755 
756 	spin_lock(&ht->lock);
757 	if (iter->walker.tbl)
758 		list_del(&iter->walker.list);
759 	spin_unlock(&ht->lock);
760 
761 	if (!iter->walker.tbl) {
762 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
763 		return -EAGAIN;
764 	}
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
769 
770 /**
771  * rhashtable_walk_next - Return the next object and advance the iterator
772  * @iter:	Hash table iterator
773  *
774  * Note that you must call rhashtable_walk_stop when you are finished
775  * with the walk.
776  *
777  * Returns the next object or NULL when the end of the table is reached.
778  *
779  * Returns -EAGAIN if resize event occured.  Note that the iterator
780  * will rewind back to the beginning and you may continue to use it.
781  */
782 void *rhashtable_walk_next(struct rhashtable_iter *iter)
783 {
784 	struct bucket_table *tbl = iter->walker.tbl;
785 	struct rhlist_head *list = iter->list;
786 	struct rhashtable *ht = iter->ht;
787 	struct rhash_head *p = iter->p;
788 	bool rhlist = ht->rhlist;
789 
790 	if (p) {
791 		if (!rhlist || !(list = rcu_dereference(list->next))) {
792 			p = rcu_dereference(p->next);
793 			list = container_of(p, struct rhlist_head, rhead);
794 		}
795 		goto next;
796 	}
797 
798 	for (; iter->slot < tbl->size; iter->slot++) {
799 		int skip = iter->skip;
800 
801 		rht_for_each_rcu(p, tbl, iter->slot) {
802 			if (rhlist) {
803 				list = container_of(p, struct rhlist_head,
804 						    rhead);
805 				do {
806 					if (!skip)
807 						goto next;
808 					skip--;
809 					list = rcu_dereference(list->next);
810 				} while (list);
811 
812 				continue;
813 			}
814 			if (!skip)
815 				break;
816 			skip--;
817 		}
818 
819 next:
820 		if (!rht_is_a_nulls(p)) {
821 			iter->skip++;
822 			iter->p = p;
823 			iter->list = list;
824 			return rht_obj(ht, rhlist ? &list->rhead : p);
825 		}
826 
827 		iter->skip = 0;
828 	}
829 
830 	iter->p = NULL;
831 
832 	/* Ensure we see any new tables. */
833 	smp_rmb();
834 
835 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
836 	if (iter->walker.tbl) {
837 		iter->slot = 0;
838 		iter->skip = 0;
839 		return ERR_PTR(-EAGAIN);
840 	}
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
845 
846 /**
847  * rhashtable_walk_stop - Finish a hash table walk
848  * @iter:	Hash table iterator
849  *
850  * Finish a hash table walk.
851  */
852 void rhashtable_walk_stop(struct rhashtable_iter *iter)
853 	__releases(RCU)
854 {
855 	struct rhashtable *ht;
856 	struct bucket_table *tbl = iter->walker.tbl;
857 
858 	if (!tbl)
859 		goto out;
860 
861 	ht = iter->ht;
862 
863 	spin_lock(&ht->lock);
864 	if (tbl->rehash < tbl->size)
865 		list_add(&iter->walker.list, &tbl->walkers);
866 	else
867 		iter->walker.tbl = NULL;
868 	spin_unlock(&ht->lock);
869 
870 	iter->p = NULL;
871 
872 out:
873 	rcu_read_unlock();
874 }
875 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
876 
877 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
878 {
879 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
880 		   (unsigned long)params->min_size);
881 }
882 
883 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
884 {
885 	return jhash2(key, length, seed);
886 }
887 
888 /**
889  * rhashtable_init - initialize a new hash table
890  * @ht:		hash table to be initialized
891  * @params:	configuration parameters
892  *
893  * Initializes a new hash table based on the provided configuration
894  * parameters. A table can be configured either with a variable or
895  * fixed length key:
896  *
897  * Configuration Example 1: Fixed length keys
898  * struct test_obj {
899  *	int			key;
900  *	void *			my_member;
901  *	struct rhash_head	node;
902  * };
903  *
904  * struct rhashtable_params params = {
905  *	.head_offset = offsetof(struct test_obj, node),
906  *	.key_offset = offsetof(struct test_obj, key),
907  *	.key_len = sizeof(int),
908  *	.hashfn = jhash,
909  *	.nulls_base = (1U << RHT_BASE_SHIFT),
910  * };
911  *
912  * Configuration Example 2: Variable length keys
913  * struct test_obj {
914  *	[...]
915  *	struct rhash_head	node;
916  * };
917  *
918  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
919  * {
920  *	struct test_obj *obj = data;
921  *
922  *	return [... hash ...];
923  * }
924  *
925  * struct rhashtable_params params = {
926  *	.head_offset = offsetof(struct test_obj, node),
927  *	.hashfn = jhash,
928  *	.obj_hashfn = my_hash_fn,
929  * };
930  */
931 int rhashtable_init(struct rhashtable *ht,
932 		    const struct rhashtable_params *params)
933 {
934 	struct bucket_table *tbl;
935 	size_t size;
936 
937 	size = HASH_DEFAULT_SIZE;
938 
939 	if ((!params->key_len && !params->obj_hashfn) ||
940 	    (params->obj_hashfn && !params->obj_cmpfn))
941 		return -EINVAL;
942 
943 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
944 		return -EINVAL;
945 
946 	memset(ht, 0, sizeof(*ht));
947 	mutex_init(&ht->mutex);
948 	spin_lock_init(&ht->lock);
949 	memcpy(&ht->p, params, sizeof(*params));
950 
951 	if (params->min_size)
952 		ht->p.min_size = roundup_pow_of_two(params->min_size);
953 
954 	/* Cap total entries at 2^31 to avoid nelems overflow. */
955 	ht->max_elems = 1u << 31;
956 
957 	if (params->max_size) {
958 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
959 		if (ht->p.max_size < ht->max_elems / 2)
960 			ht->max_elems = ht->p.max_size * 2;
961 	}
962 
963 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
964 
965 	if (params->nelem_hint)
966 		size = rounded_hashtable_size(&ht->p);
967 
968 	if (params->locks_mul)
969 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
970 	else
971 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
972 
973 	ht->key_len = ht->p.key_len;
974 	if (!params->hashfn) {
975 		ht->p.hashfn = jhash;
976 
977 		if (!(ht->key_len & (sizeof(u32) - 1))) {
978 			ht->key_len /= sizeof(u32);
979 			ht->p.hashfn = rhashtable_jhash2;
980 		}
981 	}
982 
983 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
984 	if (tbl == NULL)
985 		return -ENOMEM;
986 
987 	atomic_set(&ht->nelems, 0);
988 
989 	RCU_INIT_POINTER(ht->tbl, tbl);
990 
991 	INIT_WORK(&ht->run_work, rht_deferred_worker);
992 
993 	return 0;
994 }
995 EXPORT_SYMBOL_GPL(rhashtable_init);
996 
997 /**
998  * rhltable_init - initialize a new hash list table
999  * @hlt:	hash list table to be initialized
1000  * @params:	configuration parameters
1001  *
1002  * Initializes a new hash list table.
1003  *
1004  * See documentation for rhashtable_init.
1005  */
1006 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1007 {
1008 	int err;
1009 
1010 	/* No rhlist NULLs marking for now. */
1011 	if (params->nulls_base)
1012 		return -EINVAL;
1013 
1014 	err = rhashtable_init(&hlt->ht, params);
1015 	hlt->ht.rhlist = true;
1016 	return err;
1017 }
1018 EXPORT_SYMBOL_GPL(rhltable_init);
1019 
1020 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1021 				void (*free_fn)(void *ptr, void *arg),
1022 				void *arg)
1023 {
1024 	struct rhlist_head *list;
1025 
1026 	if (!ht->rhlist) {
1027 		free_fn(rht_obj(ht, obj), arg);
1028 		return;
1029 	}
1030 
1031 	list = container_of(obj, struct rhlist_head, rhead);
1032 	do {
1033 		obj = &list->rhead;
1034 		list = rht_dereference(list->next, ht);
1035 		free_fn(rht_obj(ht, obj), arg);
1036 	} while (list);
1037 }
1038 
1039 /**
1040  * rhashtable_free_and_destroy - free elements and destroy hash table
1041  * @ht:		the hash table to destroy
1042  * @free_fn:	callback to release resources of element
1043  * @arg:	pointer passed to free_fn
1044  *
1045  * Stops an eventual async resize. If defined, invokes free_fn for each
1046  * element to releasal resources. Please note that RCU protected
1047  * readers may still be accessing the elements. Releasing of resources
1048  * must occur in a compatible manner. Then frees the bucket array.
1049  *
1050  * This function will eventually sleep to wait for an async resize
1051  * to complete. The caller is responsible that no further write operations
1052  * occurs in parallel.
1053  */
1054 void rhashtable_free_and_destroy(struct rhashtable *ht,
1055 				 void (*free_fn)(void *ptr, void *arg),
1056 				 void *arg)
1057 {
1058 	struct bucket_table *tbl;
1059 	unsigned int i;
1060 
1061 	cancel_work_sync(&ht->run_work);
1062 
1063 	mutex_lock(&ht->mutex);
1064 	tbl = rht_dereference(ht->tbl, ht);
1065 	if (free_fn) {
1066 		for (i = 0; i < tbl->size; i++) {
1067 			struct rhash_head *pos, *next;
1068 
1069 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1070 			     next = !rht_is_a_nulls(pos) ?
1071 					rht_dereference(pos->next, ht) : NULL;
1072 			     !rht_is_a_nulls(pos);
1073 			     pos = next,
1074 			     next = !rht_is_a_nulls(pos) ?
1075 					rht_dereference(pos->next, ht) : NULL)
1076 				rhashtable_free_one(ht, pos, free_fn, arg);
1077 		}
1078 	}
1079 
1080 	bucket_table_free(tbl);
1081 	mutex_unlock(&ht->mutex);
1082 }
1083 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1084 
1085 void rhashtable_destroy(struct rhashtable *ht)
1086 {
1087 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1088 }
1089 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1090 
1091 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1092 					    unsigned int hash)
1093 {
1094 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1095 	static struct rhash_head __rcu *rhnull =
1096 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1097 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1098 	unsigned int size = tbl->size >> tbl->nest;
1099 	unsigned int subhash = hash;
1100 	union nested_table *ntbl;
1101 
1102 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1103 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1104 	subhash >>= tbl->nest;
1105 
1106 	while (ntbl && size > (1 << shift)) {
1107 		index = subhash & ((1 << shift) - 1);
1108 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1109 						  tbl, hash);
1110 		size >>= shift;
1111 		subhash >>= shift;
1112 	}
1113 
1114 	if (!ntbl)
1115 		return &rhnull;
1116 
1117 	return &ntbl[subhash].bucket;
1118 
1119 }
1120 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1121 
1122 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1123 						   struct bucket_table *tbl,
1124 						   unsigned int hash)
1125 {
1126 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1127 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1128 	unsigned int size = tbl->size >> tbl->nest;
1129 	union nested_table *ntbl;
1130 	unsigned int shifted;
1131 	unsigned int nhash;
1132 
1133 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1134 	hash >>= tbl->nest;
1135 	nhash = index;
1136 	shifted = tbl->nest;
1137 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1138 				  size <= (1 << shift) ? shifted : 0, nhash);
1139 
1140 	while (ntbl && size > (1 << shift)) {
1141 		index = hash & ((1 << shift) - 1);
1142 		size >>= shift;
1143 		hash >>= shift;
1144 		nhash |= index << shifted;
1145 		shifted += shift;
1146 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1147 					  size <= (1 << shift) ? shifted : 0,
1148 					  nhash);
1149 	}
1150 
1151 	if (!ntbl)
1152 		return NULL;
1153 
1154 	return &ntbl[hash].bucket;
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1158