xref: /openbmc/linux/lib/rhashtable.c (revision 92a2c6b2)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on the following paper:
8  * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9  *
10  * Code partially derived from nft_hash
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/jhash.h>
24 #include <linux/random.h>
25 #include <linux/rhashtable.h>
26 #include <linux/err.h>
27 
28 #define HASH_DEFAULT_SIZE	64UL
29 #define HASH_MIN_SIZE		4UL
30 #define BUCKET_LOCKS_PER_CPU   128UL
31 
32 /* Base bits plus 1 bit for nulls marker */
33 #define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)
34 
35 enum {
36 	RHT_LOCK_NORMAL,
37 	RHT_LOCK_NESTED,
38 };
39 
40 /* The bucket lock is selected based on the hash and protects mutations
41  * on a group of hash buckets.
42  *
43  * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
44  * a single lock always covers both buckets which may both contains
45  * entries which link to the same bucket of the old table during resizing.
46  * This allows to simplify the locking as locking the bucket in both
47  * tables during resize always guarantee protection.
48  *
49  * IMPORTANT: When holding the bucket lock of both the old and new table
50  * during expansions and shrinking, the old bucket lock must always be
51  * acquired first.
52  */
53 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
54 {
55 	return &tbl->locks[hash & tbl->locks_mask];
56 }
57 
58 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
59 {
60 	return (void *) he - ht->p.head_offset;
61 }
62 
63 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
64 {
65 	return hash & (tbl->size - 1);
66 }
67 
68 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
69 {
70 	u32 hash;
71 
72 	if (unlikely(!ht->p.key_len))
73 		hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
74 	else
75 		hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
76 				    ht->p.hash_rnd);
77 
78 	return hash >> HASH_RESERVED_SPACE;
79 }
80 
81 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
82 {
83 	return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
84 }
85 
86 static u32 head_hashfn(const struct rhashtable *ht,
87 		       const struct bucket_table *tbl,
88 		       const struct rhash_head *he)
89 {
90 	return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
91 }
92 
93 #ifdef CONFIG_PROVE_LOCKING
94 static void debug_dump_buckets(const struct rhashtable *ht,
95 			       const struct bucket_table *tbl)
96 {
97 	struct rhash_head *he;
98 	unsigned int i, hash;
99 
100 	for (i = 0; i < tbl->size; i++) {
101 		pr_warn(" [Bucket %d] ", i);
102 		rht_for_each_rcu(he, tbl, i) {
103 			hash = head_hashfn(ht, tbl, he);
104 			pr_cont("[hash = %#x, lock = %p] ",
105 				hash, bucket_lock(tbl, hash));
106 		}
107 		pr_cont("\n");
108 	}
109 
110 }
111 
112 static void debug_dump_table(struct rhashtable *ht,
113 			     const struct bucket_table *tbl,
114 			     unsigned int hash)
115 {
116 	struct bucket_table *old_tbl, *future_tbl;
117 
118 	pr_emerg("BUG: lock for hash %#x in table %p not held\n",
119 		 hash, tbl);
120 
121 	rcu_read_lock();
122 	future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
123 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
124 	if (future_tbl != old_tbl) {
125 		pr_warn("Future table %p (size: %zd)\n",
126 			future_tbl, future_tbl->size);
127 		debug_dump_buckets(ht, future_tbl);
128 	}
129 
130 	pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
131 	debug_dump_buckets(ht, old_tbl);
132 
133 	rcu_read_unlock();
134 }
135 
136 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
137 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)				\
138 	do {								\
139 		if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) {	\
140 			debug_dump_table(HT, TBL, HASH);		\
141 			BUG();						\
142 		}							\
143 	} while (0)
144 
145 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
146 {
147 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
148 }
149 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
150 
151 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
152 {
153 	spinlock_t *lock = bucket_lock(tbl, hash);
154 
155 	return (debug_locks) ? lockdep_is_held(lock) : 1;
156 }
157 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
158 #else
159 #define ASSERT_RHT_MUTEX(HT)
160 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
161 #endif
162 
163 
164 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
165 {
166 	struct rhash_head __rcu **pprev;
167 
168 	for (pprev = &tbl->buckets[n];
169 	     !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
170 	     pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
171 		;
172 
173 	return pprev;
174 }
175 
176 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
177 {
178 	unsigned int i, size;
179 #if defined(CONFIG_PROVE_LOCKING)
180 	unsigned int nr_pcpus = 2;
181 #else
182 	unsigned int nr_pcpus = num_possible_cpus();
183 #endif
184 
185 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
186 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
187 
188 	/* Never allocate more than 0.5 locks per bucket */
189 	size = min_t(unsigned int, size, tbl->size >> 1);
190 
191 	if (sizeof(spinlock_t) != 0) {
192 #ifdef CONFIG_NUMA
193 		if (size * sizeof(spinlock_t) > PAGE_SIZE)
194 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
195 		else
196 #endif
197 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
198 					   GFP_KERNEL);
199 		if (!tbl->locks)
200 			return -ENOMEM;
201 		for (i = 0; i < size; i++)
202 			spin_lock_init(&tbl->locks[i]);
203 	}
204 	tbl->locks_mask = size - 1;
205 
206 	return 0;
207 }
208 
209 static void bucket_table_free(const struct bucket_table *tbl)
210 {
211 	if (tbl)
212 		kvfree(tbl->locks);
213 
214 	kvfree(tbl);
215 }
216 
217 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
218 					       size_t nbuckets)
219 {
220 	struct bucket_table *tbl;
221 	size_t size;
222 	int i;
223 
224 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
225 	tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
226 	if (tbl == NULL)
227 		tbl = vzalloc(size);
228 
229 	if (tbl == NULL)
230 		return NULL;
231 
232 	tbl->size = nbuckets;
233 
234 	if (alloc_bucket_locks(ht, tbl) < 0) {
235 		bucket_table_free(tbl);
236 		return NULL;
237 	}
238 
239 	for (i = 0; i < nbuckets; i++)
240 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
241 
242 	return tbl;
243 }
244 
245 /**
246  * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
247  * @ht:		hash table
248  * @new_size:	new table size
249  */
250 bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
251 {
252 	/* Expand table when exceeding 75% load */
253 	return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
254 	       (ht->p.max_shift && atomic_read(&ht->shift) < ht->p.max_shift);
255 }
256 EXPORT_SYMBOL_GPL(rht_grow_above_75);
257 
258 /**
259  * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
260  * @ht:		hash table
261  * @new_size:	new table size
262  */
263 bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
264 {
265 	/* Shrink table beneath 30% load */
266 	return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267 	       (atomic_read(&ht->shift) > ht->p.min_shift);
268 }
269 EXPORT_SYMBOL_GPL(rht_shrink_below_30);
270 
271 static void lock_buckets(struct bucket_table *new_tbl,
272 			 struct bucket_table *old_tbl, unsigned int hash)
273 	__acquires(old_bucket_lock)
274 {
275 	spin_lock_bh(bucket_lock(old_tbl, hash));
276 	if (new_tbl != old_tbl)
277 		spin_lock_bh_nested(bucket_lock(new_tbl, hash),
278 				    RHT_LOCK_NESTED);
279 }
280 
281 static void unlock_buckets(struct bucket_table *new_tbl,
282 			   struct bucket_table *old_tbl, unsigned int hash)
283 	__releases(old_bucket_lock)
284 {
285 	if (new_tbl != old_tbl)
286 		spin_unlock_bh(bucket_lock(new_tbl, hash));
287 	spin_unlock_bh(bucket_lock(old_tbl, hash));
288 }
289 
290 /**
291  * Unlink entries on bucket which hash to different bucket.
292  *
293  * Returns true if no more work needs to be performed on the bucket.
294  */
295 static bool hashtable_chain_unzip(struct rhashtable *ht,
296 				  const struct bucket_table *new_tbl,
297 				  struct bucket_table *old_tbl,
298 				  size_t old_hash)
299 {
300 	struct rhash_head *he, *p, *next;
301 	unsigned int new_hash, new_hash2;
302 
303 	ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
304 
305 	/* Old bucket empty, no work needed. */
306 	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
307 				   old_hash);
308 	if (rht_is_a_nulls(p))
309 		return false;
310 
311 	new_hash = head_hashfn(ht, new_tbl, p);
312 	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
313 
314 	/* Advance the old bucket pointer one or more times until it
315 	 * reaches a node that doesn't hash to the same bucket as the
316 	 * previous node p. Call the previous node p;
317 	 */
318 	rht_for_each_continue(he, p->next, old_tbl, old_hash) {
319 		new_hash2 = head_hashfn(ht, new_tbl, he);
320 		ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
321 
322 		if (new_hash != new_hash2)
323 			break;
324 		p = he;
325 	}
326 	rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
327 
328 	/* Find the subsequent node which does hash to the same
329 	 * bucket as node P, or NULL if no such node exists.
330 	 */
331 	INIT_RHT_NULLS_HEAD(next, ht, old_hash);
332 	if (!rht_is_a_nulls(he)) {
333 		rht_for_each_continue(he, he->next, old_tbl, old_hash) {
334 			if (head_hashfn(ht, new_tbl, he) == new_hash) {
335 				next = he;
336 				break;
337 			}
338 		}
339 	}
340 
341 	/* Set p's next pointer to that subsequent node pointer,
342 	 * bypassing the nodes which do not hash to p's bucket
343 	 */
344 	rcu_assign_pointer(p->next, next);
345 
346 	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
347 				   old_hash);
348 
349 	return !rht_is_a_nulls(p);
350 }
351 
352 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
353 			    unsigned int new_hash, struct rhash_head *entry)
354 {
355 	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
356 
357 	rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
358 }
359 
360 /**
361  * rhashtable_expand - Expand hash table while allowing concurrent lookups
362  * @ht:		the hash table to expand
363  *
364  * A secondary bucket array is allocated and the hash entries are migrated
365  * while keeping them on both lists until the end of the RCU grace period.
366  *
367  * This function may only be called in a context where it is safe to call
368  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
369  *
370  * The caller must ensure that no concurrent resizing occurs by holding
371  * ht->mutex.
372  *
373  * It is valid to have concurrent insertions and deletions protected by per
374  * bucket locks or concurrent RCU protected lookups and traversals.
375  */
376 int rhashtable_expand(struct rhashtable *ht)
377 {
378 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
379 	struct rhash_head *he;
380 	unsigned int new_hash, old_hash;
381 	bool complete = false;
382 
383 	ASSERT_RHT_MUTEX(ht);
384 
385 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
386 	if (new_tbl == NULL)
387 		return -ENOMEM;
388 
389 	atomic_inc(&ht->shift);
390 
391 	/* Make insertions go into the new, empty table right away. Deletions
392 	 * and lookups will be attempted in both tables until we synchronize.
393 	 * The synchronize_rcu() guarantees for the new table to be picked up
394 	 * so no new additions go into the old table while we relink.
395 	 */
396 	rcu_assign_pointer(ht->future_tbl, new_tbl);
397 	synchronize_rcu();
398 
399 	/* For each new bucket, search the corresponding old bucket for the
400 	 * first entry that hashes to the new bucket, and link the end of
401 	 * newly formed bucket chain (containing entries added to future
402 	 * table) to that entry. Since all the entries which will end up in
403 	 * the new bucket appear in the same old bucket, this constructs an
404 	 * entirely valid new hash table, but with multiple buckets
405 	 * "zipped" together into a single imprecise chain.
406 	 */
407 	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
408 		old_hash = rht_bucket_index(old_tbl, new_hash);
409 		lock_buckets(new_tbl, old_tbl, new_hash);
410 		rht_for_each(he, old_tbl, old_hash) {
411 			if (head_hashfn(ht, new_tbl, he) == new_hash) {
412 				link_old_to_new(ht, new_tbl, new_hash, he);
413 				break;
414 			}
415 		}
416 		unlock_buckets(new_tbl, old_tbl, new_hash);
417 	}
418 
419 	/* Unzip interleaved hash chains */
420 	while (!complete && !ht->being_destroyed) {
421 		/* Wait for readers. All new readers will see the new
422 		 * table, and thus no references to the old table will
423 		 * remain.
424 		 */
425 		synchronize_rcu();
426 
427 		/* For each bucket in the old table (each of which
428 		 * contains items from multiple buckets of the new
429 		 * table): ...
430 		 */
431 		complete = true;
432 		for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433 			lock_buckets(new_tbl, old_tbl, old_hash);
434 
435 			if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436 						  old_hash))
437 				complete = false;
438 
439 			unlock_buckets(new_tbl, old_tbl, old_hash);
440 		}
441 	}
442 
443 	rcu_assign_pointer(ht->tbl, new_tbl);
444 	synchronize_rcu();
445 
446 	bucket_table_free(old_tbl);
447 	return 0;
448 }
449 EXPORT_SYMBOL_GPL(rhashtable_expand);
450 
451 /**
452  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
453  * @ht:		the hash table to shrink
454  *
455  * This function may only be called in a context where it is safe to call
456  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
457  *
458  * The caller must ensure that no concurrent resizing occurs by holding
459  * ht->mutex.
460  *
461  * The caller must ensure that no concurrent table mutations take place.
462  * It is however valid to have concurrent lookups if they are RCU protected.
463  *
464  * It is valid to have concurrent insertions and deletions protected by per
465  * bucket locks or concurrent RCU protected lookups and traversals.
466  */
467 int rhashtable_shrink(struct rhashtable *ht)
468 {
469 	struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
470 	unsigned int new_hash;
471 
472 	ASSERT_RHT_MUTEX(ht);
473 
474 	new_tbl = bucket_table_alloc(ht, tbl->size / 2);
475 	if (new_tbl == NULL)
476 		return -ENOMEM;
477 
478 	rcu_assign_pointer(ht->future_tbl, new_tbl);
479 	synchronize_rcu();
480 
481 	/* Link the first entry in the old bucket to the end of the
482 	 * bucket in the new table. As entries are concurrently being
483 	 * added to the new table, lock down the new bucket. As we
484 	 * always divide the size in half when shrinking, each bucket
485 	 * in the new table maps to exactly two buckets in the old
486 	 * table.
487 	 */
488 	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
489 		lock_buckets(new_tbl, tbl, new_hash);
490 
491 		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
492 				   tbl->buckets[new_hash]);
493 		ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
494 		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
495 				   tbl->buckets[new_hash + new_tbl->size]);
496 
497 		unlock_buckets(new_tbl, tbl, new_hash);
498 	}
499 
500 	/* Publish the new, valid hash table */
501 	rcu_assign_pointer(ht->tbl, new_tbl);
502 	atomic_dec(&ht->shift);
503 
504 	/* Wait for readers. No new readers will have references to the
505 	 * old hash table.
506 	 */
507 	synchronize_rcu();
508 
509 	bucket_table_free(tbl);
510 
511 	return 0;
512 }
513 EXPORT_SYMBOL_GPL(rhashtable_shrink);
514 
515 static void rht_deferred_worker(struct work_struct *work)
516 {
517 	struct rhashtable *ht;
518 	struct bucket_table *tbl;
519 	struct rhashtable_walker *walker;
520 
521 	ht = container_of(work, struct rhashtable, run_work);
522 	mutex_lock(&ht->mutex);
523 	if (ht->being_destroyed)
524 		goto unlock;
525 
526 	tbl = rht_dereference(ht->tbl, ht);
527 
528 	list_for_each_entry(walker, &ht->walkers, list)
529 		walker->resize = true;
530 
531 	if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size))
532 		rhashtable_expand(ht);
533 	else if (ht->p.shrink_decision && ht->p.shrink_decision(ht, tbl->size))
534 		rhashtable_shrink(ht);
535 
536 unlock:
537 	mutex_unlock(&ht->mutex);
538 }
539 
540 static void rhashtable_wakeup_worker(struct rhashtable *ht)
541 {
542 	struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
543 	struct bucket_table *new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
544 	size_t size = tbl->size;
545 
546 	/* Only adjust the table if no resizing is currently in progress. */
547 	if (tbl == new_tbl &&
548 	    ((ht->p.grow_decision && ht->p.grow_decision(ht, size)) ||
549 	     (ht->p.shrink_decision && ht->p.shrink_decision(ht, size))))
550 		schedule_work(&ht->run_work);
551 }
552 
553 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
554 				struct bucket_table *tbl, u32 hash)
555 {
556 	struct rhash_head *head;
557 
558 	hash = rht_bucket_index(tbl, hash);
559 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
560 
561 	ASSERT_BUCKET_LOCK(ht, tbl, hash);
562 
563 	if (rht_is_a_nulls(head))
564 		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
565 	else
566 		RCU_INIT_POINTER(obj->next, head);
567 
568 	rcu_assign_pointer(tbl->buckets[hash], obj);
569 
570 	atomic_inc(&ht->nelems);
571 
572 	rhashtable_wakeup_worker(ht);
573 }
574 
575 /**
576  * rhashtable_insert - insert object into hash table
577  * @ht:		hash table
578  * @obj:	pointer to hash head inside object
579  *
580  * Will take a per bucket spinlock to protect against mutual mutations
581  * on the same bucket. Multiple insertions may occur in parallel unless
582  * they map to the same bucket lock.
583  *
584  * It is safe to call this function from atomic context.
585  *
586  * Will trigger an automatic deferred table resizing if the size grows
587  * beyond the watermark indicated by grow_decision() which can be passed
588  * to rhashtable_init().
589  */
590 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
591 {
592 	struct bucket_table *tbl, *old_tbl;
593 	unsigned hash;
594 
595 	rcu_read_lock();
596 
597 	tbl = rht_dereference_rcu(ht->future_tbl, ht);
598 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
599 	hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
600 
601 	lock_buckets(tbl, old_tbl, hash);
602 	__rhashtable_insert(ht, obj, tbl, hash);
603 	unlock_buckets(tbl, old_tbl, hash);
604 
605 	rcu_read_unlock();
606 }
607 EXPORT_SYMBOL_GPL(rhashtable_insert);
608 
609 /**
610  * rhashtable_remove - remove object from hash table
611  * @ht:		hash table
612  * @obj:	pointer to hash head inside object
613  *
614  * Since the hash chain is single linked, the removal operation needs to
615  * walk the bucket chain upon removal. The removal operation is thus
616  * considerable slow if the hash table is not correctly sized.
617  *
618  * Will automatically shrink the table via rhashtable_expand() if the
619  * shrink_decision function specified at rhashtable_init() returns true.
620  *
621  * The caller must ensure that no concurrent table mutations occur. It is
622  * however valid to have concurrent lookups if they are RCU protected.
623  */
624 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
625 {
626 	struct bucket_table *tbl, *new_tbl, *old_tbl;
627 	struct rhash_head __rcu **pprev;
628 	struct rhash_head *he, *he2;
629 	unsigned int hash, new_hash;
630 	bool ret = false;
631 
632 	rcu_read_lock();
633 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
634 	tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
635 	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
636 
637 	lock_buckets(new_tbl, old_tbl, new_hash);
638 restart:
639 	hash = rht_bucket_index(tbl, new_hash);
640 	pprev = &tbl->buckets[hash];
641 	rht_for_each(he, tbl, hash) {
642 		if (he != obj) {
643 			pprev = &he->next;
644 			continue;
645 		}
646 
647 		ASSERT_BUCKET_LOCK(ht, tbl, hash);
648 
649 		if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
650 		    !rht_is_a_nulls(obj->next) &&
651 		    head_hashfn(ht, tbl, obj->next) != hash) {
652 			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
653 		} else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
654 			rht_for_each_continue(he2, obj->next, tbl, hash) {
655 				if (head_hashfn(ht, tbl, he2) == hash) {
656 					rcu_assign_pointer(*pprev, he2);
657 					goto found;
658 				}
659 			}
660 
661 			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
662 		} else {
663 			rcu_assign_pointer(*pprev, obj->next);
664 		}
665 
666 found:
667 		ret = true;
668 		break;
669 	}
670 
671 	/* The entry may be linked in either 'tbl', 'future_tbl', or both.
672 	 * 'future_tbl' only exists for a short period of time during
673 	 * resizing. Thus traversing both is fine and the added cost is
674 	 * very rare.
675 	 */
676 	if (tbl != old_tbl) {
677 		tbl = old_tbl;
678 		goto restart;
679 	}
680 
681 	unlock_buckets(new_tbl, old_tbl, new_hash);
682 
683 	if (ret) {
684 		atomic_dec(&ht->nelems);
685 		rhashtable_wakeup_worker(ht);
686 	}
687 
688 	rcu_read_unlock();
689 
690 	return ret;
691 }
692 EXPORT_SYMBOL_GPL(rhashtable_remove);
693 
694 struct rhashtable_compare_arg {
695 	struct rhashtable *ht;
696 	const void *key;
697 };
698 
699 static bool rhashtable_compare(void *ptr, void *arg)
700 {
701 	struct rhashtable_compare_arg *x = arg;
702 	struct rhashtable *ht = x->ht;
703 
704 	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
705 }
706 
707 /**
708  * rhashtable_lookup - lookup key in hash table
709  * @ht:		hash table
710  * @key:	pointer to key
711  *
712  * Computes the hash value for the key and traverses the bucket chain looking
713  * for a entry with an identical key. The first matching entry is returned.
714  *
715  * This lookup function may only be used for fixed key hash table (key_len
716  * parameter set). It will BUG() if used inappropriately.
717  *
718  * Lookups may occur in parallel with hashtable mutations and resizing.
719  */
720 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
721 {
722 	struct rhashtable_compare_arg arg = {
723 		.ht = ht,
724 		.key = key,
725 	};
726 
727 	BUG_ON(!ht->p.key_len);
728 
729 	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
730 }
731 EXPORT_SYMBOL_GPL(rhashtable_lookup);
732 
733 /**
734  * rhashtable_lookup_compare - search hash table with compare function
735  * @ht:		hash table
736  * @key:	the pointer to the key
737  * @compare:	compare function, must return true on match
738  * @arg:	argument passed on to compare function
739  *
740  * Traverses the bucket chain behind the provided hash value and calls the
741  * specified compare function for each entry.
742  *
743  * Lookups may occur in parallel with hashtable mutations and resizing.
744  *
745  * Returns the first entry on which the compare function returned true.
746  */
747 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
748 				bool (*compare)(void *, void *), void *arg)
749 {
750 	const struct bucket_table *tbl, *old_tbl;
751 	struct rhash_head *he;
752 	u32 hash;
753 
754 	rcu_read_lock();
755 
756 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
757 	tbl = rht_dereference_rcu(ht->future_tbl, ht);
758 	hash = key_hashfn(ht, key, ht->p.key_len);
759 restart:
760 	rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
761 		if (!compare(rht_obj(ht, he), arg))
762 			continue;
763 		rcu_read_unlock();
764 		return rht_obj(ht, he);
765 	}
766 
767 	if (unlikely(tbl != old_tbl)) {
768 		tbl = old_tbl;
769 		goto restart;
770 	}
771 	rcu_read_unlock();
772 
773 	return NULL;
774 }
775 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
776 
777 /**
778  * rhashtable_lookup_insert - lookup and insert object into hash table
779  * @ht:		hash table
780  * @obj:	pointer to hash head inside object
781  *
782  * Locks down the bucket chain in both the old and new table if a resize
783  * is in progress to ensure that writers can't remove from the old table
784  * and can't insert to the new table during the atomic operation of search
785  * and insertion. Searches for duplicates in both the old and new table if
786  * a resize is in progress.
787  *
788  * This lookup function may only be used for fixed key hash table (key_len
789  * parameter set). It will BUG() if used inappropriately.
790  *
791  * It is safe to call this function from atomic context.
792  *
793  * Will trigger an automatic deferred table resizing if the size grows
794  * beyond the watermark indicated by grow_decision() which can be passed
795  * to rhashtable_init().
796  */
797 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
798 {
799 	struct rhashtable_compare_arg arg = {
800 		.ht = ht,
801 		.key = rht_obj(ht, obj) + ht->p.key_offset,
802 	};
803 
804 	BUG_ON(!ht->p.key_len);
805 
806 	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
807 						&arg);
808 }
809 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
810 
811 /**
812  * rhashtable_lookup_compare_insert - search and insert object to hash table
813  *                                    with compare function
814  * @ht:		hash table
815  * @obj:	pointer to hash head inside object
816  * @compare:	compare function, must return true on match
817  * @arg:	argument passed on to compare function
818  *
819  * Locks down the bucket chain in both the old and new table if a resize
820  * is in progress to ensure that writers can't remove from the old table
821  * and can't insert to the new table during the atomic operation of search
822  * and insertion. Searches for duplicates in both the old and new table if
823  * a resize is in progress.
824  *
825  * Lookups may occur in parallel with hashtable mutations and resizing.
826  *
827  * Will trigger an automatic deferred table resizing if the size grows
828  * beyond the watermark indicated by grow_decision() which can be passed
829  * to rhashtable_init().
830  */
831 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
832 				      struct rhash_head *obj,
833 				      bool (*compare)(void *, void *),
834 				      void *arg)
835 {
836 	struct bucket_table *new_tbl, *old_tbl;
837 	u32 new_hash;
838 	bool success = true;
839 
840 	BUG_ON(!ht->p.key_len);
841 
842 	rcu_read_lock();
843 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
844 	new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
845 	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
846 
847 	lock_buckets(new_tbl, old_tbl, new_hash);
848 
849 	if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
850 				      compare, arg)) {
851 		success = false;
852 		goto exit;
853 	}
854 
855 	__rhashtable_insert(ht, obj, new_tbl, new_hash);
856 
857 exit:
858 	unlock_buckets(new_tbl, old_tbl, new_hash);
859 	rcu_read_unlock();
860 
861 	return success;
862 }
863 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
864 
865 /**
866  * rhashtable_walk_init - Initialise an iterator
867  * @ht:		Table to walk over
868  * @iter:	Hash table Iterator
869  *
870  * This function prepares a hash table walk.
871  *
872  * Note that if you restart a walk after rhashtable_walk_stop you
873  * may see the same object twice.  Also, you may miss objects if
874  * there are removals in between rhashtable_walk_stop and the next
875  * call to rhashtable_walk_start.
876  *
877  * For a completely stable walk you should construct your own data
878  * structure outside the hash table.
879  *
880  * This function may sleep so you must not call it from interrupt
881  * context or with spin locks held.
882  *
883  * You must call rhashtable_walk_exit if this function returns
884  * successfully.
885  */
886 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
887 {
888 	iter->ht = ht;
889 	iter->p = NULL;
890 	iter->slot = 0;
891 	iter->skip = 0;
892 
893 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
894 	if (!iter->walker)
895 		return -ENOMEM;
896 
897 	mutex_lock(&ht->mutex);
898 	list_add(&iter->walker->list, &ht->walkers);
899 	mutex_unlock(&ht->mutex);
900 
901 	return 0;
902 }
903 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
904 
905 /**
906  * rhashtable_walk_exit - Free an iterator
907  * @iter:	Hash table Iterator
908  *
909  * This function frees resources allocated by rhashtable_walk_init.
910  */
911 void rhashtable_walk_exit(struct rhashtable_iter *iter)
912 {
913 	mutex_lock(&iter->ht->mutex);
914 	list_del(&iter->walker->list);
915 	mutex_unlock(&iter->ht->mutex);
916 	kfree(iter->walker);
917 }
918 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
919 
920 /**
921  * rhashtable_walk_start - Start a hash table walk
922  * @iter:	Hash table iterator
923  *
924  * Start a hash table walk.  Note that we take the RCU lock in all
925  * cases including when we return an error.  So you must always call
926  * rhashtable_walk_stop to clean up.
927  *
928  * Returns zero if successful.
929  *
930  * Returns -EAGAIN if resize event occured.  Note that the iterator
931  * will rewind back to the beginning and you may use it immediately
932  * by calling rhashtable_walk_next.
933  */
934 int rhashtable_walk_start(struct rhashtable_iter *iter)
935 {
936 	rcu_read_lock();
937 
938 	if (iter->walker->resize) {
939 		iter->slot = 0;
940 		iter->skip = 0;
941 		iter->walker->resize = false;
942 		return -EAGAIN;
943 	}
944 
945 	return 0;
946 }
947 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
948 
949 /**
950  * rhashtable_walk_next - Return the next object and advance the iterator
951  * @iter:	Hash table iterator
952  *
953  * Note that you must call rhashtable_walk_stop when you are finished
954  * with the walk.
955  *
956  * Returns the next object or NULL when the end of the table is reached.
957  *
958  * Returns -EAGAIN if resize event occured.  Note that the iterator
959  * will rewind back to the beginning and you may continue to use it.
960  */
961 void *rhashtable_walk_next(struct rhashtable_iter *iter)
962 {
963 	const struct bucket_table *tbl;
964 	struct rhashtable *ht = iter->ht;
965 	struct rhash_head *p = iter->p;
966 	void *obj = NULL;
967 
968 	tbl = rht_dereference_rcu(ht->tbl, ht);
969 
970 	if (p) {
971 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
972 		goto next;
973 	}
974 
975 	for (; iter->slot < tbl->size; iter->slot++) {
976 		int skip = iter->skip;
977 
978 		rht_for_each_rcu(p, tbl, iter->slot) {
979 			if (!skip)
980 				break;
981 			skip--;
982 		}
983 
984 next:
985 		if (!rht_is_a_nulls(p)) {
986 			iter->skip++;
987 			iter->p = p;
988 			obj = rht_obj(ht, p);
989 			goto out;
990 		}
991 
992 		iter->skip = 0;
993 	}
994 
995 	iter->p = NULL;
996 
997 out:
998 	if (iter->walker->resize) {
999 		iter->p = NULL;
1000 		iter->slot = 0;
1001 		iter->skip = 0;
1002 		iter->walker->resize = false;
1003 		return ERR_PTR(-EAGAIN);
1004 	}
1005 
1006 	return obj;
1007 }
1008 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1009 
1010 /**
1011  * rhashtable_walk_stop - Finish a hash table walk
1012  * @iter:	Hash table iterator
1013  *
1014  * Finish a hash table walk.
1015  */
1016 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1017 {
1018 	rcu_read_unlock();
1019 	iter->p = NULL;
1020 }
1021 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1022 
1023 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1024 {
1025 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1026 		   1UL << params->min_shift);
1027 }
1028 
1029 /**
1030  * rhashtable_init - initialize a new hash table
1031  * @ht:		hash table to be initialized
1032  * @params:	configuration parameters
1033  *
1034  * Initializes a new hash table based on the provided configuration
1035  * parameters. A table can be configured either with a variable or
1036  * fixed length key:
1037  *
1038  * Configuration Example 1: Fixed length keys
1039  * struct test_obj {
1040  *	int			key;
1041  *	void *			my_member;
1042  *	struct rhash_head	node;
1043  * };
1044  *
1045  * struct rhashtable_params params = {
1046  *	.head_offset = offsetof(struct test_obj, node),
1047  *	.key_offset = offsetof(struct test_obj, key),
1048  *	.key_len = sizeof(int),
1049  *	.hashfn = jhash,
1050  *	.nulls_base = (1U << RHT_BASE_SHIFT),
1051  * };
1052  *
1053  * Configuration Example 2: Variable length keys
1054  * struct test_obj {
1055  *	[...]
1056  *	struct rhash_head	node;
1057  * };
1058  *
1059  * u32 my_hash_fn(const void *data, u32 seed)
1060  * {
1061  *	struct test_obj *obj = data;
1062  *
1063  *	return [... hash ...];
1064  * }
1065  *
1066  * struct rhashtable_params params = {
1067  *	.head_offset = offsetof(struct test_obj, node),
1068  *	.hashfn = jhash,
1069  *	.obj_hashfn = my_hash_fn,
1070  * };
1071  */
1072 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1073 {
1074 	struct bucket_table *tbl;
1075 	size_t size;
1076 
1077 	size = HASH_DEFAULT_SIZE;
1078 
1079 	if ((params->key_len && !params->hashfn) ||
1080 	    (!params->key_len && !params->obj_hashfn))
1081 		return -EINVAL;
1082 
1083 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1084 		return -EINVAL;
1085 
1086 	params->min_shift = max_t(size_t, params->min_shift,
1087 				  ilog2(HASH_MIN_SIZE));
1088 
1089 	if (params->nelem_hint)
1090 		size = rounded_hashtable_size(params);
1091 
1092 	memset(ht, 0, sizeof(*ht));
1093 	mutex_init(&ht->mutex);
1094 	memcpy(&ht->p, params, sizeof(*params));
1095 	INIT_LIST_HEAD(&ht->walkers);
1096 
1097 	if (params->locks_mul)
1098 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1099 	else
1100 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1101 
1102 	tbl = bucket_table_alloc(ht, size);
1103 	if (tbl == NULL)
1104 		return -ENOMEM;
1105 
1106 	atomic_set(&ht->nelems, 0);
1107 	atomic_set(&ht->shift, ilog2(tbl->size));
1108 	RCU_INIT_POINTER(ht->tbl, tbl);
1109 	RCU_INIT_POINTER(ht->future_tbl, tbl);
1110 
1111 	if (!ht->p.hash_rnd)
1112 		get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1113 
1114 	if (ht->p.grow_decision || ht->p.shrink_decision)
1115 		INIT_WORK(&ht->run_work, rht_deferred_worker);
1116 
1117 	return 0;
1118 }
1119 EXPORT_SYMBOL_GPL(rhashtable_init);
1120 
1121 /**
1122  * rhashtable_destroy - destroy hash table
1123  * @ht:		the hash table to destroy
1124  *
1125  * Frees the bucket array. This function is not rcu safe, therefore the caller
1126  * has to make sure that no resizing may happen by unpublishing the hashtable
1127  * and waiting for the quiescent cycle before releasing the bucket array.
1128  */
1129 void rhashtable_destroy(struct rhashtable *ht)
1130 {
1131 	ht->being_destroyed = true;
1132 
1133 	if (ht->p.grow_decision || ht->p.shrink_decision)
1134 		cancel_work_sync(&ht->run_work);
1135 
1136 	mutex_lock(&ht->mutex);
1137 	bucket_table_free(rht_dereference(ht->tbl, ht));
1138 	mutex_unlock(&ht->mutex);
1139 }
1140 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1141