1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/rculist.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/mm.h> 26 #include <linux/jhash.h> 27 #include <linux/random.h> 28 #include <linux/rhashtable.h> 29 #include <linux/err.h> 30 #include <linux/export.h> 31 32 #define HASH_DEFAULT_SIZE 64UL 33 #define HASH_MIN_SIZE 4U 34 35 union nested_table { 36 union nested_table __rcu *table; 37 struct rhash_lock_head *bucket; 38 }; 39 40 static u32 head_hashfn(struct rhashtable *ht, 41 const struct bucket_table *tbl, 42 const struct rhash_head *he) 43 { 44 return rht_head_hashfn(ht, tbl, he, ht->p); 45 } 46 47 #ifdef CONFIG_PROVE_LOCKING 48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 49 50 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 51 { 52 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 53 } 54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 55 56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 57 { 58 if (!debug_locks) 59 return 1; 60 if (unlikely(tbl->nest)) 61 return 1; 62 return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]); 63 } 64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 65 #else 66 #define ASSERT_RHT_MUTEX(HT) 67 #endif 68 69 static void nested_table_free(union nested_table *ntbl, unsigned int size) 70 { 71 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 72 const unsigned int len = 1 << shift; 73 unsigned int i; 74 75 ntbl = rcu_dereference_raw(ntbl->table); 76 if (!ntbl) 77 return; 78 79 if (size > len) { 80 size >>= shift; 81 for (i = 0; i < len; i++) 82 nested_table_free(ntbl + i, size); 83 } 84 85 kfree(ntbl); 86 } 87 88 static void nested_bucket_table_free(const struct bucket_table *tbl) 89 { 90 unsigned int size = tbl->size >> tbl->nest; 91 unsigned int len = 1 << tbl->nest; 92 union nested_table *ntbl; 93 unsigned int i; 94 95 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 96 97 for (i = 0; i < len; i++) 98 nested_table_free(ntbl + i, size); 99 100 kfree(ntbl); 101 } 102 103 static void bucket_table_free(const struct bucket_table *tbl) 104 { 105 if (tbl->nest) 106 nested_bucket_table_free(tbl); 107 108 kvfree(tbl); 109 } 110 111 static void bucket_table_free_rcu(struct rcu_head *head) 112 { 113 bucket_table_free(container_of(head, struct bucket_table, rcu)); 114 } 115 116 static union nested_table *nested_table_alloc(struct rhashtable *ht, 117 union nested_table __rcu **prev, 118 bool leaf) 119 { 120 union nested_table *ntbl; 121 int i; 122 123 ntbl = rcu_dereference(*prev); 124 if (ntbl) 125 return ntbl; 126 127 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); 128 129 if (ntbl && leaf) { 130 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++) 131 INIT_RHT_NULLS_HEAD(ntbl[i].bucket); 132 } 133 134 if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL) 135 return ntbl; 136 /* Raced with another thread. */ 137 kfree(ntbl); 138 return rcu_dereference(*prev); 139 } 140 141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 142 size_t nbuckets, 143 gfp_t gfp) 144 { 145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 146 struct bucket_table *tbl; 147 size_t size; 148 149 if (nbuckets < (1 << (shift + 1))) 150 return NULL; 151 152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 153 154 tbl = kzalloc(size, gfp); 155 if (!tbl) 156 return NULL; 157 158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 159 false)) { 160 kfree(tbl); 161 return NULL; 162 } 163 164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 165 166 return tbl; 167 } 168 169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 170 size_t nbuckets, 171 gfp_t gfp) 172 { 173 struct bucket_table *tbl = NULL; 174 size_t size; 175 int i; 176 static struct lock_class_key __key; 177 178 tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp); 179 180 size = nbuckets; 181 182 if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) { 183 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 184 nbuckets = 0; 185 } 186 187 if (tbl == NULL) 188 return NULL; 189 190 lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0); 191 192 tbl->size = size; 193 194 rcu_head_init(&tbl->rcu); 195 INIT_LIST_HEAD(&tbl->walkers); 196 197 tbl->hash_rnd = get_random_u32(); 198 199 for (i = 0; i < nbuckets; i++) 200 INIT_RHT_NULLS_HEAD(tbl->buckets[i]); 201 202 return tbl; 203 } 204 205 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 206 struct bucket_table *tbl) 207 { 208 struct bucket_table *new_tbl; 209 210 do { 211 new_tbl = tbl; 212 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 213 } while (tbl); 214 215 return new_tbl; 216 } 217 218 static int rhashtable_rehash_one(struct rhashtable *ht, 219 struct rhash_lock_head **bkt, 220 unsigned int old_hash) 221 { 222 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 223 struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl); 224 int err = -EAGAIN; 225 struct rhash_head *head, *next, *entry; 226 struct rhash_head __rcu **pprev = NULL; 227 unsigned int new_hash; 228 229 if (new_tbl->nest) 230 goto out; 231 232 err = -ENOENT; 233 234 rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash), 235 old_tbl, old_hash) { 236 err = 0; 237 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 238 239 if (rht_is_a_nulls(next)) 240 break; 241 242 pprev = &entry->next; 243 } 244 245 if (err) 246 goto out; 247 248 new_hash = head_hashfn(ht, new_tbl, entry); 249 250 rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING); 251 252 head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash); 253 254 RCU_INIT_POINTER(entry->next, head); 255 256 rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry); 257 258 if (pprev) 259 rcu_assign_pointer(*pprev, next); 260 else 261 /* Need to preserved the bit lock. */ 262 rht_assign_locked(bkt, next); 263 264 out: 265 return err; 266 } 267 268 static int rhashtable_rehash_chain(struct rhashtable *ht, 269 unsigned int old_hash) 270 { 271 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 272 struct rhash_lock_head **bkt = rht_bucket_var(old_tbl, old_hash); 273 int err; 274 275 if (!bkt) 276 return 0; 277 rht_lock(old_tbl, bkt); 278 279 while (!(err = rhashtable_rehash_one(ht, bkt, old_hash))) 280 ; 281 282 if (err == -ENOENT) 283 err = 0; 284 rht_unlock(old_tbl, bkt); 285 286 return err; 287 } 288 289 static int rhashtable_rehash_attach(struct rhashtable *ht, 290 struct bucket_table *old_tbl, 291 struct bucket_table *new_tbl) 292 { 293 /* Make insertions go into the new, empty table right away. Deletions 294 * and lookups will be attempted in both tables until we synchronize. 295 * As cmpxchg() provides strong barriers, we do not need 296 * rcu_assign_pointer(). 297 */ 298 299 if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL, 300 new_tbl) != NULL) 301 return -EEXIST; 302 303 return 0; 304 } 305 306 static int rhashtable_rehash_table(struct rhashtable *ht) 307 { 308 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 309 struct bucket_table *new_tbl; 310 struct rhashtable_walker *walker; 311 unsigned int old_hash; 312 int err; 313 314 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 315 if (!new_tbl) 316 return 0; 317 318 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 319 err = rhashtable_rehash_chain(ht, old_hash); 320 if (err) 321 return err; 322 cond_resched(); 323 } 324 325 /* Publish the new table pointer. */ 326 rcu_assign_pointer(ht->tbl, new_tbl); 327 328 spin_lock(&ht->lock); 329 list_for_each_entry(walker, &old_tbl->walkers, list) 330 walker->tbl = NULL; 331 332 /* Wait for readers. All new readers will see the new 333 * table, and thus no references to the old table will 334 * remain. 335 * We do this inside the locked region so that 336 * rhashtable_walk_stop() can use rcu_head_after_call_rcu() 337 * to check if it should not re-link the table. 338 */ 339 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 340 spin_unlock(&ht->lock); 341 342 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 343 } 344 345 static int rhashtable_rehash_alloc(struct rhashtable *ht, 346 struct bucket_table *old_tbl, 347 unsigned int size) 348 { 349 struct bucket_table *new_tbl; 350 int err; 351 352 ASSERT_RHT_MUTEX(ht); 353 354 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 355 if (new_tbl == NULL) 356 return -ENOMEM; 357 358 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 359 if (err) 360 bucket_table_free(new_tbl); 361 362 return err; 363 } 364 365 /** 366 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 367 * @ht: the hash table to shrink 368 * 369 * This function shrinks the hash table to fit, i.e., the smallest 370 * size would not cause it to expand right away automatically. 371 * 372 * The caller must ensure that no concurrent resizing occurs by holding 373 * ht->mutex. 374 * 375 * The caller must ensure that no concurrent table mutations take place. 376 * It is however valid to have concurrent lookups if they are RCU protected. 377 * 378 * It is valid to have concurrent insertions and deletions protected by per 379 * bucket locks or concurrent RCU protected lookups and traversals. 380 */ 381 static int rhashtable_shrink(struct rhashtable *ht) 382 { 383 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 384 unsigned int nelems = atomic_read(&ht->nelems); 385 unsigned int size = 0; 386 387 if (nelems) 388 size = roundup_pow_of_two(nelems * 3 / 2); 389 if (size < ht->p.min_size) 390 size = ht->p.min_size; 391 392 if (old_tbl->size <= size) 393 return 0; 394 395 if (rht_dereference(old_tbl->future_tbl, ht)) 396 return -EEXIST; 397 398 return rhashtable_rehash_alloc(ht, old_tbl, size); 399 } 400 401 static void rht_deferred_worker(struct work_struct *work) 402 { 403 struct rhashtable *ht; 404 struct bucket_table *tbl; 405 int err = 0; 406 407 ht = container_of(work, struct rhashtable, run_work); 408 mutex_lock(&ht->mutex); 409 410 tbl = rht_dereference(ht->tbl, ht); 411 tbl = rhashtable_last_table(ht, tbl); 412 413 if (rht_grow_above_75(ht, tbl)) 414 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 415 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 416 err = rhashtable_shrink(ht); 417 else if (tbl->nest) 418 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 419 420 if (!err || err == -EEXIST) { 421 int nerr; 422 423 nerr = rhashtable_rehash_table(ht); 424 err = err ?: nerr; 425 } 426 427 mutex_unlock(&ht->mutex); 428 429 if (err) 430 schedule_work(&ht->run_work); 431 } 432 433 static int rhashtable_insert_rehash(struct rhashtable *ht, 434 struct bucket_table *tbl) 435 { 436 struct bucket_table *old_tbl; 437 struct bucket_table *new_tbl; 438 unsigned int size; 439 int err; 440 441 old_tbl = rht_dereference_rcu(ht->tbl, ht); 442 443 size = tbl->size; 444 445 err = -EBUSY; 446 447 if (rht_grow_above_75(ht, tbl)) 448 size *= 2; 449 /* Do not schedule more than one rehash */ 450 else if (old_tbl != tbl) 451 goto fail; 452 453 err = -ENOMEM; 454 455 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN); 456 if (new_tbl == NULL) 457 goto fail; 458 459 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 460 if (err) { 461 bucket_table_free(new_tbl); 462 if (err == -EEXIST) 463 err = 0; 464 } else 465 schedule_work(&ht->run_work); 466 467 return err; 468 469 fail: 470 /* Do not fail the insert if someone else did a rehash. */ 471 if (likely(rcu_access_pointer(tbl->future_tbl))) 472 return 0; 473 474 /* Schedule async rehash to retry allocation in process context. */ 475 if (err == -ENOMEM) 476 schedule_work(&ht->run_work); 477 478 return err; 479 } 480 481 static void *rhashtable_lookup_one(struct rhashtable *ht, 482 struct rhash_lock_head **bkt, 483 struct bucket_table *tbl, unsigned int hash, 484 const void *key, struct rhash_head *obj) 485 { 486 struct rhashtable_compare_arg arg = { 487 .ht = ht, 488 .key = key, 489 }; 490 struct rhash_head __rcu **pprev = NULL; 491 struct rhash_head *head; 492 int elasticity; 493 494 elasticity = RHT_ELASTICITY; 495 rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) { 496 struct rhlist_head *list; 497 struct rhlist_head *plist; 498 499 elasticity--; 500 if (!key || 501 (ht->p.obj_cmpfn ? 502 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 503 rhashtable_compare(&arg, rht_obj(ht, head)))) { 504 pprev = &head->next; 505 continue; 506 } 507 508 if (!ht->rhlist) 509 return rht_obj(ht, head); 510 511 list = container_of(obj, struct rhlist_head, rhead); 512 plist = container_of(head, struct rhlist_head, rhead); 513 514 RCU_INIT_POINTER(list->next, plist); 515 head = rht_dereference_bucket(head->next, tbl, hash); 516 RCU_INIT_POINTER(list->rhead.next, head); 517 if (pprev) 518 rcu_assign_pointer(*pprev, obj); 519 else 520 /* Need to preserve the bit lock */ 521 rht_assign_locked(bkt, obj); 522 523 return NULL; 524 } 525 526 if (elasticity <= 0) 527 return ERR_PTR(-EAGAIN); 528 529 return ERR_PTR(-ENOENT); 530 } 531 532 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht, 533 struct rhash_lock_head **bkt, 534 struct bucket_table *tbl, 535 unsigned int hash, 536 struct rhash_head *obj, 537 void *data) 538 { 539 struct bucket_table *new_tbl; 540 struct rhash_head *head; 541 542 if (!IS_ERR_OR_NULL(data)) 543 return ERR_PTR(-EEXIST); 544 545 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 546 return ERR_CAST(data); 547 548 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 549 if (new_tbl) 550 return new_tbl; 551 552 if (PTR_ERR(data) != -ENOENT) 553 return ERR_CAST(data); 554 555 if (unlikely(rht_grow_above_max(ht, tbl))) 556 return ERR_PTR(-E2BIG); 557 558 if (unlikely(rht_grow_above_100(ht, tbl))) 559 return ERR_PTR(-EAGAIN); 560 561 head = rht_ptr(bkt, tbl, hash); 562 563 RCU_INIT_POINTER(obj->next, head); 564 if (ht->rhlist) { 565 struct rhlist_head *list; 566 567 list = container_of(obj, struct rhlist_head, rhead); 568 RCU_INIT_POINTER(list->next, NULL); 569 } 570 571 /* bkt is always the head of the list, so it holds 572 * the lock, which we need to preserve 573 */ 574 rht_assign_locked(bkt, obj); 575 576 atomic_inc(&ht->nelems); 577 if (rht_grow_above_75(ht, tbl)) 578 schedule_work(&ht->run_work); 579 580 return NULL; 581 } 582 583 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 584 struct rhash_head *obj) 585 { 586 struct bucket_table *new_tbl; 587 struct bucket_table *tbl; 588 struct rhash_lock_head **bkt; 589 unsigned int hash; 590 void *data; 591 592 new_tbl = rcu_dereference(ht->tbl); 593 594 do { 595 tbl = new_tbl; 596 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 597 if (rcu_access_pointer(tbl->future_tbl)) 598 /* Failure is OK */ 599 bkt = rht_bucket_var(tbl, hash); 600 else 601 bkt = rht_bucket_insert(ht, tbl, hash); 602 if (bkt == NULL) { 603 new_tbl = rht_dereference_rcu(tbl->future_tbl, ht); 604 data = ERR_PTR(-EAGAIN); 605 } else { 606 rht_lock(tbl, bkt); 607 data = rhashtable_lookup_one(ht, bkt, tbl, 608 hash, key, obj); 609 new_tbl = rhashtable_insert_one(ht, bkt, tbl, 610 hash, obj, data); 611 if (PTR_ERR(new_tbl) != -EEXIST) 612 data = ERR_CAST(new_tbl); 613 614 rht_unlock(tbl, bkt); 615 } 616 } while (!IS_ERR_OR_NULL(new_tbl)); 617 618 if (PTR_ERR(data) == -EAGAIN) 619 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 620 -EAGAIN); 621 622 return data; 623 } 624 625 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 626 struct rhash_head *obj) 627 { 628 void *data; 629 630 do { 631 rcu_read_lock(); 632 data = rhashtable_try_insert(ht, key, obj); 633 rcu_read_unlock(); 634 } while (PTR_ERR(data) == -EAGAIN); 635 636 return data; 637 } 638 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 639 640 /** 641 * rhashtable_walk_enter - Initialise an iterator 642 * @ht: Table to walk over 643 * @iter: Hash table Iterator 644 * 645 * This function prepares a hash table walk. 646 * 647 * Note that if you restart a walk after rhashtable_walk_stop you 648 * may see the same object twice. Also, you may miss objects if 649 * there are removals in between rhashtable_walk_stop and the next 650 * call to rhashtable_walk_start. 651 * 652 * For a completely stable walk you should construct your own data 653 * structure outside the hash table. 654 * 655 * This function may be called from any process context, including 656 * non-preemptable context, but cannot be called from softirq or 657 * hardirq context. 658 * 659 * You must call rhashtable_walk_exit after this function returns. 660 */ 661 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 662 { 663 iter->ht = ht; 664 iter->p = NULL; 665 iter->slot = 0; 666 iter->skip = 0; 667 iter->end_of_table = 0; 668 669 spin_lock(&ht->lock); 670 iter->walker.tbl = 671 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 672 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 673 spin_unlock(&ht->lock); 674 } 675 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 676 677 /** 678 * rhashtable_walk_exit - Free an iterator 679 * @iter: Hash table Iterator 680 * 681 * This function frees resources allocated by rhashtable_walk_enter. 682 */ 683 void rhashtable_walk_exit(struct rhashtable_iter *iter) 684 { 685 spin_lock(&iter->ht->lock); 686 if (iter->walker.tbl) 687 list_del(&iter->walker.list); 688 spin_unlock(&iter->ht->lock); 689 } 690 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 691 692 /** 693 * rhashtable_walk_start_check - Start a hash table walk 694 * @iter: Hash table iterator 695 * 696 * Start a hash table walk at the current iterator position. Note that we take 697 * the RCU lock in all cases including when we return an error. So you must 698 * always call rhashtable_walk_stop to clean up. 699 * 700 * Returns zero if successful. 701 * 702 * Returns -EAGAIN if resize event occured. Note that the iterator 703 * will rewind back to the beginning and you may use it immediately 704 * by calling rhashtable_walk_next. 705 * 706 * rhashtable_walk_start is defined as an inline variant that returns 707 * void. This is preferred in cases where the caller would ignore 708 * resize events and always continue. 709 */ 710 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 711 __acquires(RCU) 712 { 713 struct rhashtable *ht = iter->ht; 714 bool rhlist = ht->rhlist; 715 716 rcu_read_lock(); 717 718 spin_lock(&ht->lock); 719 if (iter->walker.tbl) 720 list_del(&iter->walker.list); 721 spin_unlock(&ht->lock); 722 723 if (iter->end_of_table) 724 return 0; 725 if (!iter->walker.tbl) { 726 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 727 iter->slot = 0; 728 iter->skip = 0; 729 return -EAGAIN; 730 } 731 732 if (iter->p && !rhlist) { 733 /* 734 * We need to validate that 'p' is still in the table, and 735 * if so, update 'skip' 736 */ 737 struct rhash_head *p; 738 int skip = 0; 739 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 740 skip++; 741 if (p == iter->p) { 742 iter->skip = skip; 743 goto found; 744 } 745 } 746 iter->p = NULL; 747 } else if (iter->p && rhlist) { 748 /* Need to validate that 'list' is still in the table, and 749 * if so, update 'skip' and 'p'. 750 */ 751 struct rhash_head *p; 752 struct rhlist_head *list; 753 int skip = 0; 754 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) { 755 for (list = container_of(p, struct rhlist_head, rhead); 756 list; 757 list = rcu_dereference(list->next)) { 758 skip++; 759 if (list == iter->list) { 760 iter->p = p; 761 iter->skip = skip; 762 goto found; 763 } 764 } 765 } 766 iter->p = NULL; 767 } 768 found: 769 return 0; 770 } 771 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 772 773 /** 774 * __rhashtable_walk_find_next - Find the next element in a table (or the first 775 * one in case of a new walk). 776 * 777 * @iter: Hash table iterator 778 * 779 * Returns the found object or NULL when the end of the table is reached. 780 * 781 * Returns -EAGAIN if resize event occurred. 782 */ 783 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 784 { 785 struct bucket_table *tbl = iter->walker.tbl; 786 struct rhlist_head *list = iter->list; 787 struct rhashtable *ht = iter->ht; 788 struct rhash_head *p = iter->p; 789 bool rhlist = ht->rhlist; 790 791 if (!tbl) 792 return NULL; 793 794 for (; iter->slot < tbl->size; iter->slot++) { 795 int skip = iter->skip; 796 797 rht_for_each_rcu(p, tbl, iter->slot) { 798 if (rhlist) { 799 list = container_of(p, struct rhlist_head, 800 rhead); 801 do { 802 if (!skip) 803 goto next; 804 skip--; 805 list = rcu_dereference(list->next); 806 } while (list); 807 808 continue; 809 } 810 if (!skip) 811 break; 812 skip--; 813 } 814 815 next: 816 if (!rht_is_a_nulls(p)) { 817 iter->skip++; 818 iter->p = p; 819 iter->list = list; 820 return rht_obj(ht, rhlist ? &list->rhead : p); 821 } 822 823 iter->skip = 0; 824 } 825 826 iter->p = NULL; 827 828 /* Ensure we see any new tables. */ 829 smp_rmb(); 830 831 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 832 if (iter->walker.tbl) { 833 iter->slot = 0; 834 iter->skip = 0; 835 return ERR_PTR(-EAGAIN); 836 } else { 837 iter->end_of_table = true; 838 } 839 840 return NULL; 841 } 842 843 /** 844 * rhashtable_walk_next - Return the next object and advance the iterator 845 * @iter: Hash table iterator 846 * 847 * Note that you must call rhashtable_walk_stop when you are finished 848 * with the walk. 849 * 850 * Returns the next object or NULL when the end of the table is reached. 851 * 852 * Returns -EAGAIN if resize event occurred. Note that the iterator 853 * will rewind back to the beginning and you may continue to use it. 854 */ 855 void *rhashtable_walk_next(struct rhashtable_iter *iter) 856 { 857 struct rhlist_head *list = iter->list; 858 struct rhashtable *ht = iter->ht; 859 struct rhash_head *p = iter->p; 860 bool rhlist = ht->rhlist; 861 862 if (p) { 863 if (!rhlist || !(list = rcu_dereference(list->next))) { 864 p = rcu_dereference(p->next); 865 list = container_of(p, struct rhlist_head, rhead); 866 } 867 if (!rht_is_a_nulls(p)) { 868 iter->skip++; 869 iter->p = p; 870 iter->list = list; 871 return rht_obj(ht, rhlist ? &list->rhead : p); 872 } 873 874 /* At the end of this slot, switch to next one and then find 875 * next entry from that point. 876 */ 877 iter->skip = 0; 878 iter->slot++; 879 } 880 881 return __rhashtable_walk_find_next(iter); 882 } 883 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 884 885 /** 886 * rhashtable_walk_peek - Return the next object but don't advance the iterator 887 * @iter: Hash table iterator 888 * 889 * Returns the next object or NULL when the end of the table is reached. 890 * 891 * Returns -EAGAIN if resize event occurred. Note that the iterator 892 * will rewind back to the beginning and you may continue to use it. 893 */ 894 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 895 { 896 struct rhlist_head *list = iter->list; 897 struct rhashtable *ht = iter->ht; 898 struct rhash_head *p = iter->p; 899 900 if (p) 901 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 902 903 /* No object found in current iter, find next one in the table. */ 904 905 if (iter->skip) { 906 /* A nonzero skip value points to the next entry in the table 907 * beyond that last one that was found. Decrement skip so 908 * we find the current value. __rhashtable_walk_find_next 909 * will restore the original value of skip assuming that 910 * the table hasn't changed. 911 */ 912 iter->skip--; 913 } 914 915 return __rhashtable_walk_find_next(iter); 916 } 917 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 918 919 /** 920 * rhashtable_walk_stop - Finish a hash table walk 921 * @iter: Hash table iterator 922 * 923 * Finish a hash table walk. Does not reset the iterator to the start of the 924 * hash table. 925 */ 926 void rhashtable_walk_stop(struct rhashtable_iter *iter) 927 __releases(RCU) 928 { 929 struct rhashtable *ht; 930 struct bucket_table *tbl = iter->walker.tbl; 931 932 if (!tbl) 933 goto out; 934 935 ht = iter->ht; 936 937 spin_lock(&ht->lock); 938 if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu)) 939 /* This bucket table is being freed, don't re-link it. */ 940 iter->walker.tbl = NULL; 941 else 942 list_add(&iter->walker.list, &tbl->walkers); 943 spin_unlock(&ht->lock); 944 945 out: 946 rcu_read_unlock(); 947 } 948 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 949 950 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 951 { 952 size_t retsize; 953 954 if (params->nelem_hint) 955 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 956 (unsigned long)params->min_size); 957 else 958 retsize = max(HASH_DEFAULT_SIZE, 959 (unsigned long)params->min_size); 960 961 return retsize; 962 } 963 964 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 965 { 966 return jhash2(key, length, seed); 967 } 968 969 /** 970 * rhashtable_init - initialize a new hash table 971 * @ht: hash table to be initialized 972 * @params: configuration parameters 973 * 974 * Initializes a new hash table based on the provided configuration 975 * parameters. A table can be configured either with a variable or 976 * fixed length key: 977 * 978 * Configuration Example 1: Fixed length keys 979 * struct test_obj { 980 * int key; 981 * void * my_member; 982 * struct rhash_head node; 983 * }; 984 * 985 * struct rhashtable_params params = { 986 * .head_offset = offsetof(struct test_obj, node), 987 * .key_offset = offsetof(struct test_obj, key), 988 * .key_len = sizeof(int), 989 * .hashfn = jhash, 990 * }; 991 * 992 * Configuration Example 2: Variable length keys 993 * struct test_obj { 994 * [...] 995 * struct rhash_head node; 996 * }; 997 * 998 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 999 * { 1000 * struct test_obj *obj = data; 1001 * 1002 * return [... hash ...]; 1003 * } 1004 * 1005 * struct rhashtable_params params = { 1006 * .head_offset = offsetof(struct test_obj, node), 1007 * .hashfn = jhash, 1008 * .obj_hashfn = my_hash_fn, 1009 * }; 1010 */ 1011 int rhashtable_init(struct rhashtable *ht, 1012 const struct rhashtable_params *params) 1013 { 1014 struct bucket_table *tbl; 1015 size_t size; 1016 1017 if ((!params->key_len && !params->obj_hashfn) || 1018 (params->obj_hashfn && !params->obj_cmpfn)) 1019 return -EINVAL; 1020 1021 memset(ht, 0, sizeof(*ht)); 1022 mutex_init(&ht->mutex); 1023 spin_lock_init(&ht->lock); 1024 memcpy(&ht->p, params, sizeof(*params)); 1025 1026 if (params->min_size) 1027 ht->p.min_size = roundup_pow_of_two(params->min_size); 1028 1029 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1030 ht->max_elems = 1u << 31; 1031 1032 if (params->max_size) { 1033 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1034 if (ht->p.max_size < ht->max_elems / 2) 1035 ht->max_elems = ht->p.max_size * 2; 1036 } 1037 1038 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1039 1040 size = rounded_hashtable_size(&ht->p); 1041 1042 ht->key_len = ht->p.key_len; 1043 if (!params->hashfn) { 1044 ht->p.hashfn = jhash; 1045 1046 if (!(ht->key_len & (sizeof(u32) - 1))) { 1047 ht->key_len /= sizeof(u32); 1048 ht->p.hashfn = rhashtable_jhash2; 1049 } 1050 } 1051 1052 /* 1053 * This is api initialization and thus we need to guarantee the 1054 * initial rhashtable allocation. Upon failure, retry with the 1055 * smallest possible size with __GFP_NOFAIL semantics. 1056 */ 1057 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1058 if (unlikely(tbl == NULL)) { 1059 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1060 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL); 1061 } 1062 1063 atomic_set(&ht->nelems, 0); 1064 1065 RCU_INIT_POINTER(ht->tbl, tbl); 1066 1067 INIT_WORK(&ht->run_work, rht_deferred_worker); 1068 1069 return 0; 1070 } 1071 EXPORT_SYMBOL_GPL(rhashtable_init); 1072 1073 /** 1074 * rhltable_init - initialize a new hash list table 1075 * @hlt: hash list table to be initialized 1076 * @params: configuration parameters 1077 * 1078 * Initializes a new hash list table. 1079 * 1080 * See documentation for rhashtable_init. 1081 */ 1082 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) 1083 { 1084 int err; 1085 1086 err = rhashtable_init(&hlt->ht, params); 1087 hlt->ht.rhlist = true; 1088 return err; 1089 } 1090 EXPORT_SYMBOL_GPL(rhltable_init); 1091 1092 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1093 void (*free_fn)(void *ptr, void *arg), 1094 void *arg) 1095 { 1096 struct rhlist_head *list; 1097 1098 if (!ht->rhlist) { 1099 free_fn(rht_obj(ht, obj), arg); 1100 return; 1101 } 1102 1103 list = container_of(obj, struct rhlist_head, rhead); 1104 do { 1105 obj = &list->rhead; 1106 list = rht_dereference(list->next, ht); 1107 free_fn(rht_obj(ht, obj), arg); 1108 } while (list); 1109 } 1110 1111 /** 1112 * rhashtable_free_and_destroy - free elements and destroy hash table 1113 * @ht: the hash table to destroy 1114 * @free_fn: callback to release resources of element 1115 * @arg: pointer passed to free_fn 1116 * 1117 * Stops an eventual async resize. If defined, invokes free_fn for each 1118 * element to releasal resources. Please note that RCU protected 1119 * readers may still be accessing the elements. Releasing of resources 1120 * must occur in a compatible manner. Then frees the bucket array. 1121 * 1122 * This function will eventually sleep to wait for an async resize 1123 * to complete. The caller is responsible that no further write operations 1124 * occurs in parallel. 1125 */ 1126 void rhashtable_free_and_destroy(struct rhashtable *ht, 1127 void (*free_fn)(void *ptr, void *arg), 1128 void *arg) 1129 { 1130 struct bucket_table *tbl, *next_tbl; 1131 unsigned int i; 1132 1133 cancel_work_sync(&ht->run_work); 1134 1135 mutex_lock(&ht->mutex); 1136 tbl = rht_dereference(ht->tbl, ht); 1137 restart: 1138 if (free_fn) { 1139 for (i = 0; i < tbl->size; i++) { 1140 struct rhash_head *pos, *next; 1141 1142 cond_resched(); 1143 for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)), 1144 next = !rht_is_a_nulls(pos) ? 1145 rht_dereference(pos->next, ht) : NULL; 1146 !rht_is_a_nulls(pos); 1147 pos = next, 1148 next = !rht_is_a_nulls(pos) ? 1149 rht_dereference(pos->next, ht) : NULL) 1150 rhashtable_free_one(ht, pos, free_fn, arg); 1151 } 1152 } 1153 1154 next_tbl = rht_dereference(tbl->future_tbl, ht); 1155 bucket_table_free(tbl); 1156 if (next_tbl) { 1157 tbl = next_tbl; 1158 goto restart; 1159 } 1160 mutex_unlock(&ht->mutex); 1161 } 1162 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1163 1164 void rhashtable_destroy(struct rhashtable *ht) 1165 { 1166 return rhashtable_free_and_destroy(ht, NULL, NULL); 1167 } 1168 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1169 1170 struct rhash_lock_head **__rht_bucket_nested(const struct bucket_table *tbl, 1171 unsigned int hash) 1172 { 1173 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1174 unsigned int index = hash & ((1 << tbl->nest) - 1); 1175 unsigned int size = tbl->size >> tbl->nest; 1176 unsigned int subhash = hash; 1177 union nested_table *ntbl; 1178 1179 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1180 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1181 subhash >>= tbl->nest; 1182 1183 while (ntbl && size > (1 << shift)) { 1184 index = subhash & ((1 << shift) - 1); 1185 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1186 tbl, hash); 1187 size >>= shift; 1188 subhash >>= shift; 1189 } 1190 1191 if (!ntbl) 1192 return NULL; 1193 1194 return &ntbl[subhash].bucket; 1195 1196 } 1197 EXPORT_SYMBOL_GPL(__rht_bucket_nested); 1198 1199 struct rhash_lock_head **rht_bucket_nested(const struct bucket_table *tbl, 1200 unsigned int hash) 1201 { 1202 static struct rhash_lock_head *rhnull; 1203 1204 if (!rhnull) 1205 INIT_RHT_NULLS_HEAD(rhnull); 1206 return __rht_bucket_nested(tbl, hash) ?: &rhnull; 1207 } 1208 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1209 1210 struct rhash_lock_head **rht_bucket_nested_insert(struct rhashtable *ht, 1211 struct bucket_table *tbl, 1212 unsigned int hash) 1213 { 1214 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1215 unsigned int index = hash & ((1 << tbl->nest) - 1); 1216 unsigned int size = tbl->size >> tbl->nest; 1217 union nested_table *ntbl; 1218 1219 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1220 hash >>= tbl->nest; 1221 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1222 size <= (1 << shift)); 1223 1224 while (ntbl && size > (1 << shift)) { 1225 index = hash & ((1 << shift) - 1); 1226 size >>= shift; 1227 hash >>= shift; 1228 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1229 size <= (1 << shift)); 1230 } 1231 1232 if (!ntbl) 1233 return NULL; 1234 1235 return &ntbl[hash].bucket; 1236 1237 } 1238 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1239