xref: /openbmc/linux/lib/rhashtable.c (revision 4f3db074)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28 
29 #define HASH_DEFAULT_SIZE	64UL
30 #define HASH_MIN_SIZE		4U
31 #define BUCKET_LOCKS_PER_CPU   128UL
32 
33 static u32 head_hashfn(struct rhashtable *ht,
34 		       const struct bucket_table *tbl,
35 		       const struct rhash_head *he)
36 {
37 	return rht_head_hashfn(ht, tbl, he, ht->p);
38 }
39 
40 #ifdef CONFIG_PROVE_LOCKING
41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
42 
43 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
44 {
45 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
46 }
47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
48 
49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50 {
51 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
52 
53 	return (debug_locks) ? lockdep_is_held(lock) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
56 #else
57 #define ASSERT_RHT_MUTEX(HT)
58 #endif
59 
60 
61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
62 			      gfp_t gfp)
63 {
64 	unsigned int i, size;
65 #if defined(CONFIG_PROVE_LOCKING)
66 	unsigned int nr_pcpus = 2;
67 #else
68 	unsigned int nr_pcpus = num_possible_cpus();
69 #endif
70 
71 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
72 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
73 
74 	/* Never allocate more than 0.5 locks per bucket */
75 	size = min_t(unsigned int, size, tbl->size >> 1);
76 
77 	if (sizeof(spinlock_t) != 0) {
78 #ifdef CONFIG_NUMA
79 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80 		    gfp == GFP_KERNEL)
81 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
82 		else
83 #endif
84 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
85 					   gfp);
86 		if (!tbl->locks)
87 			return -ENOMEM;
88 		for (i = 0; i < size; i++)
89 			spin_lock_init(&tbl->locks[i]);
90 	}
91 	tbl->locks_mask = size - 1;
92 
93 	return 0;
94 }
95 
96 static void bucket_table_free(const struct bucket_table *tbl)
97 {
98 	if (tbl)
99 		kvfree(tbl->locks);
100 
101 	kvfree(tbl);
102 }
103 
104 static void bucket_table_free_rcu(struct rcu_head *head)
105 {
106 	bucket_table_free(container_of(head, struct bucket_table, rcu));
107 }
108 
109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
110 					       size_t nbuckets,
111 					       gfp_t gfp)
112 {
113 	struct bucket_table *tbl = NULL;
114 	size_t size;
115 	int i;
116 
117 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
118 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
119 	    gfp != GFP_KERNEL)
120 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121 	if (tbl == NULL && gfp == GFP_KERNEL)
122 		tbl = vzalloc(size);
123 	if (tbl == NULL)
124 		return NULL;
125 
126 	tbl->size = nbuckets;
127 
128 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
129 		bucket_table_free(tbl);
130 		return NULL;
131 	}
132 
133 	INIT_LIST_HEAD(&tbl->walkers);
134 
135 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136 
137 	for (i = 0; i < nbuckets; i++)
138 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
139 
140 	return tbl;
141 }
142 
143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
144 						  struct bucket_table *tbl)
145 {
146 	struct bucket_table *new_tbl;
147 
148 	do {
149 		new_tbl = tbl;
150 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
151 	} while (tbl);
152 
153 	return new_tbl;
154 }
155 
156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
157 {
158 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
159 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
160 		rht_dereference_rcu(old_tbl->future_tbl, ht));
161 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162 	int err = -ENOENT;
163 	struct rhash_head *head, *next, *entry;
164 	spinlock_t *new_bucket_lock;
165 	unsigned int new_hash;
166 
167 	rht_for_each(entry, old_tbl, old_hash) {
168 		err = 0;
169 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170 
171 		if (rht_is_a_nulls(next))
172 			break;
173 
174 		pprev = &entry->next;
175 	}
176 
177 	if (err)
178 		goto out;
179 
180 	new_hash = head_hashfn(ht, new_tbl, entry);
181 
182 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183 
184 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186 				      new_tbl, new_hash);
187 
188 	if (rht_is_a_nulls(head))
189 		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190 	else
191 		RCU_INIT_POINTER(entry->next, head);
192 
193 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194 	spin_unlock(new_bucket_lock);
195 
196 	rcu_assign_pointer(*pprev, next);
197 
198 out:
199 	return err;
200 }
201 
202 static void rhashtable_rehash_chain(struct rhashtable *ht,
203 				    unsigned int old_hash)
204 {
205 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
206 	spinlock_t *old_bucket_lock;
207 
208 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209 
210 	spin_lock_bh(old_bucket_lock);
211 	while (!rhashtable_rehash_one(ht, old_hash))
212 		;
213 	old_tbl->rehash++;
214 	spin_unlock_bh(old_bucket_lock);
215 }
216 
217 static int rhashtable_rehash_attach(struct rhashtable *ht,
218 				    struct bucket_table *old_tbl,
219 				    struct bucket_table *new_tbl)
220 {
221 	/* Protect future_tbl using the first bucket lock. */
222 	spin_lock_bh(old_tbl->locks);
223 
224 	/* Did somebody beat us to it? */
225 	if (rcu_access_pointer(old_tbl->future_tbl)) {
226 		spin_unlock_bh(old_tbl->locks);
227 		return -EEXIST;
228 	}
229 
230 	/* Make insertions go into the new, empty table right away. Deletions
231 	 * and lookups will be attempted in both tables until we synchronize.
232 	 */
233 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234 
235 	/* Ensure the new table is visible to readers. */
236 	smp_wmb();
237 
238 	spin_unlock_bh(old_tbl->locks);
239 
240 	return 0;
241 }
242 
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246 	struct bucket_table *new_tbl;
247 	struct rhashtable_walker *walker;
248 	unsigned int old_hash;
249 
250 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251 	if (!new_tbl)
252 		return 0;
253 
254 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255 		rhashtable_rehash_chain(ht, old_hash);
256 
257 	/* Publish the new table pointer. */
258 	rcu_assign_pointer(ht->tbl, new_tbl);
259 
260 	spin_lock(&ht->lock);
261 	list_for_each_entry(walker, &old_tbl->walkers, list)
262 		walker->tbl = NULL;
263 	spin_unlock(&ht->lock);
264 
265 	/* Wait for readers. All new readers will see the new
266 	 * table, and thus no references to the old table will
267 	 * remain.
268 	 */
269 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270 
271 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273 
274 /**
275  * rhashtable_expand - Expand hash table while allowing concurrent lookups
276  * @ht:		the hash table to expand
277  *
278  * A secondary bucket array is allocated and the hash entries are migrated.
279  *
280  * This function may only be called in a context where it is safe to call
281  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282  *
283  * The caller must ensure that no concurrent resizing occurs by holding
284  * ht->mutex.
285  *
286  * It is valid to have concurrent insertions and deletions protected by per
287  * bucket locks or concurrent RCU protected lookups and traversals.
288  */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292 	int err;
293 
294 	ASSERT_RHT_MUTEX(ht);
295 
296 	old_tbl = rhashtable_last_table(ht, old_tbl);
297 
298 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299 	if (new_tbl == NULL)
300 		return -ENOMEM;
301 
302 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303 	if (err)
304 		bucket_table_free(new_tbl);
305 
306 	return err;
307 }
308 
309 /**
310  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311  * @ht:		the hash table to shrink
312  *
313  * This function shrinks the hash table to fit, i.e., the smallest
314  * size would not cause it to expand right away automatically.
315  *
316  * The caller must ensure that no concurrent resizing occurs by holding
317  * ht->mutex.
318  *
319  * The caller must ensure that no concurrent table mutations take place.
320  * It is however valid to have concurrent lookups if they are RCU protected.
321  *
322  * It is valid to have concurrent insertions and deletions protected by per
323  * bucket locks or concurrent RCU protected lookups and traversals.
324  */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328 	unsigned int size;
329 	int err;
330 
331 	ASSERT_RHT_MUTEX(ht);
332 
333 	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
334 	if (size < ht->p.min_size)
335 		size = ht->p.min_size;
336 
337 	if (old_tbl->size <= size)
338 		return 0;
339 
340 	if (rht_dereference(old_tbl->future_tbl, ht))
341 		return -EEXIST;
342 
343 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
344 	if (new_tbl == NULL)
345 		return -ENOMEM;
346 
347 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348 	if (err)
349 		bucket_table_free(new_tbl);
350 
351 	return err;
352 }
353 
354 static void rht_deferred_worker(struct work_struct *work)
355 {
356 	struct rhashtable *ht;
357 	struct bucket_table *tbl;
358 	int err = 0;
359 
360 	ht = container_of(work, struct rhashtable, run_work);
361 	mutex_lock(&ht->mutex);
362 
363 	tbl = rht_dereference(ht->tbl, ht);
364 	tbl = rhashtable_last_table(ht, tbl);
365 
366 	if (rht_grow_above_75(ht, tbl))
367 		rhashtable_expand(ht);
368 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
369 		rhashtable_shrink(ht);
370 
371 	err = rhashtable_rehash_table(ht);
372 
373 	mutex_unlock(&ht->mutex);
374 
375 	if (err)
376 		schedule_work(&ht->run_work);
377 }
378 
379 static bool rhashtable_check_elasticity(struct rhashtable *ht,
380 					struct bucket_table *tbl,
381 					unsigned int hash)
382 {
383 	unsigned int elasticity = ht->elasticity;
384 	struct rhash_head *head;
385 
386 	rht_for_each(head, tbl, hash)
387 		if (!--elasticity)
388 			return true;
389 
390 	return false;
391 }
392 
393 int rhashtable_insert_rehash(struct rhashtable *ht)
394 {
395 	struct bucket_table *old_tbl;
396 	struct bucket_table *new_tbl;
397 	struct bucket_table *tbl;
398 	unsigned int size;
399 	int err;
400 
401 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
402 	tbl = rhashtable_last_table(ht, old_tbl);
403 
404 	size = tbl->size;
405 
406 	if (rht_grow_above_75(ht, tbl))
407 		size *= 2;
408 	/* Do not schedule more than one rehash */
409 	else if (old_tbl != tbl)
410 		return -EBUSY;
411 
412 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
413 	if (new_tbl == NULL) {
414 		/* Schedule async resize/rehash to try allocation
415 		 * non-atomic context.
416 		 */
417 		schedule_work(&ht->run_work);
418 		return -ENOMEM;
419 	}
420 
421 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
422 	if (err) {
423 		bucket_table_free(new_tbl);
424 		if (err == -EEXIST)
425 			err = 0;
426 	} else
427 		schedule_work(&ht->run_work);
428 
429 	return err;
430 }
431 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
432 
433 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
434 			   struct rhash_head *obj,
435 			   struct bucket_table *tbl)
436 {
437 	struct rhash_head *head;
438 	unsigned int hash;
439 	int err;
440 
441 	tbl = rhashtable_last_table(ht, tbl);
442 	hash = head_hashfn(ht, tbl, obj);
443 	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
444 
445 	err = -EEXIST;
446 	if (key && rhashtable_lookup_fast(ht, key, ht->p))
447 		goto exit;
448 
449 	err = -EAGAIN;
450 	if (rhashtable_check_elasticity(ht, tbl, hash) ||
451 	    rht_grow_above_100(ht, tbl))
452 		goto exit;
453 
454 	err = 0;
455 
456 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
457 
458 	RCU_INIT_POINTER(obj->next, head);
459 
460 	rcu_assign_pointer(tbl->buckets[hash], obj);
461 
462 	atomic_inc(&ht->nelems);
463 
464 exit:
465 	spin_unlock(rht_bucket_lock(tbl, hash));
466 
467 	return err;
468 }
469 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
470 
471 /**
472  * rhashtable_walk_init - Initialise an iterator
473  * @ht:		Table to walk over
474  * @iter:	Hash table Iterator
475  *
476  * This function prepares a hash table walk.
477  *
478  * Note that if you restart a walk after rhashtable_walk_stop you
479  * may see the same object twice.  Also, you may miss objects if
480  * there are removals in between rhashtable_walk_stop and the next
481  * call to rhashtable_walk_start.
482  *
483  * For a completely stable walk you should construct your own data
484  * structure outside the hash table.
485  *
486  * This function may sleep so you must not call it from interrupt
487  * context or with spin locks held.
488  *
489  * You must call rhashtable_walk_exit if this function returns
490  * successfully.
491  */
492 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
493 {
494 	iter->ht = ht;
495 	iter->p = NULL;
496 	iter->slot = 0;
497 	iter->skip = 0;
498 
499 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
500 	if (!iter->walker)
501 		return -ENOMEM;
502 
503 	mutex_lock(&ht->mutex);
504 	iter->walker->tbl = rht_dereference(ht->tbl, ht);
505 	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
506 	mutex_unlock(&ht->mutex);
507 
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
511 
512 /**
513  * rhashtable_walk_exit - Free an iterator
514  * @iter:	Hash table Iterator
515  *
516  * This function frees resources allocated by rhashtable_walk_init.
517  */
518 void rhashtable_walk_exit(struct rhashtable_iter *iter)
519 {
520 	mutex_lock(&iter->ht->mutex);
521 	if (iter->walker->tbl)
522 		list_del(&iter->walker->list);
523 	mutex_unlock(&iter->ht->mutex);
524 	kfree(iter->walker);
525 }
526 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
527 
528 /**
529  * rhashtable_walk_start - Start a hash table walk
530  * @iter:	Hash table iterator
531  *
532  * Start a hash table walk.  Note that we take the RCU lock in all
533  * cases including when we return an error.  So you must always call
534  * rhashtable_walk_stop to clean up.
535  *
536  * Returns zero if successful.
537  *
538  * Returns -EAGAIN if resize event occured.  Note that the iterator
539  * will rewind back to the beginning and you may use it immediately
540  * by calling rhashtable_walk_next.
541  */
542 int rhashtable_walk_start(struct rhashtable_iter *iter)
543 	__acquires(RCU)
544 {
545 	struct rhashtable *ht = iter->ht;
546 
547 	mutex_lock(&ht->mutex);
548 
549 	if (iter->walker->tbl)
550 		list_del(&iter->walker->list);
551 
552 	rcu_read_lock();
553 
554 	mutex_unlock(&ht->mutex);
555 
556 	if (!iter->walker->tbl) {
557 		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
558 		return -EAGAIN;
559 	}
560 
561 	return 0;
562 }
563 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
564 
565 /**
566  * rhashtable_walk_next - Return the next object and advance the iterator
567  * @iter:	Hash table iterator
568  *
569  * Note that you must call rhashtable_walk_stop when you are finished
570  * with the walk.
571  *
572  * Returns the next object or NULL when the end of the table is reached.
573  *
574  * Returns -EAGAIN if resize event occured.  Note that the iterator
575  * will rewind back to the beginning and you may continue to use it.
576  */
577 void *rhashtable_walk_next(struct rhashtable_iter *iter)
578 {
579 	struct bucket_table *tbl = iter->walker->tbl;
580 	struct rhashtable *ht = iter->ht;
581 	struct rhash_head *p = iter->p;
582 	void *obj = NULL;
583 
584 	if (p) {
585 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
586 		goto next;
587 	}
588 
589 	for (; iter->slot < tbl->size; iter->slot++) {
590 		int skip = iter->skip;
591 
592 		rht_for_each_rcu(p, tbl, iter->slot) {
593 			if (!skip)
594 				break;
595 			skip--;
596 		}
597 
598 next:
599 		if (!rht_is_a_nulls(p)) {
600 			iter->skip++;
601 			iter->p = p;
602 			obj = rht_obj(ht, p);
603 			goto out;
604 		}
605 
606 		iter->skip = 0;
607 	}
608 
609 	/* Ensure we see any new tables. */
610 	smp_rmb();
611 
612 	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
613 	if (iter->walker->tbl) {
614 		iter->slot = 0;
615 		iter->skip = 0;
616 		return ERR_PTR(-EAGAIN);
617 	}
618 
619 	iter->p = NULL;
620 
621 out:
622 
623 	return obj;
624 }
625 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
626 
627 /**
628  * rhashtable_walk_stop - Finish a hash table walk
629  * @iter:	Hash table iterator
630  *
631  * Finish a hash table walk.
632  */
633 void rhashtable_walk_stop(struct rhashtable_iter *iter)
634 	__releases(RCU)
635 {
636 	struct rhashtable *ht;
637 	struct bucket_table *tbl = iter->walker->tbl;
638 
639 	if (!tbl)
640 		goto out;
641 
642 	ht = iter->ht;
643 
644 	spin_lock(&ht->lock);
645 	if (tbl->rehash < tbl->size)
646 		list_add(&iter->walker->list, &tbl->walkers);
647 	else
648 		iter->walker->tbl = NULL;
649 	spin_unlock(&ht->lock);
650 
651 	iter->p = NULL;
652 
653 out:
654 	rcu_read_unlock();
655 }
656 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
657 
658 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
659 {
660 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
661 		   (unsigned long)params->min_size);
662 }
663 
664 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
665 {
666 	return jhash2(key, length, seed);
667 }
668 
669 /**
670  * rhashtable_init - initialize a new hash table
671  * @ht:		hash table to be initialized
672  * @params:	configuration parameters
673  *
674  * Initializes a new hash table based on the provided configuration
675  * parameters. A table can be configured either with a variable or
676  * fixed length key:
677  *
678  * Configuration Example 1: Fixed length keys
679  * struct test_obj {
680  *	int			key;
681  *	void *			my_member;
682  *	struct rhash_head	node;
683  * };
684  *
685  * struct rhashtable_params params = {
686  *	.head_offset = offsetof(struct test_obj, node),
687  *	.key_offset = offsetof(struct test_obj, key),
688  *	.key_len = sizeof(int),
689  *	.hashfn = jhash,
690  *	.nulls_base = (1U << RHT_BASE_SHIFT),
691  * };
692  *
693  * Configuration Example 2: Variable length keys
694  * struct test_obj {
695  *	[...]
696  *	struct rhash_head	node;
697  * };
698  *
699  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
700  * {
701  *	struct test_obj *obj = data;
702  *
703  *	return [... hash ...];
704  * }
705  *
706  * struct rhashtable_params params = {
707  *	.head_offset = offsetof(struct test_obj, node),
708  *	.hashfn = jhash,
709  *	.obj_hashfn = my_hash_fn,
710  * };
711  */
712 int rhashtable_init(struct rhashtable *ht,
713 		    const struct rhashtable_params *params)
714 {
715 	struct bucket_table *tbl;
716 	size_t size;
717 
718 	size = HASH_DEFAULT_SIZE;
719 
720 	if ((!params->key_len && !params->obj_hashfn) ||
721 	    (params->obj_hashfn && !params->obj_cmpfn))
722 		return -EINVAL;
723 
724 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
725 		return -EINVAL;
726 
727 	if (params->nelem_hint)
728 		size = rounded_hashtable_size(params);
729 
730 	memset(ht, 0, sizeof(*ht));
731 	mutex_init(&ht->mutex);
732 	spin_lock_init(&ht->lock);
733 	memcpy(&ht->p, params, sizeof(*params));
734 
735 	if (params->min_size)
736 		ht->p.min_size = roundup_pow_of_two(params->min_size);
737 
738 	if (params->max_size)
739 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
740 
741 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
742 
743 	/* The maximum (not average) chain length grows with the
744 	 * size of the hash table, at a rate of (log N)/(log log N).
745 	 * The value of 16 is selected so that even if the hash
746 	 * table grew to 2^32 you would not expect the maximum
747 	 * chain length to exceed it unless we are under attack
748 	 * (or extremely unlucky).
749 	 *
750 	 * As this limit is only to detect attacks, we don't need
751 	 * to set it to a lower value as you'd need the chain
752 	 * length to vastly exceed 16 to have any real effect
753 	 * on the system.
754 	 */
755 	if (!params->insecure_elasticity)
756 		ht->elasticity = 16;
757 
758 	if (params->locks_mul)
759 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
760 	else
761 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
762 
763 	ht->key_len = ht->p.key_len;
764 	if (!params->hashfn) {
765 		ht->p.hashfn = jhash;
766 
767 		if (!(ht->key_len & (sizeof(u32) - 1))) {
768 			ht->key_len /= sizeof(u32);
769 			ht->p.hashfn = rhashtable_jhash2;
770 		}
771 	}
772 
773 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
774 	if (tbl == NULL)
775 		return -ENOMEM;
776 
777 	atomic_set(&ht->nelems, 0);
778 
779 	RCU_INIT_POINTER(ht->tbl, tbl);
780 
781 	INIT_WORK(&ht->run_work, rht_deferred_worker);
782 
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(rhashtable_init);
786 
787 /**
788  * rhashtable_free_and_destroy - free elements and destroy hash table
789  * @ht:		the hash table to destroy
790  * @free_fn:	callback to release resources of element
791  * @arg:	pointer passed to free_fn
792  *
793  * Stops an eventual async resize. If defined, invokes free_fn for each
794  * element to releasal resources. Please note that RCU protected
795  * readers may still be accessing the elements. Releasing of resources
796  * must occur in a compatible manner. Then frees the bucket array.
797  *
798  * This function will eventually sleep to wait for an async resize
799  * to complete. The caller is responsible that no further write operations
800  * occurs in parallel.
801  */
802 void rhashtable_free_and_destroy(struct rhashtable *ht,
803 				 void (*free_fn)(void *ptr, void *arg),
804 				 void *arg)
805 {
806 	const struct bucket_table *tbl;
807 	unsigned int i;
808 
809 	cancel_work_sync(&ht->run_work);
810 
811 	mutex_lock(&ht->mutex);
812 	tbl = rht_dereference(ht->tbl, ht);
813 	if (free_fn) {
814 		for (i = 0; i < tbl->size; i++) {
815 			struct rhash_head *pos, *next;
816 
817 			for (pos = rht_dereference(tbl->buckets[i], ht),
818 			     next = !rht_is_a_nulls(pos) ?
819 					rht_dereference(pos->next, ht) : NULL;
820 			     !rht_is_a_nulls(pos);
821 			     pos = next,
822 			     next = !rht_is_a_nulls(pos) ?
823 					rht_dereference(pos->next, ht) : NULL)
824 				free_fn(rht_obj(ht, pos), arg);
825 		}
826 	}
827 
828 	bucket_table_free(tbl);
829 	mutex_unlock(&ht->mutex);
830 }
831 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
832 
833 void rhashtable_destroy(struct rhashtable *ht)
834 {
835 	return rhashtable_free_and_destroy(ht, NULL, NULL);
836 }
837 EXPORT_SYMBOL_GPL(rhashtable_destroy);
838