xref: /openbmc/linux/lib/rhashtable.c (revision 4e1a33b1)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 
31 #define HASH_DEFAULT_SIZE	64UL
32 #define HASH_MIN_SIZE		4U
33 #define BUCKET_LOCKS_PER_CPU	32UL
34 
35 union nested_table {
36 	union nested_table __rcu *table;
37 	struct rhash_head __rcu *bucket;
38 };
39 
40 static u32 head_hashfn(struct rhashtable *ht,
41 		       const struct bucket_table *tbl,
42 		       const struct rhash_head *he)
43 {
44 	return rht_head_hashfn(ht, tbl, he, ht->p);
45 }
46 
47 #ifdef CONFIG_PROVE_LOCKING
48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
49 
50 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
51 {
52 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
53 }
54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
55 
56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
57 {
58 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
59 
60 	return (debug_locks) ? lockdep_is_held(lock) : 1;
61 }
62 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
63 #else
64 #define ASSERT_RHT_MUTEX(HT)
65 #endif
66 
67 
68 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
69 			      gfp_t gfp)
70 {
71 	unsigned int i, size;
72 #if defined(CONFIG_PROVE_LOCKING)
73 	unsigned int nr_pcpus = 2;
74 #else
75 	unsigned int nr_pcpus = num_possible_cpus();
76 #endif
77 
78 	nr_pcpus = min_t(unsigned int, nr_pcpus, 64UL);
79 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
80 
81 	/* Never allocate more than 0.5 locks per bucket */
82 	size = min_t(unsigned int, size, tbl->size >> 1);
83 
84 	if (tbl->nest)
85 		size = min(size, 1U << tbl->nest);
86 
87 	if (sizeof(spinlock_t) != 0) {
88 		tbl->locks = NULL;
89 #ifdef CONFIG_NUMA
90 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
91 		    gfp == GFP_KERNEL)
92 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
93 #endif
94 		if (gfp != GFP_KERNEL)
95 			gfp |= __GFP_NOWARN | __GFP_NORETRY;
96 
97 		if (!tbl->locks)
98 			tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
99 						   gfp);
100 		if (!tbl->locks)
101 			return -ENOMEM;
102 		for (i = 0; i < size; i++)
103 			spin_lock_init(&tbl->locks[i]);
104 	}
105 	tbl->locks_mask = size - 1;
106 
107 	return 0;
108 }
109 
110 static void nested_table_free(union nested_table *ntbl, unsigned int size)
111 {
112 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
113 	const unsigned int len = 1 << shift;
114 	unsigned int i;
115 
116 	ntbl = rcu_dereference_raw(ntbl->table);
117 	if (!ntbl)
118 		return;
119 
120 	if (size > len) {
121 		size >>= shift;
122 		for (i = 0; i < len; i++)
123 			nested_table_free(ntbl + i, size);
124 	}
125 
126 	kfree(ntbl);
127 }
128 
129 static void nested_bucket_table_free(const struct bucket_table *tbl)
130 {
131 	unsigned int size = tbl->size >> tbl->nest;
132 	unsigned int len = 1 << tbl->nest;
133 	union nested_table *ntbl;
134 	unsigned int i;
135 
136 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
137 
138 	for (i = 0; i < len; i++)
139 		nested_table_free(ntbl + i, size);
140 
141 	kfree(ntbl);
142 }
143 
144 static void bucket_table_free(const struct bucket_table *tbl)
145 {
146 	if (tbl->nest)
147 		nested_bucket_table_free(tbl);
148 
149 	if (tbl)
150 		kvfree(tbl->locks);
151 
152 	kvfree(tbl);
153 }
154 
155 static void bucket_table_free_rcu(struct rcu_head *head)
156 {
157 	bucket_table_free(container_of(head, struct bucket_table, rcu));
158 }
159 
160 static union nested_table *nested_table_alloc(struct rhashtable *ht,
161 					      union nested_table __rcu **prev,
162 					      unsigned int shifted,
163 					      unsigned int nhash)
164 {
165 	union nested_table *ntbl;
166 	int i;
167 
168 	ntbl = rcu_dereference(*prev);
169 	if (ntbl)
170 		return ntbl;
171 
172 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
173 
174 	if (ntbl && shifted) {
175 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
176 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
177 					    (i << shifted) | nhash);
178 	}
179 
180 	rcu_assign_pointer(*prev, ntbl);
181 
182 	return ntbl;
183 }
184 
185 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
186 						      size_t nbuckets,
187 						      gfp_t gfp)
188 {
189 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
190 	struct bucket_table *tbl;
191 	size_t size;
192 
193 	if (nbuckets < (1 << (shift + 1)))
194 		return NULL;
195 
196 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
197 
198 	tbl = kzalloc(size, gfp);
199 	if (!tbl)
200 		return NULL;
201 
202 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
203 				0, 0)) {
204 		kfree(tbl);
205 		return NULL;
206 	}
207 
208 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
209 
210 	return tbl;
211 }
212 
213 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
214 					       size_t nbuckets,
215 					       gfp_t gfp)
216 {
217 	struct bucket_table *tbl = NULL;
218 	size_t size;
219 	int i;
220 
221 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
222 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
223 	    gfp != GFP_KERNEL)
224 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
225 	if (tbl == NULL && gfp == GFP_KERNEL)
226 		tbl = vzalloc(size);
227 
228 	size = nbuckets;
229 
230 	if (tbl == NULL && gfp != GFP_KERNEL) {
231 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
232 		nbuckets = 0;
233 	}
234 	if (tbl == NULL)
235 		return NULL;
236 
237 	tbl->size = size;
238 
239 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
240 		bucket_table_free(tbl);
241 		return NULL;
242 	}
243 
244 	INIT_LIST_HEAD(&tbl->walkers);
245 
246 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
247 
248 	for (i = 0; i < nbuckets; i++)
249 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
250 
251 	return tbl;
252 }
253 
254 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
255 						  struct bucket_table *tbl)
256 {
257 	struct bucket_table *new_tbl;
258 
259 	do {
260 		new_tbl = tbl;
261 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
262 	} while (tbl);
263 
264 	return new_tbl;
265 }
266 
267 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
268 {
269 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
270 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
271 		rht_dereference_rcu(old_tbl->future_tbl, ht));
272 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
273 	int err = -EAGAIN;
274 	struct rhash_head *head, *next, *entry;
275 	spinlock_t *new_bucket_lock;
276 	unsigned int new_hash;
277 
278 	if (new_tbl->nest)
279 		goto out;
280 
281 	err = -ENOENT;
282 
283 	rht_for_each(entry, old_tbl, old_hash) {
284 		err = 0;
285 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
286 
287 		if (rht_is_a_nulls(next))
288 			break;
289 
290 		pprev = &entry->next;
291 	}
292 
293 	if (err)
294 		goto out;
295 
296 	new_hash = head_hashfn(ht, new_tbl, entry);
297 
298 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
299 
300 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
301 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
302 				      new_tbl, new_hash);
303 
304 	RCU_INIT_POINTER(entry->next, head);
305 
306 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
307 	spin_unlock(new_bucket_lock);
308 
309 	rcu_assign_pointer(*pprev, next);
310 
311 out:
312 	return err;
313 }
314 
315 static int rhashtable_rehash_chain(struct rhashtable *ht,
316 				    unsigned int old_hash)
317 {
318 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
319 	spinlock_t *old_bucket_lock;
320 	int err;
321 
322 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
323 
324 	spin_lock_bh(old_bucket_lock);
325 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
326 		;
327 
328 	if (err == -ENOENT) {
329 		old_tbl->rehash++;
330 		err = 0;
331 	}
332 	spin_unlock_bh(old_bucket_lock);
333 
334 	return err;
335 }
336 
337 static int rhashtable_rehash_attach(struct rhashtable *ht,
338 				    struct bucket_table *old_tbl,
339 				    struct bucket_table *new_tbl)
340 {
341 	/* Protect future_tbl using the first bucket lock. */
342 	spin_lock_bh(old_tbl->locks);
343 
344 	/* Did somebody beat us to it? */
345 	if (rcu_access_pointer(old_tbl->future_tbl)) {
346 		spin_unlock_bh(old_tbl->locks);
347 		return -EEXIST;
348 	}
349 
350 	/* Make insertions go into the new, empty table right away. Deletions
351 	 * and lookups will be attempted in both tables until we synchronize.
352 	 */
353 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
354 
355 	spin_unlock_bh(old_tbl->locks);
356 
357 	return 0;
358 }
359 
360 static int rhashtable_rehash_table(struct rhashtable *ht)
361 {
362 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
363 	struct bucket_table *new_tbl;
364 	struct rhashtable_walker *walker;
365 	unsigned int old_hash;
366 	int err;
367 
368 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
369 	if (!new_tbl)
370 		return 0;
371 
372 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
373 		err = rhashtable_rehash_chain(ht, old_hash);
374 		if (err)
375 			return err;
376 	}
377 
378 	/* Publish the new table pointer. */
379 	rcu_assign_pointer(ht->tbl, new_tbl);
380 
381 	spin_lock(&ht->lock);
382 	list_for_each_entry(walker, &old_tbl->walkers, list)
383 		walker->tbl = NULL;
384 	spin_unlock(&ht->lock);
385 
386 	/* Wait for readers. All new readers will see the new
387 	 * table, and thus no references to the old table will
388 	 * remain.
389 	 */
390 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
391 
392 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
393 }
394 
395 static int rhashtable_rehash_alloc(struct rhashtable *ht,
396 				   struct bucket_table *old_tbl,
397 				   unsigned int size)
398 {
399 	struct bucket_table *new_tbl;
400 	int err;
401 
402 	ASSERT_RHT_MUTEX(ht);
403 
404 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
405 	if (new_tbl == NULL)
406 		return -ENOMEM;
407 
408 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
409 	if (err)
410 		bucket_table_free(new_tbl);
411 
412 	return err;
413 }
414 
415 /**
416  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
417  * @ht:		the hash table to shrink
418  *
419  * This function shrinks the hash table to fit, i.e., the smallest
420  * size would not cause it to expand right away automatically.
421  *
422  * The caller must ensure that no concurrent resizing occurs by holding
423  * ht->mutex.
424  *
425  * The caller must ensure that no concurrent table mutations take place.
426  * It is however valid to have concurrent lookups if they are RCU protected.
427  *
428  * It is valid to have concurrent insertions and deletions protected by per
429  * bucket locks or concurrent RCU protected lookups and traversals.
430  */
431 static int rhashtable_shrink(struct rhashtable *ht)
432 {
433 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
434 	unsigned int nelems = atomic_read(&ht->nelems);
435 	unsigned int size = 0;
436 
437 	if (nelems)
438 		size = roundup_pow_of_two(nelems * 3 / 2);
439 	if (size < ht->p.min_size)
440 		size = ht->p.min_size;
441 
442 	if (old_tbl->size <= size)
443 		return 0;
444 
445 	if (rht_dereference(old_tbl->future_tbl, ht))
446 		return -EEXIST;
447 
448 	return rhashtable_rehash_alloc(ht, old_tbl, size);
449 }
450 
451 static void rht_deferred_worker(struct work_struct *work)
452 {
453 	struct rhashtable *ht;
454 	struct bucket_table *tbl;
455 	int err = 0;
456 
457 	ht = container_of(work, struct rhashtable, run_work);
458 	mutex_lock(&ht->mutex);
459 
460 	tbl = rht_dereference(ht->tbl, ht);
461 	tbl = rhashtable_last_table(ht, tbl);
462 
463 	if (rht_grow_above_75(ht, tbl))
464 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
465 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
466 		err = rhashtable_shrink(ht);
467 	else if (tbl->nest)
468 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
469 
470 	if (!err)
471 		err = rhashtable_rehash_table(ht);
472 
473 	mutex_unlock(&ht->mutex);
474 
475 	if (err)
476 		schedule_work(&ht->run_work);
477 }
478 
479 static int rhashtable_insert_rehash(struct rhashtable *ht,
480 				    struct bucket_table *tbl)
481 {
482 	struct bucket_table *old_tbl;
483 	struct bucket_table *new_tbl;
484 	unsigned int size;
485 	int err;
486 
487 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
488 
489 	size = tbl->size;
490 
491 	err = -EBUSY;
492 
493 	if (rht_grow_above_75(ht, tbl))
494 		size *= 2;
495 	/* Do not schedule more than one rehash */
496 	else if (old_tbl != tbl)
497 		goto fail;
498 
499 	err = -ENOMEM;
500 
501 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
502 	if (new_tbl == NULL)
503 		goto fail;
504 
505 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
506 	if (err) {
507 		bucket_table_free(new_tbl);
508 		if (err == -EEXIST)
509 			err = 0;
510 	} else
511 		schedule_work(&ht->run_work);
512 
513 	return err;
514 
515 fail:
516 	/* Do not fail the insert if someone else did a rehash. */
517 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
518 		return 0;
519 
520 	/* Schedule async rehash to retry allocation in process context. */
521 	if (err == -ENOMEM)
522 		schedule_work(&ht->run_work);
523 
524 	return err;
525 }
526 
527 static void *rhashtable_lookup_one(struct rhashtable *ht,
528 				   struct bucket_table *tbl, unsigned int hash,
529 				   const void *key, struct rhash_head *obj)
530 {
531 	struct rhashtable_compare_arg arg = {
532 		.ht = ht,
533 		.key = key,
534 	};
535 	struct rhash_head __rcu **pprev;
536 	struct rhash_head *head;
537 	int elasticity;
538 
539 	elasticity = ht->elasticity;
540 	pprev = rht_bucket_var(tbl, hash);
541 	rht_for_each_continue(head, *pprev, tbl, hash) {
542 		struct rhlist_head *list;
543 		struct rhlist_head *plist;
544 
545 		elasticity--;
546 		if (!key ||
547 		    (ht->p.obj_cmpfn ?
548 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
549 		     rhashtable_compare(&arg, rht_obj(ht, head))))
550 			continue;
551 
552 		if (!ht->rhlist)
553 			return rht_obj(ht, head);
554 
555 		list = container_of(obj, struct rhlist_head, rhead);
556 		plist = container_of(head, struct rhlist_head, rhead);
557 
558 		RCU_INIT_POINTER(list->next, plist);
559 		head = rht_dereference_bucket(head->next, tbl, hash);
560 		RCU_INIT_POINTER(list->rhead.next, head);
561 		rcu_assign_pointer(*pprev, obj);
562 
563 		return NULL;
564 	}
565 
566 	if (elasticity <= 0)
567 		return ERR_PTR(-EAGAIN);
568 
569 	return ERR_PTR(-ENOENT);
570 }
571 
572 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
573 						  struct bucket_table *tbl,
574 						  unsigned int hash,
575 						  struct rhash_head *obj,
576 						  void *data)
577 {
578 	struct rhash_head __rcu **pprev;
579 	struct bucket_table *new_tbl;
580 	struct rhash_head *head;
581 
582 	if (!IS_ERR_OR_NULL(data))
583 		return ERR_PTR(-EEXIST);
584 
585 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
586 		return ERR_CAST(data);
587 
588 	new_tbl = rcu_dereference(tbl->future_tbl);
589 	if (new_tbl)
590 		return new_tbl;
591 
592 	if (PTR_ERR(data) != -ENOENT)
593 		return ERR_CAST(data);
594 
595 	if (unlikely(rht_grow_above_max(ht, tbl)))
596 		return ERR_PTR(-E2BIG);
597 
598 	if (unlikely(rht_grow_above_100(ht, tbl)))
599 		return ERR_PTR(-EAGAIN);
600 
601 	pprev = rht_bucket_insert(ht, tbl, hash);
602 	if (!pprev)
603 		return ERR_PTR(-ENOMEM);
604 
605 	head = rht_dereference_bucket(*pprev, tbl, hash);
606 
607 	RCU_INIT_POINTER(obj->next, head);
608 	if (ht->rhlist) {
609 		struct rhlist_head *list;
610 
611 		list = container_of(obj, struct rhlist_head, rhead);
612 		RCU_INIT_POINTER(list->next, NULL);
613 	}
614 
615 	rcu_assign_pointer(*pprev, obj);
616 
617 	atomic_inc(&ht->nelems);
618 	if (rht_grow_above_75(ht, tbl))
619 		schedule_work(&ht->run_work);
620 
621 	return NULL;
622 }
623 
624 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
625 				   struct rhash_head *obj)
626 {
627 	struct bucket_table *new_tbl;
628 	struct bucket_table *tbl;
629 	unsigned int hash;
630 	spinlock_t *lock;
631 	void *data;
632 
633 	tbl = rcu_dereference(ht->tbl);
634 
635 	/* All insertions must grab the oldest table containing
636 	 * the hashed bucket that is yet to be rehashed.
637 	 */
638 	for (;;) {
639 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
640 		lock = rht_bucket_lock(tbl, hash);
641 		spin_lock_bh(lock);
642 
643 		if (tbl->rehash <= hash)
644 			break;
645 
646 		spin_unlock_bh(lock);
647 		tbl = rcu_dereference(tbl->future_tbl);
648 	}
649 
650 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
651 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
652 	if (PTR_ERR(new_tbl) != -EEXIST)
653 		data = ERR_CAST(new_tbl);
654 
655 	while (!IS_ERR_OR_NULL(new_tbl)) {
656 		tbl = new_tbl;
657 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
658 		spin_lock_nested(rht_bucket_lock(tbl, hash),
659 				 SINGLE_DEPTH_NESTING);
660 
661 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
662 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
663 		if (PTR_ERR(new_tbl) != -EEXIST)
664 			data = ERR_CAST(new_tbl);
665 
666 		spin_unlock(rht_bucket_lock(tbl, hash));
667 	}
668 
669 	spin_unlock_bh(lock);
670 
671 	if (PTR_ERR(data) == -EAGAIN)
672 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
673 			       -EAGAIN);
674 
675 	return data;
676 }
677 
678 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
679 			     struct rhash_head *obj)
680 {
681 	void *data;
682 
683 	do {
684 		rcu_read_lock();
685 		data = rhashtable_try_insert(ht, key, obj);
686 		rcu_read_unlock();
687 	} while (PTR_ERR(data) == -EAGAIN);
688 
689 	return data;
690 }
691 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
692 
693 /**
694  * rhashtable_walk_enter - Initialise an iterator
695  * @ht:		Table to walk over
696  * @iter:	Hash table Iterator
697  *
698  * This function prepares a hash table walk.
699  *
700  * Note that if you restart a walk after rhashtable_walk_stop you
701  * may see the same object twice.  Also, you may miss objects if
702  * there are removals in between rhashtable_walk_stop and the next
703  * call to rhashtable_walk_start.
704  *
705  * For a completely stable walk you should construct your own data
706  * structure outside the hash table.
707  *
708  * This function may sleep so you must not call it from interrupt
709  * context or with spin locks held.
710  *
711  * You must call rhashtable_walk_exit after this function returns.
712  */
713 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
714 {
715 	iter->ht = ht;
716 	iter->p = NULL;
717 	iter->slot = 0;
718 	iter->skip = 0;
719 
720 	spin_lock(&ht->lock);
721 	iter->walker.tbl =
722 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
723 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
724 	spin_unlock(&ht->lock);
725 }
726 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
727 
728 /**
729  * rhashtable_walk_exit - Free an iterator
730  * @iter:	Hash table Iterator
731  *
732  * This function frees resources allocated by rhashtable_walk_init.
733  */
734 void rhashtable_walk_exit(struct rhashtable_iter *iter)
735 {
736 	spin_lock(&iter->ht->lock);
737 	if (iter->walker.tbl)
738 		list_del(&iter->walker.list);
739 	spin_unlock(&iter->ht->lock);
740 }
741 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
742 
743 /**
744  * rhashtable_walk_start - Start a hash table walk
745  * @iter:	Hash table iterator
746  *
747  * Start a hash table walk.  Note that we take the RCU lock in all
748  * cases including when we return an error.  So you must always call
749  * rhashtable_walk_stop to clean up.
750  *
751  * Returns zero if successful.
752  *
753  * Returns -EAGAIN if resize event occured.  Note that the iterator
754  * will rewind back to the beginning and you may use it immediately
755  * by calling rhashtable_walk_next.
756  */
757 int rhashtable_walk_start(struct rhashtable_iter *iter)
758 	__acquires(RCU)
759 {
760 	struct rhashtable *ht = iter->ht;
761 
762 	rcu_read_lock();
763 
764 	spin_lock(&ht->lock);
765 	if (iter->walker.tbl)
766 		list_del(&iter->walker.list);
767 	spin_unlock(&ht->lock);
768 
769 	if (!iter->walker.tbl) {
770 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
771 		return -EAGAIN;
772 	}
773 
774 	return 0;
775 }
776 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
777 
778 /**
779  * rhashtable_walk_next - Return the next object and advance the iterator
780  * @iter:	Hash table iterator
781  *
782  * Note that you must call rhashtable_walk_stop when you are finished
783  * with the walk.
784  *
785  * Returns the next object or NULL when the end of the table is reached.
786  *
787  * Returns -EAGAIN if resize event occured.  Note that the iterator
788  * will rewind back to the beginning and you may continue to use it.
789  */
790 void *rhashtable_walk_next(struct rhashtable_iter *iter)
791 {
792 	struct bucket_table *tbl = iter->walker.tbl;
793 	struct rhlist_head *list = iter->list;
794 	struct rhashtable *ht = iter->ht;
795 	struct rhash_head *p = iter->p;
796 	bool rhlist = ht->rhlist;
797 
798 	if (p) {
799 		if (!rhlist || !(list = rcu_dereference(list->next))) {
800 			p = rcu_dereference(p->next);
801 			list = container_of(p, struct rhlist_head, rhead);
802 		}
803 		goto next;
804 	}
805 
806 	for (; iter->slot < tbl->size; iter->slot++) {
807 		int skip = iter->skip;
808 
809 		rht_for_each_rcu(p, tbl, iter->slot) {
810 			if (rhlist) {
811 				list = container_of(p, struct rhlist_head,
812 						    rhead);
813 				do {
814 					if (!skip)
815 						goto next;
816 					skip--;
817 					list = rcu_dereference(list->next);
818 				} while (list);
819 
820 				continue;
821 			}
822 			if (!skip)
823 				break;
824 			skip--;
825 		}
826 
827 next:
828 		if (!rht_is_a_nulls(p)) {
829 			iter->skip++;
830 			iter->p = p;
831 			iter->list = list;
832 			return rht_obj(ht, rhlist ? &list->rhead : p);
833 		}
834 
835 		iter->skip = 0;
836 	}
837 
838 	iter->p = NULL;
839 
840 	/* Ensure we see any new tables. */
841 	smp_rmb();
842 
843 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
844 	if (iter->walker.tbl) {
845 		iter->slot = 0;
846 		iter->skip = 0;
847 		return ERR_PTR(-EAGAIN);
848 	}
849 
850 	return NULL;
851 }
852 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
853 
854 /**
855  * rhashtable_walk_stop - Finish a hash table walk
856  * @iter:	Hash table iterator
857  *
858  * Finish a hash table walk.
859  */
860 void rhashtable_walk_stop(struct rhashtable_iter *iter)
861 	__releases(RCU)
862 {
863 	struct rhashtable *ht;
864 	struct bucket_table *tbl = iter->walker.tbl;
865 
866 	if (!tbl)
867 		goto out;
868 
869 	ht = iter->ht;
870 
871 	spin_lock(&ht->lock);
872 	if (tbl->rehash < tbl->size)
873 		list_add(&iter->walker.list, &tbl->walkers);
874 	else
875 		iter->walker.tbl = NULL;
876 	spin_unlock(&ht->lock);
877 
878 	iter->p = NULL;
879 
880 out:
881 	rcu_read_unlock();
882 }
883 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
884 
885 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
886 {
887 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
888 		   (unsigned long)params->min_size);
889 }
890 
891 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
892 {
893 	return jhash2(key, length, seed);
894 }
895 
896 /**
897  * rhashtable_init - initialize a new hash table
898  * @ht:		hash table to be initialized
899  * @params:	configuration parameters
900  *
901  * Initializes a new hash table based on the provided configuration
902  * parameters. A table can be configured either with a variable or
903  * fixed length key:
904  *
905  * Configuration Example 1: Fixed length keys
906  * struct test_obj {
907  *	int			key;
908  *	void *			my_member;
909  *	struct rhash_head	node;
910  * };
911  *
912  * struct rhashtable_params params = {
913  *	.head_offset = offsetof(struct test_obj, node),
914  *	.key_offset = offsetof(struct test_obj, key),
915  *	.key_len = sizeof(int),
916  *	.hashfn = jhash,
917  *	.nulls_base = (1U << RHT_BASE_SHIFT),
918  * };
919  *
920  * Configuration Example 2: Variable length keys
921  * struct test_obj {
922  *	[...]
923  *	struct rhash_head	node;
924  * };
925  *
926  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
927  * {
928  *	struct test_obj *obj = data;
929  *
930  *	return [... hash ...];
931  * }
932  *
933  * struct rhashtable_params params = {
934  *	.head_offset = offsetof(struct test_obj, node),
935  *	.hashfn = jhash,
936  *	.obj_hashfn = my_hash_fn,
937  * };
938  */
939 int rhashtable_init(struct rhashtable *ht,
940 		    const struct rhashtable_params *params)
941 {
942 	struct bucket_table *tbl;
943 	size_t size;
944 
945 	size = HASH_DEFAULT_SIZE;
946 
947 	if ((!params->key_len && !params->obj_hashfn) ||
948 	    (params->obj_hashfn && !params->obj_cmpfn))
949 		return -EINVAL;
950 
951 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
952 		return -EINVAL;
953 
954 	memset(ht, 0, sizeof(*ht));
955 	mutex_init(&ht->mutex);
956 	spin_lock_init(&ht->lock);
957 	memcpy(&ht->p, params, sizeof(*params));
958 
959 	if (params->min_size)
960 		ht->p.min_size = roundup_pow_of_two(params->min_size);
961 
962 	if (params->max_size)
963 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
964 
965 	if (params->insecure_max_entries)
966 		ht->p.insecure_max_entries =
967 			rounddown_pow_of_two(params->insecure_max_entries);
968 	else
969 		ht->p.insecure_max_entries = ht->p.max_size * 2;
970 
971 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
972 
973 	if (params->nelem_hint)
974 		size = rounded_hashtable_size(&ht->p);
975 
976 	/* The maximum (not average) chain length grows with the
977 	 * size of the hash table, at a rate of (log N)/(log log N).
978 	 * The value of 16 is selected so that even if the hash
979 	 * table grew to 2^32 you would not expect the maximum
980 	 * chain length to exceed it unless we are under attack
981 	 * (or extremely unlucky).
982 	 *
983 	 * As this limit is only to detect attacks, we don't need
984 	 * to set it to a lower value as you'd need the chain
985 	 * length to vastly exceed 16 to have any real effect
986 	 * on the system.
987 	 */
988 	if (!params->insecure_elasticity)
989 		ht->elasticity = 16;
990 
991 	if (params->locks_mul)
992 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
993 	else
994 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
995 
996 	ht->key_len = ht->p.key_len;
997 	if (!params->hashfn) {
998 		ht->p.hashfn = jhash;
999 
1000 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1001 			ht->key_len /= sizeof(u32);
1002 			ht->p.hashfn = rhashtable_jhash2;
1003 		}
1004 	}
1005 
1006 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1007 	if (tbl == NULL)
1008 		return -ENOMEM;
1009 
1010 	atomic_set(&ht->nelems, 0);
1011 
1012 	RCU_INIT_POINTER(ht->tbl, tbl);
1013 
1014 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1015 
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(rhashtable_init);
1019 
1020 /**
1021  * rhltable_init - initialize a new hash list table
1022  * @hlt:	hash list table to be initialized
1023  * @params:	configuration parameters
1024  *
1025  * Initializes a new hash list table.
1026  *
1027  * See documentation for rhashtable_init.
1028  */
1029 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1030 {
1031 	int err;
1032 
1033 	/* No rhlist NULLs marking for now. */
1034 	if (params->nulls_base)
1035 		return -EINVAL;
1036 
1037 	err = rhashtable_init(&hlt->ht, params);
1038 	hlt->ht.rhlist = true;
1039 	return err;
1040 }
1041 EXPORT_SYMBOL_GPL(rhltable_init);
1042 
1043 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1044 				void (*free_fn)(void *ptr, void *arg),
1045 				void *arg)
1046 {
1047 	struct rhlist_head *list;
1048 
1049 	if (!ht->rhlist) {
1050 		free_fn(rht_obj(ht, obj), arg);
1051 		return;
1052 	}
1053 
1054 	list = container_of(obj, struct rhlist_head, rhead);
1055 	do {
1056 		obj = &list->rhead;
1057 		list = rht_dereference(list->next, ht);
1058 		free_fn(rht_obj(ht, obj), arg);
1059 	} while (list);
1060 }
1061 
1062 /**
1063  * rhashtable_free_and_destroy - free elements and destroy hash table
1064  * @ht:		the hash table to destroy
1065  * @free_fn:	callback to release resources of element
1066  * @arg:	pointer passed to free_fn
1067  *
1068  * Stops an eventual async resize. If defined, invokes free_fn for each
1069  * element to releasal resources. Please note that RCU protected
1070  * readers may still be accessing the elements. Releasing of resources
1071  * must occur in a compatible manner. Then frees the bucket array.
1072  *
1073  * This function will eventually sleep to wait for an async resize
1074  * to complete. The caller is responsible that no further write operations
1075  * occurs in parallel.
1076  */
1077 void rhashtable_free_and_destroy(struct rhashtable *ht,
1078 				 void (*free_fn)(void *ptr, void *arg),
1079 				 void *arg)
1080 {
1081 	struct bucket_table *tbl;
1082 	unsigned int i;
1083 
1084 	cancel_work_sync(&ht->run_work);
1085 
1086 	mutex_lock(&ht->mutex);
1087 	tbl = rht_dereference(ht->tbl, ht);
1088 	if (free_fn) {
1089 		for (i = 0; i < tbl->size; i++) {
1090 			struct rhash_head *pos, *next;
1091 
1092 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1093 			     next = !rht_is_a_nulls(pos) ?
1094 					rht_dereference(pos->next, ht) : NULL;
1095 			     !rht_is_a_nulls(pos);
1096 			     pos = next,
1097 			     next = !rht_is_a_nulls(pos) ?
1098 					rht_dereference(pos->next, ht) : NULL)
1099 				rhashtable_free_one(ht, pos, free_fn, arg);
1100 		}
1101 	}
1102 
1103 	bucket_table_free(tbl);
1104 	mutex_unlock(&ht->mutex);
1105 }
1106 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1107 
1108 void rhashtable_destroy(struct rhashtable *ht)
1109 {
1110 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1111 }
1112 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1113 
1114 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1115 					    unsigned int hash)
1116 {
1117 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1118 	static struct rhash_head __rcu *rhnull =
1119 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1120 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1121 	unsigned int size = tbl->size >> tbl->nest;
1122 	unsigned int subhash = hash;
1123 	union nested_table *ntbl;
1124 
1125 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1126 	ntbl = rht_dereference_bucket(ntbl[index].table, tbl, hash);
1127 	subhash >>= tbl->nest;
1128 
1129 	while (ntbl && size > (1 << shift)) {
1130 		index = subhash & ((1 << shift) - 1);
1131 		ntbl = rht_dereference_bucket(ntbl[index].table, tbl, hash);
1132 		size >>= shift;
1133 		subhash >>= shift;
1134 	}
1135 
1136 	if (!ntbl)
1137 		return &rhnull;
1138 
1139 	return &ntbl[subhash].bucket;
1140 
1141 }
1142 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1143 
1144 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1145 						   struct bucket_table *tbl,
1146 						   unsigned int hash)
1147 {
1148 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1149 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1150 	unsigned int size = tbl->size >> tbl->nest;
1151 	union nested_table *ntbl;
1152 	unsigned int shifted;
1153 	unsigned int nhash;
1154 
1155 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1156 	hash >>= tbl->nest;
1157 	nhash = index;
1158 	shifted = tbl->nest;
1159 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1160 				  size <= (1 << shift) ? shifted : 0, nhash);
1161 
1162 	while (ntbl && size > (1 << shift)) {
1163 		index = hash & ((1 << shift) - 1);
1164 		size >>= shift;
1165 		hash >>= shift;
1166 		nhash |= index << shifted;
1167 		shifted += shift;
1168 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1169 					  size <= (1 << shift) ? shifted : 0,
1170 					  nhash);
1171 	}
1172 
1173 	if (!ntbl)
1174 		return NULL;
1175 
1176 	return &ntbl[hash].bucket;
1177 
1178 }
1179 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1180