1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/log2.h> 21 #include <linux/sched.h> 22 #include <linux/rculist.h> 23 #include <linux/slab.h> 24 #include <linux/vmalloc.h> 25 #include <linux/mm.h> 26 #include <linux/jhash.h> 27 #include <linux/random.h> 28 #include <linux/rhashtable.h> 29 #include <linux/err.h> 30 #include <linux/export.h> 31 32 #define HASH_DEFAULT_SIZE 64UL 33 #define HASH_MIN_SIZE 4U 34 #define BUCKET_LOCKS_PER_CPU 32UL 35 36 union nested_table { 37 union nested_table __rcu *table; 38 struct rhash_head __rcu *bucket; 39 }; 40 41 static u32 head_hashfn(struct rhashtable *ht, 42 const struct bucket_table *tbl, 43 const struct rhash_head *he) 44 { 45 return rht_head_hashfn(ht, tbl, he, ht->p); 46 } 47 48 #ifdef CONFIG_PROVE_LOCKING 49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 50 51 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 52 { 53 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 54 } 55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 56 57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 58 { 59 spinlock_t *lock = rht_bucket_lock(tbl, hash); 60 61 return (debug_locks) ? lockdep_is_held(lock) : 1; 62 } 63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 64 #else 65 #define ASSERT_RHT_MUTEX(HT) 66 #endif 67 68 static void nested_table_free(union nested_table *ntbl, unsigned int size) 69 { 70 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 71 const unsigned int len = 1 << shift; 72 unsigned int i; 73 74 ntbl = rcu_dereference_raw(ntbl->table); 75 if (!ntbl) 76 return; 77 78 if (size > len) { 79 size >>= shift; 80 for (i = 0; i < len; i++) 81 nested_table_free(ntbl + i, size); 82 } 83 84 kfree(ntbl); 85 } 86 87 static void nested_bucket_table_free(const struct bucket_table *tbl) 88 { 89 unsigned int size = tbl->size >> tbl->nest; 90 unsigned int len = 1 << tbl->nest; 91 union nested_table *ntbl; 92 unsigned int i; 93 94 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 95 96 for (i = 0; i < len; i++) 97 nested_table_free(ntbl + i, size); 98 99 kfree(ntbl); 100 } 101 102 static void bucket_table_free(const struct bucket_table *tbl) 103 { 104 if (tbl->nest) 105 nested_bucket_table_free(tbl); 106 107 free_bucket_spinlocks(tbl->locks); 108 kvfree(tbl); 109 } 110 111 static void bucket_table_free_rcu(struct rcu_head *head) 112 { 113 bucket_table_free(container_of(head, struct bucket_table, rcu)); 114 } 115 116 static union nested_table *nested_table_alloc(struct rhashtable *ht, 117 union nested_table __rcu **prev, 118 unsigned int shifted, 119 unsigned int nhash) 120 { 121 union nested_table *ntbl; 122 int i; 123 124 ntbl = rcu_dereference(*prev); 125 if (ntbl) 126 return ntbl; 127 128 ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC); 129 130 if (ntbl && shifted) { 131 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++) 132 INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht, 133 (i << shifted) | nhash); 134 } 135 136 rcu_assign_pointer(*prev, ntbl); 137 138 return ntbl; 139 } 140 141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht, 142 size_t nbuckets, 143 gfp_t gfp) 144 { 145 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 146 struct bucket_table *tbl; 147 size_t size; 148 149 if (nbuckets < (1 << (shift + 1))) 150 return NULL; 151 152 size = sizeof(*tbl) + sizeof(tbl->buckets[0]); 153 154 tbl = kzalloc(size, gfp); 155 if (!tbl) 156 return NULL; 157 158 if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets, 159 0, 0)) { 160 kfree(tbl); 161 return NULL; 162 } 163 164 tbl->nest = (ilog2(nbuckets) - 1) % shift + 1; 165 166 return tbl; 167 } 168 169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 170 size_t nbuckets, 171 gfp_t gfp) 172 { 173 struct bucket_table *tbl = NULL; 174 size_t size, max_locks; 175 int i; 176 177 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 178 if (gfp != GFP_KERNEL) 179 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY); 180 else 181 tbl = kvzalloc(size, gfp); 182 183 size = nbuckets; 184 185 if (tbl == NULL && gfp != GFP_KERNEL) { 186 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp); 187 nbuckets = 0; 188 } 189 if (tbl == NULL) 190 return NULL; 191 192 tbl->size = size; 193 194 max_locks = size >> 1; 195 if (tbl->nest) 196 max_locks = min_t(size_t, max_locks, 1U << tbl->nest); 197 198 if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks, 199 ht->p.locks_mul, gfp) < 0) { 200 bucket_table_free(tbl); 201 return NULL; 202 } 203 204 INIT_LIST_HEAD(&tbl->walkers); 205 206 tbl->hash_rnd = get_random_u32(); 207 208 for (i = 0; i < nbuckets; i++) 209 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 210 211 return tbl; 212 } 213 214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 215 struct bucket_table *tbl) 216 { 217 struct bucket_table *new_tbl; 218 219 do { 220 new_tbl = tbl; 221 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 222 } while (tbl); 223 224 return new_tbl; 225 } 226 227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 228 { 229 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 230 struct bucket_table *new_tbl = rhashtable_last_table(ht, 231 rht_dereference_rcu(old_tbl->future_tbl, ht)); 232 struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash); 233 int err = -EAGAIN; 234 struct rhash_head *head, *next, *entry; 235 spinlock_t *new_bucket_lock; 236 unsigned int new_hash; 237 238 if (new_tbl->nest) 239 goto out; 240 241 err = -ENOENT; 242 243 rht_for_each(entry, old_tbl, old_hash) { 244 err = 0; 245 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 246 247 if (rht_is_a_nulls(next)) 248 break; 249 250 pprev = &entry->next; 251 } 252 253 if (err) 254 goto out; 255 256 new_hash = head_hashfn(ht, new_tbl, entry); 257 258 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 259 260 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 261 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 262 new_tbl, new_hash); 263 264 RCU_INIT_POINTER(entry->next, head); 265 266 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 267 spin_unlock(new_bucket_lock); 268 269 rcu_assign_pointer(*pprev, next); 270 271 out: 272 return err; 273 } 274 275 static int rhashtable_rehash_chain(struct rhashtable *ht, 276 unsigned int old_hash) 277 { 278 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 279 spinlock_t *old_bucket_lock; 280 int err; 281 282 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 283 284 spin_lock_bh(old_bucket_lock); 285 while (!(err = rhashtable_rehash_one(ht, old_hash))) 286 ; 287 288 if (err == -ENOENT) { 289 old_tbl->rehash++; 290 err = 0; 291 } 292 spin_unlock_bh(old_bucket_lock); 293 294 return err; 295 } 296 297 static int rhashtable_rehash_attach(struct rhashtable *ht, 298 struct bucket_table *old_tbl, 299 struct bucket_table *new_tbl) 300 { 301 /* Protect future_tbl using the first bucket lock. */ 302 spin_lock_bh(old_tbl->locks); 303 304 /* Did somebody beat us to it? */ 305 if (rcu_access_pointer(old_tbl->future_tbl)) { 306 spin_unlock_bh(old_tbl->locks); 307 return -EEXIST; 308 } 309 310 /* Make insertions go into the new, empty table right away. Deletions 311 * and lookups will be attempted in both tables until we synchronize. 312 */ 313 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 314 315 spin_unlock_bh(old_tbl->locks); 316 317 return 0; 318 } 319 320 static int rhashtable_rehash_table(struct rhashtable *ht) 321 { 322 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 323 struct bucket_table *new_tbl; 324 struct rhashtable_walker *walker; 325 unsigned int old_hash; 326 int err; 327 328 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 329 if (!new_tbl) 330 return 0; 331 332 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) { 333 err = rhashtable_rehash_chain(ht, old_hash); 334 if (err) 335 return err; 336 cond_resched(); 337 } 338 339 /* Publish the new table pointer. */ 340 rcu_assign_pointer(ht->tbl, new_tbl); 341 342 spin_lock(&ht->lock); 343 list_for_each_entry(walker, &old_tbl->walkers, list) 344 walker->tbl = NULL; 345 spin_unlock(&ht->lock); 346 347 /* Wait for readers. All new readers will see the new 348 * table, and thus no references to the old table will 349 * remain. 350 */ 351 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 352 353 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 354 } 355 356 static int rhashtable_rehash_alloc(struct rhashtable *ht, 357 struct bucket_table *old_tbl, 358 unsigned int size) 359 { 360 struct bucket_table *new_tbl; 361 int err; 362 363 ASSERT_RHT_MUTEX(ht); 364 365 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 366 if (new_tbl == NULL) 367 return -ENOMEM; 368 369 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 370 if (err) 371 bucket_table_free(new_tbl); 372 373 return err; 374 } 375 376 /** 377 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 378 * @ht: the hash table to shrink 379 * 380 * This function shrinks the hash table to fit, i.e., the smallest 381 * size would not cause it to expand right away automatically. 382 * 383 * The caller must ensure that no concurrent resizing occurs by holding 384 * ht->mutex. 385 * 386 * The caller must ensure that no concurrent table mutations take place. 387 * It is however valid to have concurrent lookups if they are RCU protected. 388 * 389 * It is valid to have concurrent insertions and deletions protected by per 390 * bucket locks or concurrent RCU protected lookups and traversals. 391 */ 392 static int rhashtable_shrink(struct rhashtable *ht) 393 { 394 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 395 unsigned int nelems = atomic_read(&ht->nelems); 396 unsigned int size = 0; 397 398 if (nelems) 399 size = roundup_pow_of_two(nelems * 3 / 2); 400 if (size < ht->p.min_size) 401 size = ht->p.min_size; 402 403 if (old_tbl->size <= size) 404 return 0; 405 406 if (rht_dereference(old_tbl->future_tbl, ht)) 407 return -EEXIST; 408 409 return rhashtable_rehash_alloc(ht, old_tbl, size); 410 } 411 412 static void rht_deferred_worker(struct work_struct *work) 413 { 414 struct rhashtable *ht; 415 struct bucket_table *tbl; 416 int err = 0; 417 418 ht = container_of(work, struct rhashtable, run_work); 419 mutex_lock(&ht->mutex); 420 421 tbl = rht_dereference(ht->tbl, ht); 422 tbl = rhashtable_last_table(ht, tbl); 423 424 if (rht_grow_above_75(ht, tbl)) 425 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2); 426 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 427 err = rhashtable_shrink(ht); 428 else if (tbl->nest) 429 err = rhashtable_rehash_alloc(ht, tbl, tbl->size); 430 431 if (!err) 432 err = rhashtable_rehash_table(ht); 433 434 mutex_unlock(&ht->mutex); 435 436 if (err) 437 schedule_work(&ht->run_work); 438 } 439 440 static int rhashtable_insert_rehash(struct rhashtable *ht, 441 struct bucket_table *tbl) 442 { 443 struct bucket_table *old_tbl; 444 struct bucket_table *new_tbl; 445 unsigned int size; 446 int err; 447 448 old_tbl = rht_dereference_rcu(ht->tbl, ht); 449 450 size = tbl->size; 451 452 err = -EBUSY; 453 454 if (rht_grow_above_75(ht, tbl)) 455 size *= 2; 456 /* Do not schedule more than one rehash */ 457 else if (old_tbl != tbl) 458 goto fail; 459 460 err = -ENOMEM; 461 462 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC); 463 if (new_tbl == NULL) 464 goto fail; 465 466 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 467 if (err) { 468 bucket_table_free(new_tbl); 469 if (err == -EEXIST) 470 err = 0; 471 } else 472 schedule_work(&ht->run_work); 473 474 return err; 475 476 fail: 477 /* Do not fail the insert if someone else did a rehash. */ 478 if (likely(rcu_dereference_raw(tbl->future_tbl))) 479 return 0; 480 481 /* Schedule async rehash to retry allocation in process context. */ 482 if (err == -ENOMEM) 483 schedule_work(&ht->run_work); 484 485 return err; 486 } 487 488 static void *rhashtable_lookup_one(struct rhashtable *ht, 489 struct bucket_table *tbl, unsigned int hash, 490 const void *key, struct rhash_head *obj) 491 { 492 struct rhashtable_compare_arg arg = { 493 .ht = ht, 494 .key = key, 495 }; 496 struct rhash_head __rcu **pprev; 497 struct rhash_head *head; 498 int elasticity; 499 500 elasticity = RHT_ELASTICITY; 501 pprev = rht_bucket_var(tbl, hash); 502 rht_for_each_continue(head, *pprev, tbl, hash) { 503 struct rhlist_head *list; 504 struct rhlist_head *plist; 505 506 elasticity--; 507 if (!key || 508 (ht->p.obj_cmpfn ? 509 ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) : 510 rhashtable_compare(&arg, rht_obj(ht, head)))) { 511 pprev = &head->next; 512 continue; 513 } 514 515 if (!ht->rhlist) 516 return rht_obj(ht, head); 517 518 list = container_of(obj, struct rhlist_head, rhead); 519 plist = container_of(head, struct rhlist_head, rhead); 520 521 RCU_INIT_POINTER(list->next, plist); 522 head = rht_dereference_bucket(head->next, tbl, hash); 523 RCU_INIT_POINTER(list->rhead.next, head); 524 rcu_assign_pointer(*pprev, obj); 525 526 return NULL; 527 } 528 529 if (elasticity <= 0) 530 return ERR_PTR(-EAGAIN); 531 532 return ERR_PTR(-ENOENT); 533 } 534 535 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht, 536 struct bucket_table *tbl, 537 unsigned int hash, 538 struct rhash_head *obj, 539 void *data) 540 { 541 struct rhash_head __rcu **pprev; 542 struct bucket_table *new_tbl; 543 struct rhash_head *head; 544 545 if (!IS_ERR_OR_NULL(data)) 546 return ERR_PTR(-EEXIST); 547 548 if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT) 549 return ERR_CAST(data); 550 551 new_tbl = rcu_dereference(tbl->future_tbl); 552 if (new_tbl) 553 return new_tbl; 554 555 if (PTR_ERR(data) != -ENOENT) 556 return ERR_CAST(data); 557 558 if (unlikely(rht_grow_above_max(ht, tbl))) 559 return ERR_PTR(-E2BIG); 560 561 if (unlikely(rht_grow_above_100(ht, tbl))) 562 return ERR_PTR(-EAGAIN); 563 564 pprev = rht_bucket_insert(ht, tbl, hash); 565 if (!pprev) 566 return ERR_PTR(-ENOMEM); 567 568 head = rht_dereference_bucket(*pprev, tbl, hash); 569 570 RCU_INIT_POINTER(obj->next, head); 571 if (ht->rhlist) { 572 struct rhlist_head *list; 573 574 list = container_of(obj, struct rhlist_head, rhead); 575 RCU_INIT_POINTER(list->next, NULL); 576 } 577 578 rcu_assign_pointer(*pprev, obj); 579 580 atomic_inc(&ht->nelems); 581 if (rht_grow_above_75(ht, tbl)) 582 schedule_work(&ht->run_work); 583 584 return NULL; 585 } 586 587 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key, 588 struct rhash_head *obj) 589 { 590 struct bucket_table *new_tbl; 591 struct bucket_table *tbl; 592 unsigned int hash; 593 spinlock_t *lock; 594 void *data; 595 596 tbl = rcu_dereference(ht->tbl); 597 598 /* All insertions must grab the oldest table containing 599 * the hashed bucket that is yet to be rehashed. 600 */ 601 for (;;) { 602 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 603 lock = rht_bucket_lock(tbl, hash); 604 spin_lock_bh(lock); 605 606 if (tbl->rehash <= hash) 607 break; 608 609 spin_unlock_bh(lock); 610 tbl = rcu_dereference(tbl->future_tbl); 611 } 612 613 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 614 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 615 if (PTR_ERR(new_tbl) != -EEXIST) 616 data = ERR_CAST(new_tbl); 617 618 while (!IS_ERR_OR_NULL(new_tbl)) { 619 tbl = new_tbl; 620 hash = rht_head_hashfn(ht, tbl, obj, ht->p); 621 spin_lock_nested(rht_bucket_lock(tbl, hash), 622 SINGLE_DEPTH_NESTING); 623 624 data = rhashtable_lookup_one(ht, tbl, hash, key, obj); 625 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data); 626 if (PTR_ERR(new_tbl) != -EEXIST) 627 data = ERR_CAST(new_tbl); 628 629 spin_unlock(rht_bucket_lock(tbl, hash)); 630 } 631 632 spin_unlock_bh(lock); 633 634 if (PTR_ERR(data) == -EAGAIN) 635 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?: 636 -EAGAIN); 637 638 return data; 639 } 640 641 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key, 642 struct rhash_head *obj) 643 { 644 void *data; 645 646 do { 647 rcu_read_lock(); 648 data = rhashtable_try_insert(ht, key, obj); 649 rcu_read_unlock(); 650 } while (PTR_ERR(data) == -EAGAIN); 651 652 return data; 653 } 654 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 655 656 /** 657 * rhashtable_walk_enter - Initialise an iterator 658 * @ht: Table to walk over 659 * @iter: Hash table Iterator 660 * 661 * This function prepares a hash table walk. 662 * 663 * Note that if you restart a walk after rhashtable_walk_stop you 664 * may see the same object twice. Also, you may miss objects if 665 * there are removals in between rhashtable_walk_stop and the next 666 * call to rhashtable_walk_start. 667 * 668 * For a completely stable walk you should construct your own data 669 * structure outside the hash table. 670 * 671 * This function may sleep so you must not call it from interrupt 672 * context or with spin locks held. 673 * 674 * You must call rhashtable_walk_exit after this function returns. 675 */ 676 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter) 677 { 678 iter->ht = ht; 679 iter->p = NULL; 680 iter->slot = 0; 681 iter->skip = 0; 682 iter->end_of_table = 0; 683 684 spin_lock(&ht->lock); 685 iter->walker.tbl = 686 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock)); 687 list_add(&iter->walker.list, &iter->walker.tbl->walkers); 688 spin_unlock(&ht->lock); 689 } 690 EXPORT_SYMBOL_GPL(rhashtable_walk_enter); 691 692 /** 693 * rhashtable_walk_exit - Free an iterator 694 * @iter: Hash table Iterator 695 * 696 * This function frees resources allocated by rhashtable_walk_init. 697 */ 698 void rhashtable_walk_exit(struct rhashtable_iter *iter) 699 { 700 spin_lock(&iter->ht->lock); 701 if (iter->walker.tbl) 702 list_del(&iter->walker.list); 703 spin_unlock(&iter->ht->lock); 704 } 705 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 706 707 /** 708 * rhashtable_walk_start_check - Start a hash table walk 709 * @iter: Hash table iterator 710 * 711 * Start a hash table walk at the current iterator position. Note that we take 712 * the RCU lock in all cases including when we return an error. So you must 713 * always call rhashtable_walk_stop to clean up. 714 * 715 * Returns zero if successful. 716 * 717 * Returns -EAGAIN if resize event occured. Note that the iterator 718 * will rewind back to the beginning and you may use it immediately 719 * by calling rhashtable_walk_next. 720 * 721 * rhashtable_walk_start is defined as an inline variant that returns 722 * void. This is preferred in cases where the caller would ignore 723 * resize events and always continue. 724 */ 725 int rhashtable_walk_start_check(struct rhashtable_iter *iter) 726 __acquires(RCU) 727 { 728 struct rhashtable *ht = iter->ht; 729 730 rcu_read_lock(); 731 732 spin_lock(&ht->lock); 733 if (iter->walker.tbl) 734 list_del(&iter->walker.list); 735 spin_unlock(&ht->lock); 736 737 if (!iter->walker.tbl && !iter->end_of_table) { 738 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht); 739 return -EAGAIN; 740 } 741 742 return 0; 743 } 744 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check); 745 746 /** 747 * __rhashtable_walk_find_next - Find the next element in a table (or the first 748 * one in case of a new walk). 749 * 750 * @iter: Hash table iterator 751 * 752 * Returns the found object or NULL when the end of the table is reached. 753 * 754 * Returns -EAGAIN if resize event occurred. 755 */ 756 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter) 757 { 758 struct bucket_table *tbl = iter->walker.tbl; 759 struct rhlist_head *list = iter->list; 760 struct rhashtable *ht = iter->ht; 761 struct rhash_head *p = iter->p; 762 bool rhlist = ht->rhlist; 763 764 if (!tbl) 765 return NULL; 766 767 for (; iter->slot < tbl->size; iter->slot++) { 768 int skip = iter->skip; 769 770 rht_for_each_rcu(p, tbl, iter->slot) { 771 if (rhlist) { 772 list = container_of(p, struct rhlist_head, 773 rhead); 774 do { 775 if (!skip) 776 goto next; 777 skip--; 778 list = rcu_dereference(list->next); 779 } while (list); 780 781 continue; 782 } 783 if (!skip) 784 break; 785 skip--; 786 } 787 788 next: 789 if (!rht_is_a_nulls(p)) { 790 iter->skip++; 791 iter->p = p; 792 iter->list = list; 793 return rht_obj(ht, rhlist ? &list->rhead : p); 794 } 795 796 iter->skip = 0; 797 } 798 799 iter->p = NULL; 800 801 /* Ensure we see any new tables. */ 802 smp_rmb(); 803 804 iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht); 805 if (iter->walker.tbl) { 806 iter->slot = 0; 807 iter->skip = 0; 808 return ERR_PTR(-EAGAIN); 809 } else { 810 iter->end_of_table = true; 811 } 812 813 return NULL; 814 } 815 816 /** 817 * rhashtable_walk_next - Return the next object and advance the iterator 818 * @iter: Hash table iterator 819 * 820 * Note that you must call rhashtable_walk_stop when you are finished 821 * with the walk. 822 * 823 * Returns the next object or NULL when the end of the table is reached. 824 * 825 * Returns -EAGAIN if resize event occurred. Note that the iterator 826 * will rewind back to the beginning and you may continue to use it. 827 */ 828 void *rhashtable_walk_next(struct rhashtable_iter *iter) 829 { 830 struct rhlist_head *list = iter->list; 831 struct rhashtable *ht = iter->ht; 832 struct rhash_head *p = iter->p; 833 bool rhlist = ht->rhlist; 834 835 if (p) { 836 if (!rhlist || !(list = rcu_dereference(list->next))) { 837 p = rcu_dereference(p->next); 838 list = container_of(p, struct rhlist_head, rhead); 839 } 840 if (!rht_is_a_nulls(p)) { 841 iter->skip++; 842 iter->p = p; 843 iter->list = list; 844 return rht_obj(ht, rhlist ? &list->rhead : p); 845 } 846 847 /* At the end of this slot, switch to next one and then find 848 * next entry from that point. 849 */ 850 iter->skip = 0; 851 iter->slot++; 852 } 853 854 return __rhashtable_walk_find_next(iter); 855 } 856 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 857 858 /** 859 * rhashtable_walk_peek - Return the next object but don't advance the iterator 860 * @iter: Hash table iterator 861 * 862 * Returns the next object or NULL when the end of the table is reached. 863 * 864 * Returns -EAGAIN if resize event occurred. Note that the iterator 865 * will rewind back to the beginning and you may continue to use it. 866 */ 867 void *rhashtable_walk_peek(struct rhashtable_iter *iter) 868 { 869 struct rhlist_head *list = iter->list; 870 struct rhashtable *ht = iter->ht; 871 struct rhash_head *p = iter->p; 872 873 if (p) 874 return rht_obj(ht, ht->rhlist ? &list->rhead : p); 875 876 /* No object found in current iter, find next one in the table. */ 877 878 if (iter->skip) { 879 /* A nonzero skip value points to the next entry in the table 880 * beyond that last one that was found. Decrement skip so 881 * we find the current value. __rhashtable_walk_find_next 882 * will restore the original value of skip assuming that 883 * the table hasn't changed. 884 */ 885 iter->skip--; 886 } 887 888 return __rhashtable_walk_find_next(iter); 889 } 890 EXPORT_SYMBOL_GPL(rhashtable_walk_peek); 891 892 /** 893 * rhashtable_walk_stop - Finish a hash table walk 894 * @iter: Hash table iterator 895 * 896 * Finish a hash table walk. Does not reset the iterator to the start of the 897 * hash table. 898 */ 899 void rhashtable_walk_stop(struct rhashtable_iter *iter) 900 __releases(RCU) 901 { 902 struct rhashtable *ht; 903 struct bucket_table *tbl = iter->walker.tbl; 904 905 if (!tbl) 906 goto out; 907 908 ht = iter->ht; 909 910 spin_lock(&ht->lock); 911 if (tbl->rehash < tbl->size) 912 list_add(&iter->walker.list, &tbl->walkers); 913 else 914 iter->walker.tbl = NULL; 915 spin_unlock(&ht->lock); 916 917 iter->p = NULL; 918 919 out: 920 rcu_read_unlock(); 921 } 922 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 923 924 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 925 { 926 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 927 (unsigned long)params->min_size); 928 } 929 930 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 931 { 932 return jhash2(key, length, seed); 933 } 934 935 /** 936 * rhashtable_init - initialize a new hash table 937 * @ht: hash table to be initialized 938 * @params: configuration parameters 939 * 940 * Initializes a new hash table based on the provided configuration 941 * parameters. A table can be configured either with a variable or 942 * fixed length key: 943 * 944 * Configuration Example 1: Fixed length keys 945 * struct test_obj { 946 * int key; 947 * void * my_member; 948 * struct rhash_head node; 949 * }; 950 * 951 * struct rhashtable_params params = { 952 * .head_offset = offsetof(struct test_obj, node), 953 * .key_offset = offsetof(struct test_obj, key), 954 * .key_len = sizeof(int), 955 * .hashfn = jhash, 956 * .nulls_base = (1U << RHT_BASE_SHIFT), 957 * }; 958 * 959 * Configuration Example 2: Variable length keys 960 * struct test_obj { 961 * [...] 962 * struct rhash_head node; 963 * }; 964 * 965 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 966 * { 967 * struct test_obj *obj = data; 968 * 969 * return [... hash ...]; 970 * } 971 * 972 * struct rhashtable_params params = { 973 * .head_offset = offsetof(struct test_obj, node), 974 * .hashfn = jhash, 975 * .obj_hashfn = my_hash_fn, 976 * }; 977 */ 978 int rhashtable_init(struct rhashtable *ht, 979 const struct rhashtable_params *params) 980 { 981 struct bucket_table *tbl; 982 size_t size; 983 984 size = HASH_DEFAULT_SIZE; 985 986 if ((!params->key_len && !params->obj_hashfn) || 987 (params->obj_hashfn && !params->obj_cmpfn)) 988 return -EINVAL; 989 990 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 991 return -EINVAL; 992 993 memset(ht, 0, sizeof(*ht)); 994 mutex_init(&ht->mutex); 995 spin_lock_init(&ht->lock); 996 memcpy(&ht->p, params, sizeof(*params)); 997 998 if (params->min_size) 999 ht->p.min_size = roundup_pow_of_two(params->min_size); 1000 1001 /* Cap total entries at 2^31 to avoid nelems overflow. */ 1002 ht->max_elems = 1u << 31; 1003 1004 if (params->max_size) { 1005 ht->p.max_size = rounddown_pow_of_two(params->max_size); 1006 if (ht->p.max_size < ht->max_elems / 2) 1007 ht->max_elems = ht->p.max_size * 2; 1008 } 1009 1010 ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE); 1011 1012 if (params->nelem_hint) 1013 size = rounded_hashtable_size(&ht->p); 1014 1015 if (params->locks_mul) 1016 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 1017 else 1018 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 1019 1020 ht->key_len = ht->p.key_len; 1021 if (!params->hashfn) { 1022 ht->p.hashfn = jhash; 1023 1024 if (!(ht->key_len & (sizeof(u32) - 1))) { 1025 ht->key_len /= sizeof(u32); 1026 ht->p.hashfn = rhashtable_jhash2; 1027 } 1028 } 1029 1030 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 1031 if (tbl == NULL) 1032 return -ENOMEM; 1033 1034 atomic_set(&ht->nelems, 0); 1035 1036 RCU_INIT_POINTER(ht->tbl, tbl); 1037 1038 INIT_WORK(&ht->run_work, rht_deferred_worker); 1039 1040 return 0; 1041 } 1042 EXPORT_SYMBOL_GPL(rhashtable_init); 1043 1044 /** 1045 * rhltable_init - initialize a new hash list table 1046 * @hlt: hash list table to be initialized 1047 * @params: configuration parameters 1048 * 1049 * Initializes a new hash list table. 1050 * 1051 * See documentation for rhashtable_init. 1052 */ 1053 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params) 1054 { 1055 int err; 1056 1057 /* No rhlist NULLs marking for now. */ 1058 if (params->nulls_base) 1059 return -EINVAL; 1060 1061 err = rhashtable_init(&hlt->ht, params); 1062 hlt->ht.rhlist = true; 1063 return err; 1064 } 1065 EXPORT_SYMBOL_GPL(rhltable_init); 1066 1067 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj, 1068 void (*free_fn)(void *ptr, void *arg), 1069 void *arg) 1070 { 1071 struct rhlist_head *list; 1072 1073 if (!ht->rhlist) { 1074 free_fn(rht_obj(ht, obj), arg); 1075 return; 1076 } 1077 1078 list = container_of(obj, struct rhlist_head, rhead); 1079 do { 1080 obj = &list->rhead; 1081 list = rht_dereference(list->next, ht); 1082 free_fn(rht_obj(ht, obj), arg); 1083 } while (list); 1084 } 1085 1086 /** 1087 * rhashtable_free_and_destroy - free elements and destroy hash table 1088 * @ht: the hash table to destroy 1089 * @free_fn: callback to release resources of element 1090 * @arg: pointer passed to free_fn 1091 * 1092 * Stops an eventual async resize. If defined, invokes free_fn for each 1093 * element to releasal resources. Please note that RCU protected 1094 * readers may still be accessing the elements. Releasing of resources 1095 * must occur in a compatible manner. Then frees the bucket array. 1096 * 1097 * This function will eventually sleep to wait for an async resize 1098 * to complete. The caller is responsible that no further write operations 1099 * occurs in parallel. 1100 */ 1101 void rhashtable_free_and_destroy(struct rhashtable *ht, 1102 void (*free_fn)(void *ptr, void *arg), 1103 void *arg) 1104 { 1105 struct bucket_table *tbl; 1106 unsigned int i; 1107 1108 cancel_work_sync(&ht->run_work); 1109 1110 mutex_lock(&ht->mutex); 1111 tbl = rht_dereference(ht->tbl, ht); 1112 if (free_fn) { 1113 for (i = 0; i < tbl->size; i++) { 1114 struct rhash_head *pos, *next; 1115 1116 cond_resched(); 1117 for (pos = rht_dereference(*rht_bucket(tbl, i), ht), 1118 next = !rht_is_a_nulls(pos) ? 1119 rht_dereference(pos->next, ht) : NULL; 1120 !rht_is_a_nulls(pos); 1121 pos = next, 1122 next = !rht_is_a_nulls(pos) ? 1123 rht_dereference(pos->next, ht) : NULL) 1124 rhashtable_free_one(ht, pos, free_fn, arg); 1125 } 1126 } 1127 1128 bucket_table_free(tbl); 1129 mutex_unlock(&ht->mutex); 1130 } 1131 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 1132 1133 void rhashtable_destroy(struct rhashtable *ht) 1134 { 1135 return rhashtable_free_and_destroy(ht, NULL, NULL); 1136 } 1137 EXPORT_SYMBOL_GPL(rhashtable_destroy); 1138 1139 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl, 1140 unsigned int hash) 1141 { 1142 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1143 static struct rhash_head __rcu *rhnull = 1144 (struct rhash_head __rcu *)NULLS_MARKER(0); 1145 unsigned int index = hash & ((1 << tbl->nest) - 1); 1146 unsigned int size = tbl->size >> tbl->nest; 1147 unsigned int subhash = hash; 1148 union nested_table *ntbl; 1149 1150 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1151 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash); 1152 subhash >>= tbl->nest; 1153 1154 while (ntbl && size > (1 << shift)) { 1155 index = subhash & ((1 << shift) - 1); 1156 ntbl = rht_dereference_bucket_rcu(ntbl[index].table, 1157 tbl, hash); 1158 size >>= shift; 1159 subhash >>= shift; 1160 } 1161 1162 if (!ntbl) 1163 return &rhnull; 1164 1165 return &ntbl[subhash].bucket; 1166 1167 } 1168 EXPORT_SYMBOL_GPL(rht_bucket_nested); 1169 1170 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht, 1171 struct bucket_table *tbl, 1172 unsigned int hash) 1173 { 1174 const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *)); 1175 unsigned int index = hash & ((1 << tbl->nest) - 1); 1176 unsigned int size = tbl->size >> tbl->nest; 1177 union nested_table *ntbl; 1178 unsigned int shifted; 1179 unsigned int nhash; 1180 1181 ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]); 1182 hash >>= tbl->nest; 1183 nhash = index; 1184 shifted = tbl->nest; 1185 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1186 size <= (1 << shift) ? shifted : 0, nhash); 1187 1188 while (ntbl && size > (1 << shift)) { 1189 index = hash & ((1 << shift) - 1); 1190 size >>= shift; 1191 hash >>= shift; 1192 nhash |= index << shifted; 1193 shifted += shift; 1194 ntbl = nested_table_alloc(ht, &ntbl[index].table, 1195 size <= (1 << shift) ? shifted : 0, 1196 nhash); 1197 } 1198 1199 if (!ntbl) 1200 return NULL; 1201 1202 return &ntbl[hash].bucket; 1203 1204 } 1205 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert); 1206