xref: /openbmc/linux/lib/rhashtable.c (revision 4bce6fce)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28 
29 #define HASH_DEFAULT_SIZE	64UL
30 #define HASH_MIN_SIZE		4U
31 #define BUCKET_LOCKS_PER_CPU   128UL
32 
33 static u32 head_hashfn(struct rhashtable *ht,
34 		       const struct bucket_table *tbl,
35 		       const struct rhash_head *he)
36 {
37 	return rht_head_hashfn(ht, tbl, he, ht->p);
38 }
39 
40 #ifdef CONFIG_PROVE_LOCKING
41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
42 
43 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
44 {
45 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
46 }
47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
48 
49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
50 {
51 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
52 
53 	return (debug_locks) ? lockdep_is_held(lock) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
56 #else
57 #define ASSERT_RHT_MUTEX(HT)
58 #endif
59 
60 
61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
62 			      gfp_t gfp)
63 {
64 	unsigned int i, size;
65 #if defined(CONFIG_PROVE_LOCKING)
66 	unsigned int nr_pcpus = 2;
67 #else
68 	unsigned int nr_pcpus = num_possible_cpus();
69 #endif
70 
71 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
72 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
73 
74 	/* Never allocate more than 0.5 locks per bucket */
75 	size = min_t(unsigned int, size, tbl->size >> 1);
76 
77 	if (sizeof(spinlock_t) != 0) {
78 #ifdef CONFIG_NUMA
79 		if (size * sizeof(spinlock_t) > PAGE_SIZE &&
80 		    gfp == GFP_KERNEL)
81 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
82 		else
83 #endif
84 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
85 					   gfp);
86 		if (!tbl->locks)
87 			return -ENOMEM;
88 		for (i = 0; i < size; i++)
89 			spin_lock_init(&tbl->locks[i]);
90 	}
91 	tbl->locks_mask = size - 1;
92 
93 	return 0;
94 }
95 
96 static void bucket_table_free(const struct bucket_table *tbl)
97 {
98 	if (tbl)
99 		kvfree(tbl->locks);
100 
101 	kvfree(tbl);
102 }
103 
104 static void bucket_table_free_rcu(struct rcu_head *head)
105 {
106 	bucket_table_free(container_of(head, struct bucket_table, rcu));
107 }
108 
109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
110 					       size_t nbuckets,
111 					       gfp_t gfp)
112 {
113 	struct bucket_table *tbl = NULL;
114 	size_t size;
115 	int i;
116 
117 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
118 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
119 	    gfp != GFP_KERNEL)
120 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
121 	if (tbl == NULL && gfp == GFP_KERNEL)
122 		tbl = vzalloc(size);
123 	if (tbl == NULL)
124 		return NULL;
125 
126 	tbl->size = nbuckets;
127 
128 	if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
129 		bucket_table_free(tbl);
130 		return NULL;
131 	}
132 
133 	INIT_LIST_HEAD(&tbl->walkers);
134 
135 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
136 
137 	for (i = 0; i < nbuckets; i++)
138 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
139 
140 	return tbl;
141 }
142 
143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
144 						  struct bucket_table *tbl)
145 {
146 	struct bucket_table *new_tbl;
147 
148 	do {
149 		new_tbl = tbl;
150 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
151 	} while (tbl);
152 
153 	return new_tbl;
154 }
155 
156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
157 {
158 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
159 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
160 		rht_dereference_rcu(old_tbl->future_tbl, ht));
161 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
162 	int err = -ENOENT;
163 	struct rhash_head *head, *next, *entry;
164 	spinlock_t *new_bucket_lock;
165 	unsigned int new_hash;
166 
167 	rht_for_each(entry, old_tbl, old_hash) {
168 		err = 0;
169 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
170 
171 		if (rht_is_a_nulls(next))
172 			break;
173 
174 		pprev = &entry->next;
175 	}
176 
177 	if (err)
178 		goto out;
179 
180 	new_hash = head_hashfn(ht, new_tbl, entry);
181 
182 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
183 
184 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
185 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
186 				      new_tbl, new_hash);
187 
188 	if (rht_is_a_nulls(head))
189 		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
190 	else
191 		RCU_INIT_POINTER(entry->next, head);
192 
193 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194 	spin_unlock(new_bucket_lock);
195 
196 	rcu_assign_pointer(*pprev, next);
197 
198 out:
199 	return err;
200 }
201 
202 static void rhashtable_rehash_chain(struct rhashtable *ht,
203 				    unsigned int old_hash)
204 {
205 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
206 	spinlock_t *old_bucket_lock;
207 
208 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209 
210 	spin_lock_bh(old_bucket_lock);
211 	while (!rhashtable_rehash_one(ht, old_hash))
212 		;
213 	old_tbl->rehash++;
214 	spin_unlock_bh(old_bucket_lock);
215 }
216 
217 static int rhashtable_rehash_attach(struct rhashtable *ht,
218 				    struct bucket_table *old_tbl,
219 				    struct bucket_table *new_tbl)
220 {
221 	/* Protect future_tbl using the first bucket lock. */
222 	spin_lock_bh(old_tbl->locks);
223 
224 	/* Did somebody beat us to it? */
225 	if (rcu_access_pointer(old_tbl->future_tbl)) {
226 		spin_unlock_bh(old_tbl->locks);
227 		return -EEXIST;
228 	}
229 
230 	/* Make insertions go into the new, empty table right away. Deletions
231 	 * and lookups will be attempted in both tables until we synchronize.
232 	 */
233 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234 
235 	/* Ensure the new table is visible to readers. */
236 	smp_wmb();
237 
238 	spin_unlock_bh(old_tbl->locks);
239 
240 	return 0;
241 }
242 
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246 	struct bucket_table *new_tbl;
247 	struct rhashtable_walker *walker;
248 	unsigned int old_hash;
249 
250 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251 	if (!new_tbl)
252 		return 0;
253 
254 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255 		rhashtable_rehash_chain(ht, old_hash);
256 
257 	/* Publish the new table pointer. */
258 	rcu_assign_pointer(ht->tbl, new_tbl);
259 
260 	spin_lock(&ht->lock);
261 	list_for_each_entry(walker, &old_tbl->walkers, list)
262 		walker->tbl = NULL;
263 	spin_unlock(&ht->lock);
264 
265 	/* Wait for readers. All new readers will see the new
266 	 * table, and thus no references to the old table will
267 	 * remain.
268 	 */
269 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270 
271 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273 
274 /**
275  * rhashtable_expand - Expand hash table while allowing concurrent lookups
276  * @ht:		the hash table to expand
277  *
278  * A secondary bucket array is allocated and the hash entries are migrated.
279  *
280  * This function may only be called in a context where it is safe to call
281  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282  *
283  * The caller must ensure that no concurrent resizing occurs by holding
284  * ht->mutex.
285  *
286  * It is valid to have concurrent insertions and deletions protected by per
287  * bucket locks or concurrent RCU protected lookups and traversals.
288  */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292 	int err;
293 
294 	ASSERT_RHT_MUTEX(ht);
295 
296 	old_tbl = rhashtable_last_table(ht, old_tbl);
297 
298 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299 	if (new_tbl == NULL)
300 		return -ENOMEM;
301 
302 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303 	if (err)
304 		bucket_table_free(new_tbl);
305 
306 	return err;
307 }
308 
309 /**
310  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311  * @ht:		the hash table to shrink
312  *
313  * This function shrinks the hash table to fit, i.e., the smallest
314  * size would not cause it to expand right away automatically.
315  *
316  * The caller must ensure that no concurrent resizing occurs by holding
317  * ht->mutex.
318  *
319  * The caller must ensure that no concurrent table mutations take place.
320  * It is however valid to have concurrent lookups if they are RCU protected.
321  *
322  * It is valid to have concurrent insertions and deletions protected by per
323  * bucket locks or concurrent RCU protected lookups and traversals.
324  */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328 	unsigned int size;
329 	int err;
330 
331 	ASSERT_RHT_MUTEX(ht);
332 
333 	size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
334 	if (size < ht->p.min_size)
335 		size = ht->p.min_size;
336 
337 	if (old_tbl->size <= size)
338 		return 0;
339 
340 	if (rht_dereference(old_tbl->future_tbl, ht))
341 		return -EEXIST;
342 
343 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
344 	if (new_tbl == NULL)
345 		return -ENOMEM;
346 
347 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348 	if (err)
349 		bucket_table_free(new_tbl);
350 
351 	return err;
352 }
353 
354 static void rht_deferred_worker(struct work_struct *work)
355 {
356 	struct rhashtable *ht;
357 	struct bucket_table *tbl;
358 	int err = 0;
359 
360 	ht = container_of(work, struct rhashtable, run_work);
361 	mutex_lock(&ht->mutex);
362 
363 	tbl = rht_dereference(ht->tbl, ht);
364 	tbl = rhashtable_last_table(ht, tbl);
365 
366 	if (rht_grow_above_75(ht, tbl))
367 		rhashtable_expand(ht);
368 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
369 		rhashtable_shrink(ht);
370 
371 	err = rhashtable_rehash_table(ht);
372 
373 	mutex_unlock(&ht->mutex);
374 
375 	if (err)
376 		schedule_work(&ht->run_work);
377 }
378 
379 static bool rhashtable_check_elasticity(struct rhashtable *ht,
380 					struct bucket_table *tbl,
381 					unsigned int hash)
382 {
383 	unsigned int elasticity = ht->elasticity;
384 	struct rhash_head *head;
385 
386 	rht_for_each(head, tbl, hash)
387 		if (!--elasticity)
388 			return true;
389 
390 	return false;
391 }
392 
393 int rhashtable_insert_rehash(struct rhashtable *ht)
394 {
395 	struct bucket_table *old_tbl;
396 	struct bucket_table *new_tbl;
397 	struct bucket_table *tbl;
398 	unsigned int size;
399 	int err;
400 
401 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
402 	tbl = rhashtable_last_table(ht, old_tbl);
403 
404 	size = tbl->size;
405 
406 	if (rht_grow_above_75(ht, tbl))
407 		size *= 2;
408 	/* More than two rehashes (not resizes) detected. */
409 	else if (WARN_ON(old_tbl != tbl && old_tbl->size == size))
410 		return -EBUSY;
411 
412 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
413 	if (new_tbl == NULL)
414 		return -ENOMEM;
415 
416 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
417 	if (err) {
418 		bucket_table_free(new_tbl);
419 		if (err == -EEXIST)
420 			err = 0;
421 	} else
422 		schedule_work(&ht->run_work);
423 
424 	return err;
425 }
426 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
427 
428 int rhashtable_insert_slow(struct rhashtable *ht, const void *key,
429 			   struct rhash_head *obj,
430 			   struct bucket_table *tbl)
431 {
432 	struct rhash_head *head;
433 	unsigned int hash;
434 	int err;
435 
436 	tbl = rhashtable_last_table(ht, tbl);
437 	hash = head_hashfn(ht, tbl, obj);
438 	spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
439 
440 	err = -EEXIST;
441 	if (key && rhashtable_lookup_fast(ht, key, ht->p))
442 		goto exit;
443 
444 	err = -EAGAIN;
445 	if (rhashtable_check_elasticity(ht, tbl, hash) ||
446 	    rht_grow_above_100(ht, tbl))
447 		goto exit;
448 
449 	err = 0;
450 
451 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
452 
453 	RCU_INIT_POINTER(obj->next, head);
454 
455 	rcu_assign_pointer(tbl->buckets[hash], obj);
456 
457 	atomic_inc(&ht->nelems);
458 
459 exit:
460 	spin_unlock(rht_bucket_lock(tbl, hash));
461 
462 	return err;
463 }
464 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
465 
466 /**
467  * rhashtable_walk_init - Initialise an iterator
468  * @ht:		Table to walk over
469  * @iter:	Hash table Iterator
470  *
471  * This function prepares a hash table walk.
472  *
473  * Note that if you restart a walk after rhashtable_walk_stop you
474  * may see the same object twice.  Also, you may miss objects if
475  * there are removals in between rhashtable_walk_stop and the next
476  * call to rhashtable_walk_start.
477  *
478  * For a completely stable walk you should construct your own data
479  * structure outside the hash table.
480  *
481  * This function may sleep so you must not call it from interrupt
482  * context or with spin locks held.
483  *
484  * You must call rhashtable_walk_exit if this function returns
485  * successfully.
486  */
487 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
488 {
489 	iter->ht = ht;
490 	iter->p = NULL;
491 	iter->slot = 0;
492 	iter->skip = 0;
493 
494 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
495 	if (!iter->walker)
496 		return -ENOMEM;
497 
498 	mutex_lock(&ht->mutex);
499 	iter->walker->tbl = rht_dereference(ht->tbl, ht);
500 	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
501 	mutex_unlock(&ht->mutex);
502 
503 	return 0;
504 }
505 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
506 
507 /**
508  * rhashtable_walk_exit - Free an iterator
509  * @iter:	Hash table Iterator
510  *
511  * This function frees resources allocated by rhashtable_walk_init.
512  */
513 void rhashtable_walk_exit(struct rhashtable_iter *iter)
514 {
515 	mutex_lock(&iter->ht->mutex);
516 	if (iter->walker->tbl)
517 		list_del(&iter->walker->list);
518 	mutex_unlock(&iter->ht->mutex);
519 	kfree(iter->walker);
520 }
521 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
522 
523 /**
524  * rhashtable_walk_start - Start a hash table walk
525  * @iter:	Hash table iterator
526  *
527  * Start a hash table walk.  Note that we take the RCU lock in all
528  * cases including when we return an error.  So you must always call
529  * rhashtable_walk_stop to clean up.
530  *
531  * Returns zero if successful.
532  *
533  * Returns -EAGAIN if resize event occured.  Note that the iterator
534  * will rewind back to the beginning and you may use it immediately
535  * by calling rhashtable_walk_next.
536  */
537 int rhashtable_walk_start(struct rhashtable_iter *iter)
538 	__acquires(RCU)
539 {
540 	struct rhashtable *ht = iter->ht;
541 
542 	mutex_lock(&ht->mutex);
543 
544 	if (iter->walker->tbl)
545 		list_del(&iter->walker->list);
546 
547 	rcu_read_lock();
548 
549 	mutex_unlock(&ht->mutex);
550 
551 	if (!iter->walker->tbl) {
552 		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
553 		return -EAGAIN;
554 	}
555 
556 	return 0;
557 }
558 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
559 
560 /**
561  * rhashtable_walk_next - Return the next object and advance the iterator
562  * @iter:	Hash table iterator
563  *
564  * Note that you must call rhashtable_walk_stop when you are finished
565  * with the walk.
566  *
567  * Returns the next object or NULL when the end of the table is reached.
568  *
569  * Returns -EAGAIN if resize event occured.  Note that the iterator
570  * will rewind back to the beginning and you may continue to use it.
571  */
572 void *rhashtable_walk_next(struct rhashtable_iter *iter)
573 {
574 	struct bucket_table *tbl = iter->walker->tbl;
575 	struct rhashtable *ht = iter->ht;
576 	struct rhash_head *p = iter->p;
577 	void *obj = NULL;
578 
579 	if (p) {
580 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
581 		goto next;
582 	}
583 
584 	for (; iter->slot < tbl->size; iter->slot++) {
585 		int skip = iter->skip;
586 
587 		rht_for_each_rcu(p, tbl, iter->slot) {
588 			if (!skip)
589 				break;
590 			skip--;
591 		}
592 
593 next:
594 		if (!rht_is_a_nulls(p)) {
595 			iter->skip++;
596 			iter->p = p;
597 			obj = rht_obj(ht, p);
598 			goto out;
599 		}
600 
601 		iter->skip = 0;
602 	}
603 
604 	/* Ensure we see any new tables. */
605 	smp_rmb();
606 
607 	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
608 	if (iter->walker->tbl) {
609 		iter->slot = 0;
610 		iter->skip = 0;
611 		return ERR_PTR(-EAGAIN);
612 	}
613 
614 	iter->p = NULL;
615 
616 out:
617 
618 	return obj;
619 }
620 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
621 
622 /**
623  * rhashtable_walk_stop - Finish a hash table walk
624  * @iter:	Hash table iterator
625  *
626  * Finish a hash table walk.
627  */
628 void rhashtable_walk_stop(struct rhashtable_iter *iter)
629 	__releases(RCU)
630 {
631 	struct rhashtable *ht;
632 	struct bucket_table *tbl = iter->walker->tbl;
633 
634 	if (!tbl)
635 		goto out;
636 
637 	ht = iter->ht;
638 
639 	spin_lock(&ht->lock);
640 	if (tbl->rehash < tbl->size)
641 		list_add(&iter->walker->list, &tbl->walkers);
642 	else
643 		iter->walker->tbl = NULL;
644 	spin_unlock(&ht->lock);
645 
646 	iter->p = NULL;
647 
648 out:
649 	rcu_read_unlock();
650 }
651 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
652 
653 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
654 {
655 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
656 		   (unsigned long)params->min_size);
657 }
658 
659 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
660 {
661 	return jhash2(key, length, seed);
662 }
663 
664 /**
665  * rhashtable_init - initialize a new hash table
666  * @ht:		hash table to be initialized
667  * @params:	configuration parameters
668  *
669  * Initializes a new hash table based on the provided configuration
670  * parameters. A table can be configured either with a variable or
671  * fixed length key:
672  *
673  * Configuration Example 1: Fixed length keys
674  * struct test_obj {
675  *	int			key;
676  *	void *			my_member;
677  *	struct rhash_head	node;
678  * };
679  *
680  * struct rhashtable_params params = {
681  *	.head_offset = offsetof(struct test_obj, node),
682  *	.key_offset = offsetof(struct test_obj, key),
683  *	.key_len = sizeof(int),
684  *	.hashfn = jhash,
685  *	.nulls_base = (1U << RHT_BASE_SHIFT),
686  * };
687  *
688  * Configuration Example 2: Variable length keys
689  * struct test_obj {
690  *	[...]
691  *	struct rhash_head	node;
692  * };
693  *
694  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
695  * {
696  *	struct test_obj *obj = data;
697  *
698  *	return [... hash ...];
699  * }
700  *
701  * struct rhashtable_params params = {
702  *	.head_offset = offsetof(struct test_obj, node),
703  *	.hashfn = jhash,
704  *	.obj_hashfn = my_hash_fn,
705  * };
706  */
707 int rhashtable_init(struct rhashtable *ht,
708 		    const struct rhashtable_params *params)
709 {
710 	struct bucket_table *tbl;
711 	size_t size;
712 
713 	size = HASH_DEFAULT_SIZE;
714 
715 	if ((!params->key_len && !params->obj_hashfn) ||
716 	    (params->obj_hashfn && !params->obj_cmpfn))
717 		return -EINVAL;
718 
719 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
720 		return -EINVAL;
721 
722 	if (params->nelem_hint)
723 		size = rounded_hashtable_size(params);
724 
725 	memset(ht, 0, sizeof(*ht));
726 	mutex_init(&ht->mutex);
727 	spin_lock_init(&ht->lock);
728 	memcpy(&ht->p, params, sizeof(*params));
729 
730 	if (params->min_size)
731 		ht->p.min_size = roundup_pow_of_two(params->min_size);
732 
733 	if (params->max_size)
734 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
735 
736 	ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
737 
738 	/* The maximum (not average) chain length grows with the
739 	 * size of the hash table, at a rate of (log N)/(log log N).
740 	 * The value of 16 is selected so that even if the hash
741 	 * table grew to 2^32 you would not expect the maximum
742 	 * chain length to exceed it unless we are under attack
743 	 * (or extremely unlucky).
744 	 *
745 	 * As this limit is only to detect attacks, we don't need
746 	 * to set it to a lower value as you'd need the chain
747 	 * length to vastly exceed 16 to have any real effect
748 	 * on the system.
749 	 */
750 	if (!params->insecure_elasticity)
751 		ht->elasticity = 16;
752 
753 	if (params->locks_mul)
754 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
755 	else
756 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
757 
758 	ht->key_len = ht->p.key_len;
759 	if (!params->hashfn) {
760 		ht->p.hashfn = jhash;
761 
762 		if (!(ht->key_len & (sizeof(u32) - 1))) {
763 			ht->key_len /= sizeof(u32);
764 			ht->p.hashfn = rhashtable_jhash2;
765 		}
766 	}
767 
768 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
769 	if (tbl == NULL)
770 		return -ENOMEM;
771 
772 	atomic_set(&ht->nelems, 0);
773 
774 	RCU_INIT_POINTER(ht->tbl, tbl);
775 
776 	INIT_WORK(&ht->run_work, rht_deferred_worker);
777 
778 	return 0;
779 }
780 EXPORT_SYMBOL_GPL(rhashtable_init);
781 
782 /**
783  * rhashtable_free_and_destroy - free elements and destroy hash table
784  * @ht:		the hash table to destroy
785  * @free_fn:	callback to release resources of element
786  * @arg:	pointer passed to free_fn
787  *
788  * Stops an eventual async resize. If defined, invokes free_fn for each
789  * element to releasal resources. Please note that RCU protected
790  * readers may still be accessing the elements. Releasing of resources
791  * must occur in a compatible manner. Then frees the bucket array.
792  *
793  * This function will eventually sleep to wait for an async resize
794  * to complete. The caller is responsible that no further write operations
795  * occurs in parallel.
796  */
797 void rhashtable_free_and_destroy(struct rhashtable *ht,
798 				 void (*free_fn)(void *ptr, void *arg),
799 				 void *arg)
800 {
801 	const struct bucket_table *tbl;
802 	unsigned int i;
803 
804 	cancel_work_sync(&ht->run_work);
805 
806 	mutex_lock(&ht->mutex);
807 	tbl = rht_dereference(ht->tbl, ht);
808 	if (free_fn) {
809 		for (i = 0; i < tbl->size; i++) {
810 			struct rhash_head *pos, *next;
811 
812 			for (pos = rht_dereference(tbl->buckets[i], ht),
813 			     next = !rht_is_a_nulls(pos) ?
814 					rht_dereference(pos->next, ht) : NULL;
815 			     !rht_is_a_nulls(pos);
816 			     pos = next,
817 			     next = !rht_is_a_nulls(pos) ?
818 					rht_dereference(pos->next, ht) : NULL)
819 				free_fn(rht_obj(ht, pos), arg);
820 		}
821 	}
822 
823 	bucket_table_free(tbl);
824 	mutex_unlock(&ht->mutex);
825 }
826 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
827 
828 void rhashtable_destroy(struct rhashtable *ht)
829 {
830 	return rhashtable_free_and_destroy(ht, NULL, NULL);
831 }
832 EXPORT_SYMBOL_GPL(rhashtable_destroy);
833