1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au> 5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 7 * 8 * Code partially derived from nft_hash 9 * Rewritten with rehash code from br_multicast plus single list 10 * pointer as suggested by Josh Triplett 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/log2.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/mm.h> 24 #include <linux/jhash.h> 25 #include <linux/random.h> 26 #include <linux/rhashtable.h> 27 #include <linux/err.h> 28 29 #define HASH_DEFAULT_SIZE 64UL 30 #define HASH_MIN_SIZE 4U 31 #define BUCKET_LOCKS_PER_CPU 128UL 32 33 static u32 head_hashfn(struct rhashtable *ht, 34 const struct bucket_table *tbl, 35 const struct rhash_head *he) 36 { 37 return rht_head_hashfn(ht, tbl, he, ht->p); 38 } 39 40 #ifdef CONFIG_PROVE_LOCKING 41 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 42 43 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 44 { 45 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 46 } 47 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 48 49 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 50 { 51 spinlock_t *lock = rht_bucket_lock(tbl, hash); 52 53 return (debug_locks) ? lockdep_is_held(lock) : 1; 54 } 55 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 56 #else 57 #define ASSERT_RHT_MUTEX(HT) 58 #endif 59 60 61 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl, 62 gfp_t gfp) 63 { 64 unsigned int i, size; 65 #if defined(CONFIG_PROVE_LOCKING) 66 unsigned int nr_pcpus = 2; 67 #else 68 unsigned int nr_pcpus = num_possible_cpus(); 69 #endif 70 71 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); 72 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); 73 74 /* Never allocate more than 0.5 locks per bucket */ 75 size = min_t(unsigned int, size, tbl->size >> 1); 76 77 if (sizeof(spinlock_t) != 0) { 78 #ifdef CONFIG_NUMA 79 if (size * sizeof(spinlock_t) > PAGE_SIZE && 80 gfp == GFP_KERNEL) 81 tbl->locks = vmalloc(size * sizeof(spinlock_t)); 82 else 83 #endif 84 tbl->locks = kmalloc_array(size, sizeof(spinlock_t), 85 gfp); 86 if (!tbl->locks) 87 return -ENOMEM; 88 for (i = 0; i < size; i++) 89 spin_lock_init(&tbl->locks[i]); 90 } 91 tbl->locks_mask = size - 1; 92 93 return 0; 94 } 95 96 static void bucket_table_free(const struct bucket_table *tbl) 97 { 98 if (tbl) 99 kvfree(tbl->locks); 100 101 kvfree(tbl); 102 } 103 104 static void bucket_table_free_rcu(struct rcu_head *head) 105 { 106 bucket_table_free(container_of(head, struct bucket_table, rcu)); 107 } 108 109 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 110 size_t nbuckets, 111 gfp_t gfp) 112 { 113 struct bucket_table *tbl = NULL; 114 size_t size; 115 int i; 116 117 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 118 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) || 119 gfp != GFP_KERNEL) 120 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY); 121 if (tbl == NULL && gfp == GFP_KERNEL) 122 tbl = vzalloc(size); 123 if (tbl == NULL) 124 return NULL; 125 126 tbl->size = nbuckets; 127 128 if (alloc_bucket_locks(ht, tbl, gfp) < 0) { 129 bucket_table_free(tbl); 130 return NULL; 131 } 132 133 INIT_LIST_HEAD(&tbl->walkers); 134 135 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 136 137 for (i = 0; i < nbuckets; i++) 138 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 139 140 return tbl; 141 } 142 143 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht, 144 struct bucket_table *tbl) 145 { 146 struct bucket_table *new_tbl; 147 148 do { 149 new_tbl = tbl; 150 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 151 } while (tbl); 152 153 return new_tbl; 154 } 155 156 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash) 157 { 158 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 159 struct bucket_table *new_tbl = rhashtable_last_table(ht, 160 rht_dereference_rcu(old_tbl->future_tbl, ht)); 161 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash]; 162 int err = -ENOENT; 163 struct rhash_head *head, *next, *entry; 164 spinlock_t *new_bucket_lock; 165 unsigned int new_hash; 166 167 rht_for_each(entry, old_tbl, old_hash) { 168 err = 0; 169 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 170 171 if (rht_is_a_nulls(next)) 172 break; 173 174 pprev = &entry->next; 175 } 176 177 if (err) 178 goto out; 179 180 new_hash = head_hashfn(ht, new_tbl, entry); 181 182 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash); 183 184 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 185 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 186 new_tbl, new_hash); 187 188 if (rht_is_a_nulls(head)) 189 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash); 190 else 191 RCU_INIT_POINTER(entry->next, head); 192 193 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 194 spin_unlock(new_bucket_lock); 195 196 rcu_assign_pointer(*pprev, next); 197 198 out: 199 return err; 200 } 201 202 static void rhashtable_rehash_chain(struct rhashtable *ht, 203 unsigned int old_hash) 204 { 205 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 206 spinlock_t *old_bucket_lock; 207 208 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash); 209 210 spin_lock_bh(old_bucket_lock); 211 while (!rhashtable_rehash_one(ht, old_hash)) 212 ; 213 old_tbl->rehash++; 214 spin_unlock_bh(old_bucket_lock); 215 } 216 217 static int rhashtable_rehash_attach(struct rhashtable *ht, 218 struct bucket_table *old_tbl, 219 struct bucket_table *new_tbl) 220 { 221 /* Protect future_tbl using the first bucket lock. */ 222 spin_lock_bh(old_tbl->locks); 223 224 /* Did somebody beat us to it? */ 225 if (rcu_access_pointer(old_tbl->future_tbl)) { 226 spin_unlock_bh(old_tbl->locks); 227 return -EEXIST; 228 } 229 230 /* Make insertions go into the new, empty table right away. Deletions 231 * and lookups will be attempted in both tables until we synchronize. 232 */ 233 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 234 235 /* Ensure the new table is visible to readers. */ 236 smp_wmb(); 237 238 spin_unlock_bh(old_tbl->locks); 239 240 return 0; 241 } 242 243 static int rhashtable_rehash_table(struct rhashtable *ht) 244 { 245 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 246 struct bucket_table *new_tbl; 247 struct rhashtable_walker *walker; 248 unsigned int old_hash; 249 250 new_tbl = rht_dereference(old_tbl->future_tbl, ht); 251 if (!new_tbl) 252 return 0; 253 254 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) 255 rhashtable_rehash_chain(ht, old_hash); 256 257 /* Publish the new table pointer. */ 258 rcu_assign_pointer(ht->tbl, new_tbl); 259 260 spin_lock(&ht->lock); 261 list_for_each_entry(walker, &old_tbl->walkers, list) 262 walker->tbl = NULL; 263 spin_unlock(&ht->lock); 264 265 /* Wait for readers. All new readers will see the new 266 * table, and thus no references to the old table will 267 * remain. 268 */ 269 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 270 271 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0; 272 } 273 274 /** 275 * rhashtable_expand - Expand hash table while allowing concurrent lookups 276 * @ht: the hash table to expand 277 * 278 * A secondary bucket array is allocated and the hash entries are migrated. 279 * 280 * This function may only be called in a context where it is safe to call 281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 282 * 283 * The caller must ensure that no concurrent resizing occurs by holding 284 * ht->mutex. 285 * 286 * It is valid to have concurrent insertions and deletions protected by per 287 * bucket locks or concurrent RCU protected lookups and traversals. 288 */ 289 static int rhashtable_expand(struct rhashtable *ht) 290 { 291 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 292 int err; 293 294 ASSERT_RHT_MUTEX(ht); 295 296 old_tbl = rhashtable_last_table(ht, old_tbl); 297 298 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL); 299 if (new_tbl == NULL) 300 return -ENOMEM; 301 302 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 303 if (err) 304 bucket_table_free(new_tbl); 305 306 return err; 307 } 308 309 /** 310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 311 * @ht: the hash table to shrink 312 * 313 * This function shrinks the hash table to fit, i.e., the smallest 314 * size would not cause it to expand right away automatically. 315 * 316 * The caller must ensure that no concurrent resizing occurs by holding 317 * ht->mutex. 318 * 319 * The caller must ensure that no concurrent table mutations take place. 320 * It is however valid to have concurrent lookups if they are RCU protected. 321 * 322 * It is valid to have concurrent insertions and deletions protected by per 323 * bucket locks or concurrent RCU protected lookups and traversals. 324 */ 325 static int rhashtable_shrink(struct rhashtable *ht) 326 { 327 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 328 unsigned int size; 329 int err; 330 331 ASSERT_RHT_MUTEX(ht); 332 333 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2); 334 if (size < ht->p.min_size) 335 size = ht->p.min_size; 336 337 if (old_tbl->size <= size) 338 return 0; 339 340 if (rht_dereference(old_tbl->future_tbl, ht)) 341 return -EEXIST; 342 343 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 344 if (new_tbl == NULL) 345 return -ENOMEM; 346 347 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl); 348 if (err) 349 bucket_table_free(new_tbl); 350 351 return err; 352 } 353 354 static void rht_deferred_worker(struct work_struct *work) 355 { 356 struct rhashtable *ht; 357 struct bucket_table *tbl; 358 int err = 0; 359 360 ht = container_of(work, struct rhashtable, run_work); 361 mutex_lock(&ht->mutex); 362 363 tbl = rht_dereference(ht->tbl, ht); 364 tbl = rhashtable_last_table(ht, tbl); 365 366 if (rht_grow_above_75(ht, tbl)) 367 rhashtable_expand(ht); 368 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl)) 369 rhashtable_shrink(ht); 370 371 err = rhashtable_rehash_table(ht); 372 373 mutex_unlock(&ht->mutex); 374 375 if (err) 376 schedule_work(&ht->run_work); 377 } 378 379 static bool rhashtable_check_elasticity(struct rhashtable *ht, 380 struct bucket_table *tbl, 381 unsigned int hash) 382 { 383 unsigned int elasticity = ht->elasticity; 384 struct rhash_head *head; 385 386 rht_for_each(head, tbl, hash) 387 if (!--elasticity) 388 return true; 389 390 return false; 391 } 392 393 int rhashtable_insert_rehash(struct rhashtable *ht) 394 { 395 struct bucket_table *old_tbl; 396 struct bucket_table *new_tbl; 397 struct bucket_table *tbl; 398 unsigned int size; 399 int err; 400 401 old_tbl = rht_dereference_rcu(ht->tbl, ht); 402 tbl = rhashtable_last_table(ht, old_tbl); 403 404 size = tbl->size; 405 406 if (rht_grow_above_75(ht, tbl)) 407 size *= 2; 408 /* More than two rehashes (not resizes) detected. */ 409 else if (WARN_ON(old_tbl != tbl && old_tbl->size == size)) 410 return -EBUSY; 411 412 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC); 413 if (new_tbl == NULL) 414 return -ENOMEM; 415 416 err = rhashtable_rehash_attach(ht, tbl, new_tbl); 417 if (err) { 418 bucket_table_free(new_tbl); 419 if (err == -EEXIST) 420 err = 0; 421 } else 422 schedule_work(&ht->run_work); 423 424 return err; 425 } 426 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash); 427 428 int rhashtable_insert_slow(struct rhashtable *ht, const void *key, 429 struct rhash_head *obj, 430 struct bucket_table *tbl) 431 { 432 struct rhash_head *head; 433 unsigned int hash; 434 int err; 435 436 tbl = rhashtable_last_table(ht, tbl); 437 hash = head_hashfn(ht, tbl, obj); 438 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING); 439 440 err = -EEXIST; 441 if (key && rhashtable_lookup_fast(ht, key, ht->p)) 442 goto exit; 443 444 err = -EAGAIN; 445 if (rhashtable_check_elasticity(ht, tbl, hash) || 446 rht_grow_above_100(ht, tbl)) 447 goto exit; 448 449 err = 0; 450 451 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); 452 453 RCU_INIT_POINTER(obj->next, head); 454 455 rcu_assign_pointer(tbl->buckets[hash], obj); 456 457 atomic_inc(&ht->nelems); 458 459 exit: 460 spin_unlock(rht_bucket_lock(tbl, hash)); 461 462 return err; 463 } 464 EXPORT_SYMBOL_GPL(rhashtable_insert_slow); 465 466 /** 467 * rhashtable_walk_init - Initialise an iterator 468 * @ht: Table to walk over 469 * @iter: Hash table Iterator 470 * 471 * This function prepares a hash table walk. 472 * 473 * Note that if you restart a walk after rhashtable_walk_stop you 474 * may see the same object twice. Also, you may miss objects if 475 * there are removals in between rhashtable_walk_stop and the next 476 * call to rhashtable_walk_start. 477 * 478 * For a completely stable walk you should construct your own data 479 * structure outside the hash table. 480 * 481 * This function may sleep so you must not call it from interrupt 482 * context or with spin locks held. 483 * 484 * You must call rhashtable_walk_exit if this function returns 485 * successfully. 486 */ 487 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) 488 { 489 iter->ht = ht; 490 iter->p = NULL; 491 iter->slot = 0; 492 iter->skip = 0; 493 494 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); 495 if (!iter->walker) 496 return -ENOMEM; 497 498 mutex_lock(&ht->mutex); 499 iter->walker->tbl = rht_dereference(ht->tbl, ht); 500 list_add(&iter->walker->list, &iter->walker->tbl->walkers); 501 mutex_unlock(&ht->mutex); 502 503 return 0; 504 } 505 EXPORT_SYMBOL_GPL(rhashtable_walk_init); 506 507 /** 508 * rhashtable_walk_exit - Free an iterator 509 * @iter: Hash table Iterator 510 * 511 * This function frees resources allocated by rhashtable_walk_init. 512 */ 513 void rhashtable_walk_exit(struct rhashtable_iter *iter) 514 { 515 mutex_lock(&iter->ht->mutex); 516 if (iter->walker->tbl) 517 list_del(&iter->walker->list); 518 mutex_unlock(&iter->ht->mutex); 519 kfree(iter->walker); 520 } 521 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 522 523 /** 524 * rhashtable_walk_start - Start a hash table walk 525 * @iter: Hash table iterator 526 * 527 * Start a hash table walk. Note that we take the RCU lock in all 528 * cases including when we return an error. So you must always call 529 * rhashtable_walk_stop to clean up. 530 * 531 * Returns zero if successful. 532 * 533 * Returns -EAGAIN if resize event occured. Note that the iterator 534 * will rewind back to the beginning and you may use it immediately 535 * by calling rhashtable_walk_next. 536 */ 537 int rhashtable_walk_start(struct rhashtable_iter *iter) 538 __acquires(RCU) 539 { 540 struct rhashtable *ht = iter->ht; 541 542 mutex_lock(&ht->mutex); 543 544 if (iter->walker->tbl) 545 list_del(&iter->walker->list); 546 547 rcu_read_lock(); 548 549 mutex_unlock(&ht->mutex); 550 551 if (!iter->walker->tbl) { 552 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht); 553 return -EAGAIN; 554 } 555 556 return 0; 557 } 558 EXPORT_SYMBOL_GPL(rhashtable_walk_start); 559 560 /** 561 * rhashtable_walk_next - Return the next object and advance the iterator 562 * @iter: Hash table iterator 563 * 564 * Note that you must call rhashtable_walk_stop when you are finished 565 * with the walk. 566 * 567 * Returns the next object or NULL when the end of the table is reached. 568 * 569 * Returns -EAGAIN if resize event occured. Note that the iterator 570 * will rewind back to the beginning and you may continue to use it. 571 */ 572 void *rhashtable_walk_next(struct rhashtable_iter *iter) 573 { 574 struct bucket_table *tbl = iter->walker->tbl; 575 struct rhashtable *ht = iter->ht; 576 struct rhash_head *p = iter->p; 577 void *obj = NULL; 578 579 if (p) { 580 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); 581 goto next; 582 } 583 584 for (; iter->slot < tbl->size; iter->slot++) { 585 int skip = iter->skip; 586 587 rht_for_each_rcu(p, tbl, iter->slot) { 588 if (!skip) 589 break; 590 skip--; 591 } 592 593 next: 594 if (!rht_is_a_nulls(p)) { 595 iter->skip++; 596 iter->p = p; 597 obj = rht_obj(ht, p); 598 goto out; 599 } 600 601 iter->skip = 0; 602 } 603 604 /* Ensure we see any new tables. */ 605 smp_rmb(); 606 607 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht); 608 if (iter->walker->tbl) { 609 iter->slot = 0; 610 iter->skip = 0; 611 return ERR_PTR(-EAGAIN); 612 } 613 614 iter->p = NULL; 615 616 out: 617 618 return obj; 619 } 620 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 621 622 /** 623 * rhashtable_walk_stop - Finish a hash table walk 624 * @iter: Hash table iterator 625 * 626 * Finish a hash table walk. 627 */ 628 void rhashtable_walk_stop(struct rhashtable_iter *iter) 629 __releases(RCU) 630 { 631 struct rhashtable *ht; 632 struct bucket_table *tbl = iter->walker->tbl; 633 634 if (!tbl) 635 goto out; 636 637 ht = iter->ht; 638 639 spin_lock(&ht->lock); 640 if (tbl->rehash < tbl->size) 641 list_add(&iter->walker->list, &tbl->walkers); 642 else 643 iter->walker->tbl = NULL; 644 spin_unlock(&ht->lock); 645 646 iter->p = NULL; 647 648 out: 649 rcu_read_unlock(); 650 } 651 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 652 653 static size_t rounded_hashtable_size(const struct rhashtable_params *params) 654 { 655 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 656 (unsigned long)params->min_size); 657 } 658 659 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed) 660 { 661 return jhash2(key, length, seed); 662 } 663 664 /** 665 * rhashtable_init - initialize a new hash table 666 * @ht: hash table to be initialized 667 * @params: configuration parameters 668 * 669 * Initializes a new hash table based on the provided configuration 670 * parameters. A table can be configured either with a variable or 671 * fixed length key: 672 * 673 * Configuration Example 1: Fixed length keys 674 * struct test_obj { 675 * int key; 676 * void * my_member; 677 * struct rhash_head node; 678 * }; 679 * 680 * struct rhashtable_params params = { 681 * .head_offset = offsetof(struct test_obj, node), 682 * .key_offset = offsetof(struct test_obj, key), 683 * .key_len = sizeof(int), 684 * .hashfn = jhash, 685 * .nulls_base = (1U << RHT_BASE_SHIFT), 686 * }; 687 * 688 * Configuration Example 2: Variable length keys 689 * struct test_obj { 690 * [...] 691 * struct rhash_head node; 692 * }; 693 * 694 * u32 my_hash_fn(const void *data, u32 len, u32 seed) 695 * { 696 * struct test_obj *obj = data; 697 * 698 * return [... hash ...]; 699 * } 700 * 701 * struct rhashtable_params params = { 702 * .head_offset = offsetof(struct test_obj, node), 703 * .hashfn = jhash, 704 * .obj_hashfn = my_hash_fn, 705 * }; 706 */ 707 int rhashtable_init(struct rhashtable *ht, 708 const struct rhashtable_params *params) 709 { 710 struct bucket_table *tbl; 711 size_t size; 712 713 size = HASH_DEFAULT_SIZE; 714 715 if ((!params->key_len && !params->obj_hashfn) || 716 (params->obj_hashfn && !params->obj_cmpfn)) 717 return -EINVAL; 718 719 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 720 return -EINVAL; 721 722 if (params->nelem_hint) 723 size = rounded_hashtable_size(params); 724 725 memset(ht, 0, sizeof(*ht)); 726 mutex_init(&ht->mutex); 727 spin_lock_init(&ht->lock); 728 memcpy(&ht->p, params, sizeof(*params)); 729 730 if (params->min_size) 731 ht->p.min_size = roundup_pow_of_two(params->min_size); 732 733 if (params->max_size) 734 ht->p.max_size = rounddown_pow_of_two(params->max_size); 735 736 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE); 737 738 /* The maximum (not average) chain length grows with the 739 * size of the hash table, at a rate of (log N)/(log log N). 740 * The value of 16 is selected so that even if the hash 741 * table grew to 2^32 you would not expect the maximum 742 * chain length to exceed it unless we are under attack 743 * (or extremely unlucky). 744 * 745 * As this limit is only to detect attacks, we don't need 746 * to set it to a lower value as you'd need the chain 747 * length to vastly exceed 16 to have any real effect 748 * on the system. 749 */ 750 if (!params->insecure_elasticity) 751 ht->elasticity = 16; 752 753 if (params->locks_mul) 754 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 755 else 756 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 757 758 ht->key_len = ht->p.key_len; 759 if (!params->hashfn) { 760 ht->p.hashfn = jhash; 761 762 if (!(ht->key_len & (sizeof(u32) - 1))) { 763 ht->key_len /= sizeof(u32); 764 ht->p.hashfn = rhashtable_jhash2; 765 } 766 } 767 768 tbl = bucket_table_alloc(ht, size, GFP_KERNEL); 769 if (tbl == NULL) 770 return -ENOMEM; 771 772 atomic_set(&ht->nelems, 0); 773 774 RCU_INIT_POINTER(ht->tbl, tbl); 775 776 INIT_WORK(&ht->run_work, rht_deferred_worker); 777 778 return 0; 779 } 780 EXPORT_SYMBOL_GPL(rhashtable_init); 781 782 /** 783 * rhashtable_free_and_destroy - free elements and destroy hash table 784 * @ht: the hash table to destroy 785 * @free_fn: callback to release resources of element 786 * @arg: pointer passed to free_fn 787 * 788 * Stops an eventual async resize. If defined, invokes free_fn for each 789 * element to releasal resources. Please note that RCU protected 790 * readers may still be accessing the elements. Releasing of resources 791 * must occur in a compatible manner. Then frees the bucket array. 792 * 793 * This function will eventually sleep to wait for an async resize 794 * to complete. The caller is responsible that no further write operations 795 * occurs in parallel. 796 */ 797 void rhashtable_free_and_destroy(struct rhashtable *ht, 798 void (*free_fn)(void *ptr, void *arg), 799 void *arg) 800 { 801 const struct bucket_table *tbl; 802 unsigned int i; 803 804 cancel_work_sync(&ht->run_work); 805 806 mutex_lock(&ht->mutex); 807 tbl = rht_dereference(ht->tbl, ht); 808 if (free_fn) { 809 for (i = 0; i < tbl->size; i++) { 810 struct rhash_head *pos, *next; 811 812 for (pos = rht_dereference(tbl->buckets[i], ht), 813 next = !rht_is_a_nulls(pos) ? 814 rht_dereference(pos->next, ht) : NULL; 815 !rht_is_a_nulls(pos); 816 pos = next, 817 next = !rht_is_a_nulls(pos) ? 818 rht_dereference(pos->next, ht) : NULL) 819 free_fn(rht_obj(ht, pos), arg); 820 } 821 } 822 823 bucket_table_free(tbl); 824 mutex_unlock(&ht->mutex); 825 } 826 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy); 827 828 void rhashtable_destroy(struct rhashtable *ht) 829 { 830 return rhashtable_free_and_destroy(ht, NULL, NULL); 831 } 832 EXPORT_SYMBOL_GPL(rhashtable_destroy); 833