1 /* 2 * Resizable, Scalable, Concurrent Hash Table 3 * 4 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch> 5 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net> 6 * 7 * Based on the following paper: 8 * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf 9 * 10 * Code partially derived from nft_hash 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/init.h> 19 #include <linux/log2.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/vmalloc.h> 23 #include <linux/mm.h> 24 #include <linux/jhash.h> 25 #include <linux/random.h> 26 #include <linux/rhashtable.h> 27 #include <linux/err.h> 28 29 #define HASH_DEFAULT_SIZE 64UL 30 #define HASH_MIN_SIZE 4UL 31 #define BUCKET_LOCKS_PER_CPU 128UL 32 33 /* Base bits plus 1 bit for nulls marker */ 34 #define HASH_RESERVED_SPACE (RHT_BASE_BITS + 1) 35 36 /* The bucket lock is selected based on the hash and protects mutations 37 * on a group of hash buckets. 38 * 39 * A maximum of tbl->size/2 bucket locks is allocated. This ensures that 40 * a single lock always covers both buckets which may both contains 41 * entries which link to the same bucket of the old table during resizing. 42 * This allows to simplify the locking as locking the bucket in both 43 * tables during resize always guarantee protection. 44 * 45 * IMPORTANT: When holding the bucket lock of both the old and new table 46 * during expansions and shrinking, the old bucket lock must always be 47 * acquired first. 48 */ 49 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash) 50 { 51 return &tbl->locks[hash & tbl->locks_mask]; 52 } 53 54 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he) 55 { 56 return (void *) he - ht->p.head_offset; 57 } 58 59 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash) 60 { 61 return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1); 62 } 63 64 static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl, 65 const void *key) 66 { 67 return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len, 68 tbl->hash_rnd)); 69 } 70 71 static u32 head_hashfn(struct rhashtable *ht, 72 const struct bucket_table *tbl, 73 const struct rhash_head *he) 74 { 75 const char *ptr = rht_obj(ht, he); 76 77 return likely(ht->p.key_len) ? 78 key_hashfn(ht, tbl, ptr + ht->p.key_offset) : 79 rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd)); 80 } 81 82 #ifdef CONFIG_PROVE_LOCKING 83 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT)) 84 85 int lockdep_rht_mutex_is_held(struct rhashtable *ht) 86 { 87 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1; 88 } 89 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held); 90 91 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash) 92 { 93 spinlock_t *lock = bucket_lock(tbl, hash); 94 95 return (debug_locks) ? lockdep_is_held(lock) : 1; 96 } 97 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held); 98 #else 99 #define ASSERT_RHT_MUTEX(HT) 100 #endif 101 102 103 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl) 104 { 105 unsigned int i, size; 106 #if defined(CONFIG_PROVE_LOCKING) 107 unsigned int nr_pcpus = 2; 108 #else 109 unsigned int nr_pcpus = num_possible_cpus(); 110 #endif 111 112 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL); 113 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul); 114 115 /* Never allocate more than 0.5 locks per bucket */ 116 size = min_t(unsigned int, size, tbl->size >> 1); 117 118 if (sizeof(spinlock_t) != 0) { 119 #ifdef CONFIG_NUMA 120 if (size * sizeof(spinlock_t) > PAGE_SIZE) 121 tbl->locks = vmalloc(size * sizeof(spinlock_t)); 122 else 123 #endif 124 tbl->locks = kmalloc_array(size, sizeof(spinlock_t), 125 GFP_KERNEL); 126 if (!tbl->locks) 127 return -ENOMEM; 128 for (i = 0; i < size; i++) 129 spin_lock_init(&tbl->locks[i]); 130 } 131 tbl->locks_mask = size - 1; 132 133 return 0; 134 } 135 136 static void bucket_table_free(const struct bucket_table *tbl) 137 { 138 if (tbl) 139 kvfree(tbl->locks); 140 141 kvfree(tbl); 142 } 143 144 static void bucket_table_free_rcu(struct rcu_head *head) 145 { 146 bucket_table_free(container_of(head, struct bucket_table, rcu)); 147 } 148 149 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht, 150 size_t nbuckets) 151 { 152 struct bucket_table *tbl = NULL; 153 size_t size; 154 int i; 155 156 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]); 157 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) 158 tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY); 159 if (tbl == NULL) 160 tbl = vzalloc(size); 161 if (tbl == NULL) 162 return NULL; 163 164 tbl->size = nbuckets; 165 tbl->shift = ilog2(nbuckets); 166 167 if (alloc_bucket_locks(ht, tbl) < 0) { 168 bucket_table_free(tbl); 169 return NULL; 170 } 171 172 INIT_LIST_HEAD(&tbl->walkers); 173 174 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 175 176 for (i = 0; i < nbuckets; i++) 177 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i); 178 179 return tbl; 180 } 181 182 /** 183 * rht_grow_above_75 - returns true if nelems > 0.75 * table-size 184 * @ht: hash table 185 * @tbl: current table 186 */ 187 static bool rht_grow_above_75(const struct rhashtable *ht, 188 const struct bucket_table *tbl) 189 { 190 /* Expand table when exceeding 75% load */ 191 return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) && 192 (!ht->p.max_shift || tbl->shift < ht->p.max_shift); 193 } 194 195 /** 196 * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size 197 * @ht: hash table 198 * @tbl: current table 199 */ 200 static bool rht_shrink_below_30(const struct rhashtable *ht, 201 const struct bucket_table *tbl) 202 { 203 /* Shrink table beneath 30% load */ 204 return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) && 205 tbl->shift > ht->p.min_shift; 206 } 207 208 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash) 209 { 210 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 211 struct bucket_table *new_tbl = 212 rht_dereference(old_tbl->future_tbl, ht) ?: old_tbl; 213 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash]; 214 int err = -ENOENT; 215 struct rhash_head *head, *next, *entry; 216 spinlock_t *new_bucket_lock; 217 unsigned new_hash; 218 219 rht_for_each(entry, old_tbl, old_hash) { 220 err = 0; 221 next = rht_dereference_bucket(entry->next, old_tbl, old_hash); 222 223 if (rht_is_a_nulls(next)) 224 break; 225 226 pprev = &entry->next; 227 } 228 229 if (err) 230 goto out; 231 232 new_hash = head_hashfn(ht, new_tbl, entry); 233 234 new_bucket_lock = bucket_lock(new_tbl, new_hash); 235 236 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING); 237 head = rht_dereference_bucket(new_tbl->buckets[new_hash], 238 new_tbl, new_hash); 239 240 if (rht_is_a_nulls(head)) 241 INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash); 242 else 243 RCU_INIT_POINTER(entry->next, head); 244 245 rcu_assign_pointer(new_tbl->buckets[new_hash], entry); 246 spin_unlock(new_bucket_lock); 247 248 rcu_assign_pointer(*pprev, next); 249 250 out: 251 return err; 252 } 253 254 static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash) 255 { 256 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 257 spinlock_t *old_bucket_lock; 258 259 old_bucket_lock = bucket_lock(old_tbl, old_hash); 260 261 spin_lock_bh(old_bucket_lock); 262 while (!rhashtable_rehash_one(ht, old_hash)) 263 ; 264 old_tbl->rehash++; 265 spin_unlock_bh(old_bucket_lock); 266 } 267 268 static void rhashtable_rehash(struct rhashtable *ht, 269 struct bucket_table *new_tbl) 270 { 271 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht); 272 struct rhashtable_walker *walker; 273 unsigned old_hash; 274 275 /* Make insertions go into the new, empty table right away. Deletions 276 * and lookups will be attempted in both tables until we synchronize. 277 */ 278 rcu_assign_pointer(old_tbl->future_tbl, new_tbl); 279 280 /* Ensure the new table is visible to readers. */ 281 smp_wmb(); 282 283 for (old_hash = 0; old_hash < old_tbl->size; old_hash++) 284 rhashtable_rehash_chain(ht, old_hash); 285 286 /* Publish the new table pointer. */ 287 rcu_assign_pointer(ht->tbl, new_tbl); 288 289 list_for_each_entry(walker, &old_tbl->walkers, list) 290 walker->tbl = NULL; 291 292 /* Wait for readers. All new readers will see the new 293 * table, and thus no references to the old table will 294 * remain. 295 */ 296 call_rcu(&old_tbl->rcu, bucket_table_free_rcu); 297 } 298 299 /** 300 * rhashtable_expand - Expand hash table while allowing concurrent lookups 301 * @ht: the hash table to expand 302 * 303 * A secondary bucket array is allocated and the hash entries are migrated. 304 * 305 * This function may only be called in a context where it is safe to call 306 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 307 * 308 * The caller must ensure that no concurrent resizing occurs by holding 309 * ht->mutex. 310 * 311 * It is valid to have concurrent insertions and deletions protected by per 312 * bucket locks or concurrent RCU protected lookups and traversals. 313 */ 314 int rhashtable_expand(struct rhashtable *ht) 315 { 316 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 317 318 ASSERT_RHT_MUTEX(ht); 319 320 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2); 321 if (new_tbl == NULL) 322 return -ENOMEM; 323 324 rhashtable_rehash(ht, new_tbl); 325 return 0; 326 } 327 EXPORT_SYMBOL_GPL(rhashtable_expand); 328 329 /** 330 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups 331 * @ht: the hash table to shrink 332 * 333 * This function may only be called in a context where it is safe to call 334 * synchronize_rcu(), e.g. not within a rcu_read_lock() section. 335 * 336 * The caller must ensure that no concurrent resizing occurs by holding 337 * ht->mutex. 338 * 339 * The caller must ensure that no concurrent table mutations take place. 340 * It is however valid to have concurrent lookups if they are RCU protected. 341 * 342 * It is valid to have concurrent insertions and deletions protected by per 343 * bucket locks or concurrent RCU protected lookups and traversals. 344 */ 345 int rhashtable_shrink(struct rhashtable *ht) 346 { 347 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht); 348 349 ASSERT_RHT_MUTEX(ht); 350 351 new_tbl = bucket_table_alloc(ht, old_tbl->size / 2); 352 if (new_tbl == NULL) 353 return -ENOMEM; 354 355 rhashtable_rehash(ht, new_tbl); 356 return 0; 357 } 358 EXPORT_SYMBOL_GPL(rhashtable_shrink); 359 360 static void rht_deferred_worker(struct work_struct *work) 361 { 362 struct rhashtable *ht; 363 struct bucket_table *tbl; 364 365 ht = container_of(work, struct rhashtable, run_work); 366 mutex_lock(&ht->mutex); 367 if (ht->being_destroyed) 368 goto unlock; 369 370 tbl = rht_dereference(ht->tbl, ht); 371 372 if (rht_grow_above_75(ht, tbl)) 373 rhashtable_expand(ht); 374 else if (rht_shrink_below_30(ht, tbl)) 375 rhashtable_shrink(ht); 376 unlock: 377 mutex_unlock(&ht->mutex); 378 } 379 380 static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj, 381 bool (*compare)(void *, void *), void *arg) 382 { 383 struct bucket_table *tbl, *old_tbl; 384 struct rhash_head *head; 385 bool no_resize_running; 386 unsigned hash; 387 spinlock_t *old_lock; 388 bool success = true; 389 390 rcu_read_lock(); 391 392 old_tbl = rht_dereference_rcu(ht->tbl, ht); 393 hash = head_hashfn(ht, old_tbl, obj); 394 old_lock = bucket_lock(old_tbl, hash); 395 396 spin_lock_bh(old_lock); 397 398 /* Because we have already taken the bucket lock in old_tbl, 399 * if we find that future_tbl is not yet visible then that 400 * guarantees all other insertions of the same entry will 401 * also grab the bucket lock in old_tbl because until the 402 * rehash completes ht->tbl won't be changed. 403 */ 404 tbl = rht_dereference_rcu(old_tbl->future_tbl, ht) ?: old_tbl; 405 if (tbl != old_tbl) { 406 hash = head_hashfn(ht, tbl, obj); 407 spin_lock_nested(bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING); 408 } 409 410 if (compare && 411 rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset, 412 compare, arg)) { 413 success = false; 414 goto exit; 415 } 416 417 no_resize_running = tbl == old_tbl; 418 419 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash); 420 421 if (rht_is_a_nulls(head)) 422 INIT_RHT_NULLS_HEAD(obj->next, ht, hash); 423 else 424 RCU_INIT_POINTER(obj->next, head); 425 426 rcu_assign_pointer(tbl->buckets[hash], obj); 427 428 atomic_inc(&ht->nelems); 429 if (no_resize_running && rht_grow_above_75(ht, tbl)) 430 schedule_work(&ht->run_work); 431 432 exit: 433 if (tbl != old_tbl) 434 spin_unlock(bucket_lock(tbl, hash)); 435 436 spin_unlock_bh(old_lock); 437 438 rcu_read_unlock(); 439 440 return success; 441 } 442 443 /** 444 * rhashtable_insert - insert object into hash table 445 * @ht: hash table 446 * @obj: pointer to hash head inside object 447 * 448 * Will take a per bucket spinlock to protect against mutual mutations 449 * on the same bucket. Multiple insertions may occur in parallel unless 450 * they map to the same bucket lock. 451 * 452 * It is safe to call this function from atomic context. 453 * 454 * Will trigger an automatic deferred table resizing if the size grows 455 * beyond the watermark indicated by grow_decision() which can be passed 456 * to rhashtable_init(). 457 */ 458 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj) 459 { 460 __rhashtable_insert(ht, obj, NULL, NULL); 461 } 462 EXPORT_SYMBOL_GPL(rhashtable_insert); 463 464 static bool __rhashtable_remove(struct rhashtable *ht, 465 struct bucket_table *tbl, 466 struct rhash_head *obj) 467 { 468 struct rhash_head __rcu **pprev; 469 struct rhash_head *he; 470 spinlock_t * lock; 471 unsigned hash; 472 bool ret = false; 473 474 hash = head_hashfn(ht, tbl, obj); 475 lock = bucket_lock(tbl, hash); 476 477 spin_lock_bh(lock); 478 479 pprev = &tbl->buckets[hash]; 480 rht_for_each(he, tbl, hash) { 481 if (he != obj) { 482 pprev = &he->next; 483 continue; 484 } 485 486 rcu_assign_pointer(*pprev, obj->next); 487 ret = true; 488 break; 489 } 490 491 spin_unlock_bh(lock); 492 493 return ret; 494 } 495 496 /** 497 * rhashtable_remove - remove object from hash table 498 * @ht: hash table 499 * @obj: pointer to hash head inside object 500 * 501 * Since the hash chain is single linked, the removal operation needs to 502 * walk the bucket chain upon removal. The removal operation is thus 503 * considerable slow if the hash table is not correctly sized. 504 * 505 * Will automatically shrink the table via rhashtable_expand() if the 506 * shrink_decision function specified at rhashtable_init() returns true. 507 * 508 * The caller must ensure that no concurrent table mutations occur. It is 509 * however valid to have concurrent lookups if they are RCU protected. 510 */ 511 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj) 512 { 513 struct bucket_table *tbl; 514 bool ret; 515 516 rcu_read_lock(); 517 518 tbl = rht_dereference_rcu(ht->tbl, ht); 519 520 /* Because we have already taken (and released) the bucket 521 * lock in old_tbl, if we find that future_tbl is not yet 522 * visible then that guarantees the entry to still be in 523 * the old tbl if it exists. 524 */ 525 while (!(ret = __rhashtable_remove(ht, tbl, obj)) && 526 (tbl = rht_dereference_rcu(tbl->future_tbl, ht))) 527 ; 528 529 if (ret) { 530 atomic_dec(&ht->nelems); 531 if (rht_shrink_below_30(ht, tbl)) 532 schedule_work(&ht->run_work); 533 } 534 535 rcu_read_unlock(); 536 537 return ret; 538 } 539 EXPORT_SYMBOL_GPL(rhashtable_remove); 540 541 struct rhashtable_compare_arg { 542 struct rhashtable *ht; 543 const void *key; 544 }; 545 546 static bool rhashtable_compare(void *ptr, void *arg) 547 { 548 struct rhashtable_compare_arg *x = arg; 549 struct rhashtable *ht = x->ht; 550 551 return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len); 552 } 553 554 /** 555 * rhashtable_lookup - lookup key in hash table 556 * @ht: hash table 557 * @key: pointer to key 558 * 559 * Computes the hash value for the key and traverses the bucket chain looking 560 * for a entry with an identical key. The first matching entry is returned. 561 * 562 * This lookup function may only be used for fixed key hash table (key_len 563 * parameter set). It will BUG() if used inappropriately. 564 * 565 * Lookups may occur in parallel with hashtable mutations and resizing. 566 */ 567 void *rhashtable_lookup(struct rhashtable *ht, const void *key) 568 { 569 struct rhashtable_compare_arg arg = { 570 .ht = ht, 571 .key = key, 572 }; 573 574 BUG_ON(!ht->p.key_len); 575 576 return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg); 577 } 578 EXPORT_SYMBOL_GPL(rhashtable_lookup); 579 580 /** 581 * rhashtable_lookup_compare - search hash table with compare function 582 * @ht: hash table 583 * @key: the pointer to the key 584 * @compare: compare function, must return true on match 585 * @arg: argument passed on to compare function 586 * 587 * Traverses the bucket chain behind the provided hash value and calls the 588 * specified compare function for each entry. 589 * 590 * Lookups may occur in parallel with hashtable mutations and resizing. 591 * 592 * Returns the first entry on which the compare function returned true. 593 */ 594 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key, 595 bool (*compare)(void *, void *), void *arg) 596 { 597 const struct bucket_table *tbl; 598 struct rhash_head *he; 599 u32 hash; 600 601 rcu_read_lock(); 602 603 tbl = rht_dereference_rcu(ht->tbl, ht); 604 restart: 605 hash = key_hashfn(ht, tbl, key); 606 rht_for_each_rcu(he, tbl, hash) { 607 if (!compare(rht_obj(ht, he), arg)) 608 continue; 609 rcu_read_unlock(); 610 return rht_obj(ht, he); 611 } 612 613 /* Ensure we see any new tables. */ 614 smp_rmb(); 615 616 tbl = rht_dereference_rcu(tbl->future_tbl, ht); 617 if (unlikely(tbl)) 618 goto restart; 619 rcu_read_unlock(); 620 621 return NULL; 622 } 623 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare); 624 625 /** 626 * rhashtable_lookup_insert - lookup and insert object into hash table 627 * @ht: hash table 628 * @obj: pointer to hash head inside object 629 * 630 * Locks down the bucket chain in both the old and new table if a resize 631 * is in progress to ensure that writers can't remove from the old table 632 * and can't insert to the new table during the atomic operation of search 633 * and insertion. Searches for duplicates in both the old and new table if 634 * a resize is in progress. 635 * 636 * This lookup function may only be used for fixed key hash table (key_len 637 * parameter set). It will BUG() if used inappropriately. 638 * 639 * It is safe to call this function from atomic context. 640 * 641 * Will trigger an automatic deferred table resizing if the size grows 642 * beyond the watermark indicated by grow_decision() which can be passed 643 * to rhashtable_init(). 644 */ 645 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj) 646 { 647 struct rhashtable_compare_arg arg = { 648 .ht = ht, 649 .key = rht_obj(ht, obj) + ht->p.key_offset, 650 }; 651 652 BUG_ON(!ht->p.key_len); 653 654 return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare, 655 &arg); 656 } 657 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert); 658 659 /** 660 * rhashtable_lookup_compare_insert - search and insert object to hash table 661 * with compare function 662 * @ht: hash table 663 * @obj: pointer to hash head inside object 664 * @compare: compare function, must return true on match 665 * @arg: argument passed on to compare function 666 * 667 * Locks down the bucket chain in both the old and new table if a resize 668 * is in progress to ensure that writers can't remove from the old table 669 * and can't insert to the new table during the atomic operation of search 670 * and insertion. Searches for duplicates in both the old and new table if 671 * a resize is in progress. 672 * 673 * Lookups may occur in parallel with hashtable mutations and resizing. 674 * 675 * Will trigger an automatic deferred table resizing if the size grows 676 * beyond the watermark indicated by grow_decision() which can be passed 677 * to rhashtable_init(). 678 */ 679 bool rhashtable_lookup_compare_insert(struct rhashtable *ht, 680 struct rhash_head *obj, 681 bool (*compare)(void *, void *), 682 void *arg) 683 { 684 BUG_ON(!ht->p.key_len); 685 686 return __rhashtable_insert(ht, obj, compare, arg); 687 } 688 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert); 689 690 /** 691 * rhashtable_walk_init - Initialise an iterator 692 * @ht: Table to walk over 693 * @iter: Hash table Iterator 694 * 695 * This function prepares a hash table walk. 696 * 697 * Note that if you restart a walk after rhashtable_walk_stop you 698 * may see the same object twice. Also, you may miss objects if 699 * there are removals in between rhashtable_walk_stop and the next 700 * call to rhashtable_walk_start. 701 * 702 * For a completely stable walk you should construct your own data 703 * structure outside the hash table. 704 * 705 * This function may sleep so you must not call it from interrupt 706 * context or with spin locks held. 707 * 708 * You must call rhashtable_walk_exit if this function returns 709 * successfully. 710 */ 711 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter) 712 { 713 iter->ht = ht; 714 iter->p = NULL; 715 iter->slot = 0; 716 iter->skip = 0; 717 718 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL); 719 if (!iter->walker) 720 return -ENOMEM; 721 722 mutex_lock(&ht->mutex); 723 iter->walker->tbl = rht_dereference(ht->tbl, ht); 724 list_add(&iter->walker->list, &iter->walker->tbl->walkers); 725 mutex_unlock(&ht->mutex); 726 727 return 0; 728 } 729 EXPORT_SYMBOL_GPL(rhashtable_walk_init); 730 731 /** 732 * rhashtable_walk_exit - Free an iterator 733 * @iter: Hash table Iterator 734 * 735 * This function frees resources allocated by rhashtable_walk_init. 736 */ 737 void rhashtable_walk_exit(struct rhashtable_iter *iter) 738 { 739 mutex_lock(&iter->ht->mutex); 740 if (iter->walker->tbl) 741 list_del(&iter->walker->list); 742 mutex_unlock(&iter->ht->mutex); 743 kfree(iter->walker); 744 } 745 EXPORT_SYMBOL_GPL(rhashtable_walk_exit); 746 747 /** 748 * rhashtable_walk_start - Start a hash table walk 749 * @iter: Hash table iterator 750 * 751 * Start a hash table walk. Note that we take the RCU lock in all 752 * cases including when we return an error. So you must always call 753 * rhashtable_walk_stop to clean up. 754 * 755 * Returns zero if successful. 756 * 757 * Returns -EAGAIN if resize event occured. Note that the iterator 758 * will rewind back to the beginning and you may use it immediately 759 * by calling rhashtable_walk_next. 760 */ 761 int rhashtable_walk_start(struct rhashtable_iter *iter) 762 __acquires(RCU) 763 { 764 struct rhashtable *ht = iter->ht; 765 766 mutex_lock(&ht->mutex); 767 768 if (iter->walker->tbl) 769 list_del(&iter->walker->list); 770 771 rcu_read_lock(); 772 773 mutex_unlock(&ht->mutex); 774 775 if (!iter->walker->tbl) { 776 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht); 777 return -EAGAIN; 778 } 779 780 return 0; 781 } 782 EXPORT_SYMBOL_GPL(rhashtable_walk_start); 783 784 /** 785 * rhashtable_walk_next - Return the next object and advance the iterator 786 * @iter: Hash table iterator 787 * 788 * Note that you must call rhashtable_walk_stop when you are finished 789 * with the walk. 790 * 791 * Returns the next object or NULL when the end of the table is reached. 792 * 793 * Returns -EAGAIN if resize event occured. Note that the iterator 794 * will rewind back to the beginning and you may continue to use it. 795 */ 796 void *rhashtable_walk_next(struct rhashtable_iter *iter) 797 { 798 struct bucket_table *tbl = iter->walker->tbl; 799 struct rhashtable *ht = iter->ht; 800 struct rhash_head *p = iter->p; 801 void *obj = NULL; 802 803 if (p) { 804 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot); 805 goto next; 806 } 807 808 for (; iter->slot < tbl->size; iter->slot++) { 809 int skip = iter->skip; 810 811 rht_for_each_rcu(p, tbl, iter->slot) { 812 if (!skip) 813 break; 814 skip--; 815 } 816 817 next: 818 if (!rht_is_a_nulls(p)) { 819 iter->skip++; 820 iter->p = p; 821 obj = rht_obj(ht, p); 822 goto out; 823 } 824 825 iter->skip = 0; 826 } 827 828 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht); 829 if (iter->walker->tbl) { 830 iter->slot = 0; 831 iter->skip = 0; 832 return ERR_PTR(-EAGAIN); 833 } 834 835 iter->p = NULL; 836 837 out: 838 839 return obj; 840 } 841 EXPORT_SYMBOL_GPL(rhashtable_walk_next); 842 843 /** 844 * rhashtable_walk_stop - Finish a hash table walk 845 * @iter: Hash table iterator 846 * 847 * Finish a hash table walk. 848 */ 849 void rhashtable_walk_stop(struct rhashtable_iter *iter) 850 __releases(RCU) 851 { 852 struct rhashtable *ht; 853 struct bucket_table *tbl = iter->walker->tbl; 854 855 if (!tbl) 856 goto out; 857 858 ht = iter->ht; 859 860 mutex_lock(&ht->mutex); 861 if (tbl->rehash < tbl->size) 862 list_add(&iter->walker->list, &tbl->walkers); 863 else 864 iter->walker->tbl = NULL; 865 mutex_unlock(&ht->mutex); 866 867 iter->p = NULL; 868 869 out: 870 rcu_read_unlock(); 871 } 872 EXPORT_SYMBOL_GPL(rhashtable_walk_stop); 873 874 static size_t rounded_hashtable_size(struct rhashtable_params *params) 875 { 876 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3), 877 1UL << params->min_shift); 878 } 879 880 /** 881 * rhashtable_init - initialize a new hash table 882 * @ht: hash table to be initialized 883 * @params: configuration parameters 884 * 885 * Initializes a new hash table based on the provided configuration 886 * parameters. A table can be configured either with a variable or 887 * fixed length key: 888 * 889 * Configuration Example 1: Fixed length keys 890 * struct test_obj { 891 * int key; 892 * void * my_member; 893 * struct rhash_head node; 894 * }; 895 * 896 * struct rhashtable_params params = { 897 * .head_offset = offsetof(struct test_obj, node), 898 * .key_offset = offsetof(struct test_obj, key), 899 * .key_len = sizeof(int), 900 * .hashfn = jhash, 901 * .nulls_base = (1U << RHT_BASE_SHIFT), 902 * }; 903 * 904 * Configuration Example 2: Variable length keys 905 * struct test_obj { 906 * [...] 907 * struct rhash_head node; 908 * }; 909 * 910 * u32 my_hash_fn(const void *data, u32 seed) 911 * { 912 * struct test_obj *obj = data; 913 * 914 * return [... hash ...]; 915 * } 916 * 917 * struct rhashtable_params params = { 918 * .head_offset = offsetof(struct test_obj, node), 919 * .hashfn = jhash, 920 * .obj_hashfn = my_hash_fn, 921 * }; 922 */ 923 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params) 924 { 925 struct bucket_table *tbl; 926 size_t size; 927 928 size = HASH_DEFAULT_SIZE; 929 930 if ((params->key_len && !params->hashfn) || 931 (!params->key_len && !params->obj_hashfn)) 932 return -EINVAL; 933 934 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT)) 935 return -EINVAL; 936 937 params->min_shift = max_t(size_t, params->min_shift, 938 ilog2(HASH_MIN_SIZE)); 939 940 if (params->nelem_hint) 941 size = rounded_hashtable_size(params); 942 943 memset(ht, 0, sizeof(*ht)); 944 mutex_init(&ht->mutex); 945 memcpy(&ht->p, params, sizeof(*params)); 946 947 if (params->locks_mul) 948 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul); 949 else 950 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU; 951 952 tbl = bucket_table_alloc(ht, size); 953 if (tbl == NULL) 954 return -ENOMEM; 955 956 atomic_set(&ht->nelems, 0); 957 958 RCU_INIT_POINTER(ht->tbl, tbl); 959 960 INIT_WORK(&ht->run_work, rht_deferred_worker); 961 962 return 0; 963 } 964 EXPORT_SYMBOL_GPL(rhashtable_init); 965 966 /** 967 * rhashtable_destroy - destroy hash table 968 * @ht: the hash table to destroy 969 * 970 * Frees the bucket array. This function is not rcu safe, therefore the caller 971 * has to make sure that no resizing may happen by unpublishing the hashtable 972 * and waiting for the quiescent cycle before releasing the bucket array. 973 */ 974 void rhashtable_destroy(struct rhashtable *ht) 975 { 976 ht->being_destroyed = true; 977 978 cancel_work_sync(&ht->run_work); 979 980 mutex_lock(&ht->mutex); 981 bucket_table_free(rht_dereference(ht->tbl, ht)); 982 mutex_unlock(&ht->mutex); 983 } 984 EXPORT_SYMBOL_GPL(rhashtable_destroy); 985