xref: /openbmc/linux/lib/rhashtable.c (revision 2d33394e23d63b750dcba40e5feaeba425427b52)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on the following paper:
8  * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9  *
10  * Code partially derived from nft_hash
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28 
29 #define HASH_DEFAULT_SIZE	64UL
30 #define HASH_MIN_SIZE		4UL
31 #define BUCKET_LOCKS_PER_CPU   128UL
32 
33 /* Base bits plus 1 bit for nulls marker */
34 #define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)
35 
36 /* The bucket lock is selected based on the hash and protects mutations
37  * on a group of hash buckets.
38  *
39  * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
40  * a single lock always covers both buckets which may both contains
41  * entries which link to the same bucket of the old table during resizing.
42  * This allows to simplify the locking as locking the bucket in both
43  * tables during resize always guarantee protection.
44  *
45  * IMPORTANT: When holding the bucket lock of both the old and new table
46  * during expansions and shrinking, the old bucket lock must always be
47  * acquired first.
48  */
49 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
50 {
51 	return &tbl->locks[hash & tbl->locks_mask];
52 }
53 
54 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
55 {
56 	return (void *) he - ht->p.head_offset;
57 }
58 
59 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
60 {
61 	return (hash >> HASH_RESERVED_SPACE) & (tbl->size - 1);
62 }
63 
64 static u32 key_hashfn(struct rhashtable *ht, const struct bucket_table *tbl,
65 		      const void *key)
66 {
67 	return rht_bucket_index(tbl, ht->p.hashfn(key, ht->p.key_len,
68 						  tbl->hash_rnd));
69 }
70 
71 static u32 head_hashfn(struct rhashtable *ht,
72 		       const struct bucket_table *tbl,
73 		       const struct rhash_head *he)
74 {
75 	const char *ptr = rht_obj(ht, he);
76 
77 	return likely(ht->p.key_len) ?
78 	       key_hashfn(ht, tbl, ptr + ht->p.key_offset) :
79 	       rht_bucket_index(tbl, ht->p.obj_hashfn(ptr, tbl->hash_rnd));
80 }
81 
82 #ifdef CONFIG_PROVE_LOCKING
83 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
84 
85 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
86 {
87 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
88 }
89 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
90 
91 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
92 {
93 	spinlock_t *lock = bucket_lock(tbl, hash);
94 
95 	return (debug_locks) ? lockdep_is_held(lock) : 1;
96 }
97 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
98 #else
99 #define ASSERT_RHT_MUTEX(HT)
100 #endif
101 
102 
103 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
104 {
105 	unsigned int i, size;
106 #if defined(CONFIG_PROVE_LOCKING)
107 	unsigned int nr_pcpus = 2;
108 #else
109 	unsigned int nr_pcpus = num_possible_cpus();
110 #endif
111 
112 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
113 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
114 
115 	/* Never allocate more than 0.5 locks per bucket */
116 	size = min_t(unsigned int, size, tbl->size >> 1);
117 
118 	if (sizeof(spinlock_t) != 0) {
119 #ifdef CONFIG_NUMA
120 		if (size * sizeof(spinlock_t) > PAGE_SIZE)
121 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
122 		else
123 #endif
124 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
125 					   GFP_KERNEL);
126 		if (!tbl->locks)
127 			return -ENOMEM;
128 		for (i = 0; i < size; i++)
129 			spin_lock_init(&tbl->locks[i]);
130 	}
131 	tbl->locks_mask = size - 1;
132 
133 	return 0;
134 }
135 
136 static void bucket_table_free(const struct bucket_table *tbl)
137 {
138 	if (tbl)
139 		kvfree(tbl->locks);
140 
141 	kvfree(tbl);
142 }
143 
144 static void bucket_table_free_rcu(struct rcu_head *head)
145 {
146 	bucket_table_free(container_of(head, struct bucket_table, rcu));
147 }
148 
149 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
150 					       size_t nbuckets)
151 {
152 	struct bucket_table *tbl = NULL;
153 	size_t size;
154 	int i;
155 
156 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
157 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
158 		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
159 	if (tbl == NULL)
160 		tbl = vzalloc(size);
161 	if (tbl == NULL)
162 		return NULL;
163 
164 	tbl->size = nbuckets;
165 	tbl->shift = ilog2(nbuckets);
166 
167 	if (alloc_bucket_locks(ht, tbl) < 0) {
168 		bucket_table_free(tbl);
169 		return NULL;
170 	}
171 
172 	INIT_LIST_HEAD(&tbl->walkers);
173 
174 	get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
175 
176 	for (i = 0; i < nbuckets; i++)
177 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
178 
179 	return tbl;
180 }
181 
182 /**
183  * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
184  * @ht:		hash table
185  * @tbl:	current table
186  */
187 static bool rht_grow_above_75(const struct rhashtable *ht,
188 			      const struct bucket_table *tbl)
189 {
190 	/* Expand table when exceeding 75% load */
191 	return atomic_read(&ht->nelems) > (tbl->size / 4 * 3) &&
192 	       (!ht->p.max_shift || tbl->shift < ht->p.max_shift);
193 }
194 
195 /**
196  * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
197  * @ht:		hash table
198  * @tbl:	current table
199  */
200 static bool rht_shrink_below_30(const struct rhashtable *ht,
201 				const struct bucket_table *tbl)
202 {
203 	/* Shrink table beneath 30% load */
204 	return atomic_read(&ht->nelems) < (tbl->size * 3 / 10) &&
205 	       tbl->shift > ht->p.min_shift;
206 }
207 
208 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned old_hash)
209 {
210 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
211 	struct bucket_table *new_tbl =
212 		rht_dereference(old_tbl->future_tbl, ht) ?: old_tbl;
213 	struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
214 	int err = -ENOENT;
215 	struct rhash_head *head, *next, *entry;
216 	spinlock_t *new_bucket_lock;
217 	unsigned new_hash;
218 
219 	rht_for_each(entry, old_tbl, old_hash) {
220 		err = 0;
221 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
222 
223 		if (rht_is_a_nulls(next))
224 			break;
225 
226 		pprev = &entry->next;
227 	}
228 
229 	if (err)
230 		goto out;
231 
232 	new_hash = head_hashfn(ht, new_tbl, entry);
233 
234 	new_bucket_lock = bucket_lock(new_tbl, new_hash);
235 
236 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
237 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
238 				      new_tbl, new_hash);
239 
240 	if (rht_is_a_nulls(head))
241 		INIT_RHT_NULLS_HEAD(entry->next, ht, new_hash);
242 	else
243 		RCU_INIT_POINTER(entry->next, head);
244 
245 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
246 	spin_unlock(new_bucket_lock);
247 
248 	rcu_assign_pointer(*pprev, next);
249 
250 out:
251 	return err;
252 }
253 
254 static void rhashtable_rehash_chain(struct rhashtable *ht, unsigned old_hash)
255 {
256 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
257 	spinlock_t *old_bucket_lock;
258 
259 	old_bucket_lock = bucket_lock(old_tbl, old_hash);
260 
261 	spin_lock_bh(old_bucket_lock);
262 	while (!rhashtable_rehash_one(ht, old_hash))
263 		;
264 	old_tbl->rehash++;
265 	spin_unlock_bh(old_bucket_lock);
266 }
267 
268 static void rhashtable_rehash(struct rhashtable *ht,
269 			      struct bucket_table *new_tbl)
270 {
271 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
272 	struct rhashtable_walker *walker;
273 	unsigned old_hash;
274 
275 	/* Make insertions go into the new, empty table right away. Deletions
276 	 * and lookups will be attempted in both tables until we synchronize.
277 	 */
278 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
279 
280 	/* Ensure the new table is visible to readers. */
281 	smp_wmb();
282 
283 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
284 		rhashtable_rehash_chain(ht, old_hash);
285 
286 	/* Publish the new table pointer. */
287 	rcu_assign_pointer(ht->tbl, new_tbl);
288 
289 	list_for_each_entry(walker, &old_tbl->walkers, list)
290 		walker->tbl = NULL;
291 
292 	/* Wait for readers. All new readers will see the new
293 	 * table, and thus no references to the old table will
294 	 * remain.
295 	 */
296 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
297 }
298 
299 /**
300  * rhashtable_expand - Expand hash table while allowing concurrent lookups
301  * @ht:		the hash table to expand
302  *
303  * A secondary bucket array is allocated and the hash entries are migrated.
304  *
305  * This function may only be called in a context where it is safe to call
306  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
307  *
308  * The caller must ensure that no concurrent resizing occurs by holding
309  * ht->mutex.
310  *
311  * It is valid to have concurrent insertions and deletions protected by per
312  * bucket locks or concurrent RCU protected lookups and traversals.
313  */
314 int rhashtable_expand(struct rhashtable *ht)
315 {
316 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
317 
318 	ASSERT_RHT_MUTEX(ht);
319 
320 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
321 	if (new_tbl == NULL)
322 		return -ENOMEM;
323 
324 	rhashtable_rehash(ht, new_tbl);
325 	return 0;
326 }
327 EXPORT_SYMBOL_GPL(rhashtable_expand);
328 
329 /**
330  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
331  * @ht:		the hash table to shrink
332  *
333  * This function may only be called in a context where it is safe to call
334  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
335  *
336  * The caller must ensure that no concurrent resizing occurs by holding
337  * ht->mutex.
338  *
339  * The caller must ensure that no concurrent table mutations take place.
340  * It is however valid to have concurrent lookups if they are RCU protected.
341  *
342  * It is valid to have concurrent insertions and deletions protected by per
343  * bucket locks or concurrent RCU protected lookups and traversals.
344  */
345 int rhashtable_shrink(struct rhashtable *ht)
346 {
347 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
348 
349 	ASSERT_RHT_MUTEX(ht);
350 
351 	new_tbl = bucket_table_alloc(ht, old_tbl->size / 2);
352 	if (new_tbl == NULL)
353 		return -ENOMEM;
354 
355 	rhashtable_rehash(ht, new_tbl);
356 	return 0;
357 }
358 EXPORT_SYMBOL_GPL(rhashtable_shrink);
359 
360 static void rht_deferred_worker(struct work_struct *work)
361 {
362 	struct rhashtable *ht;
363 	struct bucket_table *tbl;
364 
365 	ht = container_of(work, struct rhashtable, run_work);
366 	mutex_lock(&ht->mutex);
367 	if (ht->being_destroyed)
368 		goto unlock;
369 
370 	tbl = rht_dereference(ht->tbl, ht);
371 
372 	if (rht_grow_above_75(ht, tbl))
373 		rhashtable_expand(ht);
374 	else if (rht_shrink_below_30(ht, tbl))
375 		rhashtable_shrink(ht);
376 unlock:
377 	mutex_unlock(&ht->mutex);
378 }
379 
380 static bool __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
381 				bool (*compare)(void *, void *), void *arg)
382 {
383 	struct bucket_table *tbl, *old_tbl;
384 	struct rhash_head *head;
385 	bool no_resize_running;
386 	unsigned hash;
387 	spinlock_t *old_lock;
388 	bool success = true;
389 
390 	rcu_read_lock();
391 
392 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
393 	hash = head_hashfn(ht, old_tbl, obj);
394 	old_lock = bucket_lock(old_tbl, hash);
395 
396 	spin_lock_bh(old_lock);
397 
398 	/* Because we have already taken the bucket lock in old_tbl,
399 	 * if we find that future_tbl is not yet visible then that
400 	 * guarantees all other insertions of the same entry will
401 	 * also grab the bucket lock in old_tbl because until the
402 	 * rehash completes ht->tbl won't be changed.
403 	 */
404 	tbl = rht_dereference_rcu(old_tbl->future_tbl, ht) ?: old_tbl;
405 	if (tbl != old_tbl) {
406 		hash = head_hashfn(ht, tbl, obj);
407 		spin_lock_nested(bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
408 	}
409 
410 	if (compare &&
411 	    rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
412 				      compare, arg)) {
413 		success = false;
414 		goto exit;
415 	}
416 
417 	no_resize_running = tbl == old_tbl;
418 
419 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
420 
421 	if (rht_is_a_nulls(head))
422 		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
423 	else
424 		RCU_INIT_POINTER(obj->next, head);
425 
426 	rcu_assign_pointer(tbl->buckets[hash], obj);
427 
428 	atomic_inc(&ht->nelems);
429 	if (no_resize_running && rht_grow_above_75(ht, tbl))
430 		schedule_work(&ht->run_work);
431 
432 exit:
433 	if (tbl != old_tbl)
434 		spin_unlock(bucket_lock(tbl, hash));
435 
436 	spin_unlock_bh(old_lock);
437 
438 	rcu_read_unlock();
439 
440 	return success;
441 }
442 
443 /**
444  * rhashtable_insert - insert object into hash table
445  * @ht:		hash table
446  * @obj:	pointer to hash head inside object
447  *
448  * Will take a per bucket spinlock to protect against mutual mutations
449  * on the same bucket. Multiple insertions may occur in parallel unless
450  * they map to the same bucket lock.
451  *
452  * It is safe to call this function from atomic context.
453  *
454  * Will trigger an automatic deferred table resizing if the size grows
455  * beyond the watermark indicated by grow_decision() which can be passed
456  * to rhashtable_init().
457  */
458 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
459 {
460 	__rhashtable_insert(ht, obj, NULL, NULL);
461 }
462 EXPORT_SYMBOL_GPL(rhashtable_insert);
463 
464 static bool __rhashtable_remove(struct rhashtable *ht,
465 				struct bucket_table *tbl,
466 				struct rhash_head *obj)
467 {
468 	struct rhash_head __rcu **pprev;
469 	struct rhash_head *he;
470 	spinlock_t * lock;
471 	unsigned hash;
472 	bool ret = false;
473 
474 	hash = head_hashfn(ht, tbl, obj);
475 	lock = bucket_lock(tbl, hash);
476 
477 	spin_lock_bh(lock);
478 
479 	pprev = &tbl->buckets[hash];
480 	rht_for_each(he, tbl, hash) {
481 		if (he != obj) {
482 			pprev = &he->next;
483 			continue;
484 		}
485 
486 		rcu_assign_pointer(*pprev, obj->next);
487 		ret = true;
488 		break;
489 	}
490 
491 	spin_unlock_bh(lock);
492 
493 	return ret;
494 }
495 
496 /**
497  * rhashtable_remove - remove object from hash table
498  * @ht:		hash table
499  * @obj:	pointer to hash head inside object
500  *
501  * Since the hash chain is single linked, the removal operation needs to
502  * walk the bucket chain upon removal. The removal operation is thus
503  * considerable slow if the hash table is not correctly sized.
504  *
505  * Will automatically shrink the table via rhashtable_expand() if the
506  * shrink_decision function specified at rhashtable_init() returns true.
507  *
508  * The caller must ensure that no concurrent table mutations occur. It is
509  * however valid to have concurrent lookups if they are RCU protected.
510  */
511 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
512 {
513 	struct bucket_table *tbl;
514 	bool ret;
515 
516 	rcu_read_lock();
517 
518 	tbl = rht_dereference_rcu(ht->tbl, ht);
519 
520 	/* Because we have already taken (and released) the bucket
521 	 * lock in old_tbl, if we find that future_tbl is not yet
522 	 * visible then that guarantees the entry to still be in
523 	 * the old tbl if it exists.
524 	 */
525 	while (!(ret = __rhashtable_remove(ht, tbl, obj)) &&
526 	       (tbl = rht_dereference_rcu(tbl->future_tbl, ht)))
527 		;
528 
529 	if (ret) {
530 		atomic_dec(&ht->nelems);
531 		if (rht_shrink_below_30(ht, tbl))
532 			schedule_work(&ht->run_work);
533 	}
534 
535 	rcu_read_unlock();
536 
537 	return ret;
538 }
539 EXPORT_SYMBOL_GPL(rhashtable_remove);
540 
541 struct rhashtable_compare_arg {
542 	struct rhashtable *ht;
543 	const void *key;
544 };
545 
546 static bool rhashtable_compare(void *ptr, void *arg)
547 {
548 	struct rhashtable_compare_arg *x = arg;
549 	struct rhashtable *ht = x->ht;
550 
551 	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
552 }
553 
554 /**
555  * rhashtable_lookup - lookup key in hash table
556  * @ht:		hash table
557  * @key:	pointer to key
558  *
559  * Computes the hash value for the key and traverses the bucket chain looking
560  * for a entry with an identical key. The first matching entry is returned.
561  *
562  * This lookup function may only be used for fixed key hash table (key_len
563  * parameter set). It will BUG() if used inappropriately.
564  *
565  * Lookups may occur in parallel with hashtable mutations and resizing.
566  */
567 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
568 {
569 	struct rhashtable_compare_arg arg = {
570 		.ht = ht,
571 		.key = key,
572 	};
573 
574 	BUG_ON(!ht->p.key_len);
575 
576 	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
577 }
578 EXPORT_SYMBOL_GPL(rhashtable_lookup);
579 
580 /**
581  * rhashtable_lookup_compare - search hash table with compare function
582  * @ht:		hash table
583  * @key:	the pointer to the key
584  * @compare:	compare function, must return true on match
585  * @arg:	argument passed on to compare function
586  *
587  * Traverses the bucket chain behind the provided hash value and calls the
588  * specified compare function for each entry.
589  *
590  * Lookups may occur in parallel with hashtable mutations and resizing.
591  *
592  * Returns the first entry on which the compare function returned true.
593  */
594 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
595 				bool (*compare)(void *, void *), void *arg)
596 {
597 	const struct bucket_table *tbl;
598 	struct rhash_head *he;
599 	u32 hash;
600 
601 	rcu_read_lock();
602 
603 	tbl = rht_dereference_rcu(ht->tbl, ht);
604 restart:
605 	hash = key_hashfn(ht, tbl, key);
606 	rht_for_each_rcu(he, tbl, hash) {
607 		if (!compare(rht_obj(ht, he), arg))
608 			continue;
609 		rcu_read_unlock();
610 		return rht_obj(ht, he);
611 	}
612 
613 	/* Ensure we see any new tables. */
614 	smp_rmb();
615 
616 	tbl = rht_dereference_rcu(tbl->future_tbl, ht);
617 	if (unlikely(tbl))
618 		goto restart;
619 	rcu_read_unlock();
620 
621 	return NULL;
622 }
623 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
624 
625 /**
626  * rhashtable_lookup_insert - lookup and insert object into hash table
627  * @ht:		hash table
628  * @obj:	pointer to hash head inside object
629  *
630  * Locks down the bucket chain in both the old and new table if a resize
631  * is in progress to ensure that writers can't remove from the old table
632  * and can't insert to the new table during the atomic operation of search
633  * and insertion. Searches for duplicates in both the old and new table if
634  * a resize is in progress.
635  *
636  * This lookup function may only be used for fixed key hash table (key_len
637  * parameter set). It will BUG() if used inappropriately.
638  *
639  * It is safe to call this function from atomic context.
640  *
641  * Will trigger an automatic deferred table resizing if the size grows
642  * beyond the watermark indicated by grow_decision() which can be passed
643  * to rhashtable_init().
644  */
645 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
646 {
647 	struct rhashtable_compare_arg arg = {
648 		.ht = ht,
649 		.key = rht_obj(ht, obj) + ht->p.key_offset,
650 	};
651 
652 	BUG_ON(!ht->p.key_len);
653 
654 	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
655 						&arg);
656 }
657 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
658 
659 /**
660  * rhashtable_lookup_compare_insert - search and insert object to hash table
661  *                                    with compare function
662  * @ht:		hash table
663  * @obj:	pointer to hash head inside object
664  * @compare:	compare function, must return true on match
665  * @arg:	argument passed on to compare function
666  *
667  * Locks down the bucket chain in both the old and new table if a resize
668  * is in progress to ensure that writers can't remove from the old table
669  * and can't insert to the new table during the atomic operation of search
670  * and insertion. Searches for duplicates in both the old and new table if
671  * a resize is in progress.
672  *
673  * Lookups may occur in parallel with hashtable mutations and resizing.
674  *
675  * Will trigger an automatic deferred table resizing if the size grows
676  * beyond the watermark indicated by grow_decision() which can be passed
677  * to rhashtable_init().
678  */
679 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
680 				      struct rhash_head *obj,
681 				      bool (*compare)(void *, void *),
682 				      void *arg)
683 {
684 	BUG_ON(!ht->p.key_len);
685 
686 	return __rhashtable_insert(ht, obj, compare, arg);
687 }
688 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
689 
690 /**
691  * rhashtable_walk_init - Initialise an iterator
692  * @ht:		Table to walk over
693  * @iter:	Hash table Iterator
694  *
695  * This function prepares a hash table walk.
696  *
697  * Note that if you restart a walk after rhashtable_walk_stop you
698  * may see the same object twice.  Also, you may miss objects if
699  * there are removals in between rhashtable_walk_stop and the next
700  * call to rhashtable_walk_start.
701  *
702  * For a completely stable walk you should construct your own data
703  * structure outside the hash table.
704  *
705  * This function may sleep so you must not call it from interrupt
706  * context or with spin locks held.
707  *
708  * You must call rhashtable_walk_exit if this function returns
709  * successfully.
710  */
711 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
712 {
713 	iter->ht = ht;
714 	iter->p = NULL;
715 	iter->slot = 0;
716 	iter->skip = 0;
717 
718 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
719 	if (!iter->walker)
720 		return -ENOMEM;
721 
722 	mutex_lock(&ht->mutex);
723 	iter->walker->tbl = rht_dereference(ht->tbl, ht);
724 	list_add(&iter->walker->list, &iter->walker->tbl->walkers);
725 	mutex_unlock(&ht->mutex);
726 
727 	return 0;
728 }
729 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
730 
731 /**
732  * rhashtable_walk_exit - Free an iterator
733  * @iter:	Hash table Iterator
734  *
735  * This function frees resources allocated by rhashtable_walk_init.
736  */
737 void rhashtable_walk_exit(struct rhashtable_iter *iter)
738 {
739 	mutex_lock(&iter->ht->mutex);
740 	if (iter->walker->tbl)
741 		list_del(&iter->walker->list);
742 	mutex_unlock(&iter->ht->mutex);
743 	kfree(iter->walker);
744 }
745 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
746 
747 /**
748  * rhashtable_walk_start - Start a hash table walk
749  * @iter:	Hash table iterator
750  *
751  * Start a hash table walk.  Note that we take the RCU lock in all
752  * cases including when we return an error.  So you must always call
753  * rhashtable_walk_stop to clean up.
754  *
755  * Returns zero if successful.
756  *
757  * Returns -EAGAIN if resize event occured.  Note that the iterator
758  * will rewind back to the beginning and you may use it immediately
759  * by calling rhashtable_walk_next.
760  */
761 int rhashtable_walk_start(struct rhashtable_iter *iter)
762 	__acquires(RCU)
763 {
764 	struct rhashtable *ht = iter->ht;
765 
766 	mutex_lock(&ht->mutex);
767 
768 	if (iter->walker->tbl)
769 		list_del(&iter->walker->list);
770 
771 	rcu_read_lock();
772 
773 	mutex_unlock(&ht->mutex);
774 
775 	if (!iter->walker->tbl) {
776 		iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
777 		return -EAGAIN;
778 	}
779 
780 	return 0;
781 }
782 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
783 
784 /**
785  * rhashtable_walk_next - Return the next object and advance the iterator
786  * @iter:	Hash table iterator
787  *
788  * Note that you must call rhashtable_walk_stop when you are finished
789  * with the walk.
790  *
791  * Returns the next object or NULL when the end of the table is reached.
792  *
793  * Returns -EAGAIN if resize event occured.  Note that the iterator
794  * will rewind back to the beginning and you may continue to use it.
795  */
796 void *rhashtable_walk_next(struct rhashtable_iter *iter)
797 {
798 	struct bucket_table *tbl = iter->walker->tbl;
799 	struct rhashtable *ht = iter->ht;
800 	struct rhash_head *p = iter->p;
801 	void *obj = NULL;
802 
803 	if (p) {
804 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
805 		goto next;
806 	}
807 
808 	for (; iter->slot < tbl->size; iter->slot++) {
809 		int skip = iter->skip;
810 
811 		rht_for_each_rcu(p, tbl, iter->slot) {
812 			if (!skip)
813 				break;
814 			skip--;
815 		}
816 
817 next:
818 		if (!rht_is_a_nulls(p)) {
819 			iter->skip++;
820 			iter->p = p;
821 			obj = rht_obj(ht, p);
822 			goto out;
823 		}
824 
825 		iter->skip = 0;
826 	}
827 
828 	iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
829 	if (iter->walker->tbl) {
830 		iter->slot = 0;
831 		iter->skip = 0;
832 		return ERR_PTR(-EAGAIN);
833 	}
834 
835 	iter->p = NULL;
836 
837 out:
838 
839 	return obj;
840 }
841 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
842 
843 /**
844  * rhashtable_walk_stop - Finish a hash table walk
845  * @iter:	Hash table iterator
846  *
847  * Finish a hash table walk.
848  */
849 void rhashtable_walk_stop(struct rhashtable_iter *iter)
850 	__releases(RCU)
851 {
852 	struct rhashtable *ht;
853 	struct bucket_table *tbl = iter->walker->tbl;
854 
855 	if (!tbl)
856 		goto out;
857 
858 	ht = iter->ht;
859 
860 	mutex_lock(&ht->mutex);
861 	if (tbl->rehash < tbl->size)
862 		list_add(&iter->walker->list, &tbl->walkers);
863 	else
864 		iter->walker->tbl = NULL;
865 	mutex_unlock(&ht->mutex);
866 
867 	iter->p = NULL;
868 
869 out:
870 	rcu_read_unlock();
871 }
872 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
873 
874 static size_t rounded_hashtable_size(struct rhashtable_params *params)
875 {
876 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
877 		   1UL << params->min_shift);
878 }
879 
880 /**
881  * rhashtable_init - initialize a new hash table
882  * @ht:		hash table to be initialized
883  * @params:	configuration parameters
884  *
885  * Initializes a new hash table based on the provided configuration
886  * parameters. A table can be configured either with a variable or
887  * fixed length key:
888  *
889  * Configuration Example 1: Fixed length keys
890  * struct test_obj {
891  *	int			key;
892  *	void *			my_member;
893  *	struct rhash_head	node;
894  * };
895  *
896  * struct rhashtable_params params = {
897  *	.head_offset = offsetof(struct test_obj, node),
898  *	.key_offset = offsetof(struct test_obj, key),
899  *	.key_len = sizeof(int),
900  *	.hashfn = jhash,
901  *	.nulls_base = (1U << RHT_BASE_SHIFT),
902  * };
903  *
904  * Configuration Example 2: Variable length keys
905  * struct test_obj {
906  *	[...]
907  *	struct rhash_head	node;
908  * };
909  *
910  * u32 my_hash_fn(const void *data, u32 seed)
911  * {
912  *	struct test_obj *obj = data;
913  *
914  *	return [... hash ...];
915  * }
916  *
917  * struct rhashtable_params params = {
918  *	.head_offset = offsetof(struct test_obj, node),
919  *	.hashfn = jhash,
920  *	.obj_hashfn = my_hash_fn,
921  * };
922  */
923 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
924 {
925 	struct bucket_table *tbl;
926 	size_t size;
927 
928 	size = HASH_DEFAULT_SIZE;
929 
930 	if ((params->key_len && !params->hashfn) ||
931 	    (!params->key_len && !params->obj_hashfn))
932 		return -EINVAL;
933 
934 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
935 		return -EINVAL;
936 
937 	params->min_shift = max_t(size_t, params->min_shift,
938 				  ilog2(HASH_MIN_SIZE));
939 
940 	if (params->nelem_hint)
941 		size = rounded_hashtable_size(params);
942 
943 	memset(ht, 0, sizeof(*ht));
944 	mutex_init(&ht->mutex);
945 	memcpy(&ht->p, params, sizeof(*params));
946 
947 	if (params->locks_mul)
948 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
949 	else
950 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
951 
952 	tbl = bucket_table_alloc(ht, size);
953 	if (tbl == NULL)
954 		return -ENOMEM;
955 
956 	atomic_set(&ht->nelems, 0);
957 
958 	RCU_INIT_POINTER(ht->tbl, tbl);
959 
960 	INIT_WORK(&ht->run_work, rht_deferred_worker);
961 
962 	return 0;
963 }
964 EXPORT_SYMBOL_GPL(rhashtable_init);
965 
966 /**
967  * rhashtable_destroy - destroy hash table
968  * @ht:		the hash table to destroy
969  *
970  * Frees the bucket array. This function is not rcu safe, therefore the caller
971  * has to make sure that no resizing may happen by unpublishing the hashtable
972  * and waiting for the quiescent cycle before releasing the bucket array.
973  */
974 void rhashtable_destroy(struct rhashtable *ht)
975 {
976 	ht->being_destroyed = true;
977 
978 	cancel_work_sync(&ht->run_work);
979 
980 	mutex_lock(&ht->mutex);
981 	bucket_table_free(rht_dereference(ht->tbl, ht));
982 	mutex_unlock(&ht->mutex);
983 }
984 EXPORT_SYMBOL_GPL(rhashtable_destroy);
985