xref: /openbmc/linux/lib/rhashtable.c (revision 1fa0a7dc)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 
35 union nested_table {
36 	union nested_table __rcu *table;
37 	struct rhash_lock_head __rcu *bucket;
38 };
39 
40 static u32 head_hashfn(struct rhashtable *ht,
41 		       const struct bucket_table *tbl,
42 		       const struct rhash_head *he)
43 {
44 	return rht_head_hashfn(ht, tbl, he, ht->p);
45 }
46 
47 #ifdef CONFIG_PROVE_LOCKING
48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
49 
50 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
51 {
52 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
53 }
54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
55 
56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
57 {
58 	if (!debug_locks)
59 		return 1;
60 	if (unlikely(tbl->nest))
61 		return 1;
62 	return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68 
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72 	const unsigned int len = 1 << shift;
73 	unsigned int i;
74 
75 	ntbl = rcu_dereference_raw(ntbl->table);
76 	if (!ntbl)
77 		return;
78 
79 	if (size > len) {
80 		size >>= shift;
81 		for (i = 0; i < len; i++)
82 			nested_table_free(ntbl + i, size);
83 	}
84 
85 	kfree(ntbl);
86 }
87 
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90 	unsigned int size = tbl->size >> tbl->nest;
91 	unsigned int len = 1 << tbl->nest;
92 	union nested_table *ntbl;
93 	unsigned int i;
94 
95 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96 
97 	for (i = 0; i < len; i++)
98 		nested_table_free(ntbl + i, size);
99 
100 	kfree(ntbl);
101 }
102 
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105 	if (tbl->nest)
106 		nested_bucket_table_free(tbl);
107 
108 	kvfree(tbl);
109 }
110 
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 	bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115 
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 					      union nested_table __rcu **prev,
118 					      bool leaf)
119 {
120 	union nested_table *ntbl;
121 	int i;
122 
123 	ntbl = rcu_dereference(*prev);
124 	if (ntbl)
125 		return ntbl;
126 
127 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128 
129 	if (ntbl && leaf) {
130 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132 	}
133 
134 	if (cmpxchg(prev, NULL, ntbl) == NULL)
135 		return ntbl;
136 	/* Raced with another thread. */
137 	kfree(ntbl);
138 	return rcu_dereference(*prev);
139 }
140 
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 						      size_t nbuckets,
143 						      gfp_t gfp)
144 {
145 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 	struct bucket_table *tbl;
147 	size_t size;
148 
149 	if (nbuckets < (1 << (shift + 1)))
150 		return NULL;
151 
152 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153 
154 	tbl = kzalloc(size, gfp);
155 	if (!tbl)
156 		return NULL;
157 
158 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 				false)) {
160 		kfree(tbl);
161 		return NULL;
162 	}
163 
164 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165 
166 	return tbl;
167 }
168 
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 					       size_t nbuckets,
171 					       gfp_t gfp)
172 {
173 	struct bucket_table *tbl = NULL;
174 	size_t size;
175 	int i;
176 	static struct lock_class_key __key;
177 
178 	tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
179 
180 	size = nbuckets;
181 
182 	if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
183 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
184 		nbuckets = 0;
185 	}
186 
187 	if (tbl == NULL)
188 		return NULL;
189 
190 	lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
191 
192 	tbl->size = size;
193 
194 	rcu_head_init(&tbl->rcu);
195 	INIT_LIST_HEAD(&tbl->walkers);
196 
197 	tbl->hash_rnd = get_random_u32();
198 
199 	for (i = 0; i < nbuckets; i++)
200 		INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
201 
202 	return tbl;
203 }
204 
205 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
206 						  struct bucket_table *tbl)
207 {
208 	struct bucket_table *new_tbl;
209 
210 	do {
211 		new_tbl = tbl;
212 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
213 	} while (tbl);
214 
215 	return new_tbl;
216 }
217 
218 static int rhashtable_rehash_one(struct rhashtable *ht,
219 				 struct rhash_lock_head __rcu **bkt,
220 				 unsigned int old_hash)
221 {
222 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
223 	struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
224 	int err = -EAGAIN;
225 	struct rhash_head *head, *next, *entry;
226 	struct rhash_head __rcu **pprev = NULL;
227 	unsigned int new_hash;
228 
229 	if (new_tbl->nest)
230 		goto out;
231 
232 	err = -ENOENT;
233 
234 	rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
235 			  old_tbl, old_hash) {
236 		err = 0;
237 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
238 
239 		if (rht_is_a_nulls(next))
240 			break;
241 
242 		pprev = &entry->next;
243 	}
244 
245 	if (err)
246 		goto out;
247 
248 	new_hash = head_hashfn(ht, new_tbl, entry);
249 
250 	rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
251 
252 	head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
253 
254 	RCU_INIT_POINTER(entry->next, head);
255 
256 	rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
257 
258 	if (pprev)
259 		rcu_assign_pointer(*pprev, next);
260 	else
261 		/* Need to preserved the bit lock. */
262 		rht_assign_locked(bkt, next);
263 
264 out:
265 	return err;
266 }
267 
268 static int rhashtable_rehash_chain(struct rhashtable *ht,
269 				    unsigned int old_hash)
270 {
271 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
272 	struct rhash_lock_head __rcu **bkt = rht_bucket_var(old_tbl, old_hash);
273 	int err;
274 
275 	if (!bkt)
276 		return 0;
277 	rht_lock(old_tbl, bkt);
278 
279 	while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
280 		;
281 
282 	if (err == -ENOENT)
283 		err = 0;
284 	rht_unlock(old_tbl, bkt);
285 
286 	return err;
287 }
288 
289 static int rhashtable_rehash_attach(struct rhashtable *ht,
290 				    struct bucket_table *old_tbl,
291 				    struct bucket_table *new_tbl)
292 {
293 	/* Make insertions go into the new, empty table right away. Deletions
294 	 * and lookups will be attempted in both tables until we synchronize.
295 	 * As cmpxchg() provides strong barriers, we do not need
296 	 * rcu_assign_pointer().
297 	 */
298 
299 	if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
300 		return -EEXIST;
301 
302 	return 0;
303 }
304 
305 static int rhashtable_rehash_table(struct rhashtable *ht)
306 {
307 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
308 	struct bucket_table *new_tbl;
309 	struct rhashtable_walker *walker;
310 	unsigned int old_hash;
311 	int err;
312 
313 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
314 	if (!new_tbl)
315 		return 0;
316 
317 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
318 		err = rhashtable_rehash_chain(ht, old_hash);
319 		if (err)
320 			return err;
321 		cond_resched();
322 	}
323 
324 	/* Publish the new table pointer. */
325 	rcu_assign_pointer(ht->tbl, new_tbl);
326 
327 	spin_lock(&ht->lock);
328 	list_for_each_entry(walker, &old_tbl->walkers, list)
329 		walker->tbl = NULL;
330 
331 	/* Wait for readers. All new readers will see the new
332 	 * table, and thus no references to the old table will
333 	 * remain.
334 	 * We do this inside the locked region so that
335 	 * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
336 	 * to check if it should not re-link the table.
337 	 */
338 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
339 	spin_unlock(&ht->lock);
340 
341 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
342 }
343 
344 static int rhashtable_rehash_alloc(struct rhashtable *ht,
345 				   struct bucket_table *old_tbl,
346 				   unsigned int size)
347 {
348 	struct bucket_table *new_tbl;
349 	int err;
350 
351 	ASSERT_RHT_MUTEX(ht);
352 
353 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
354 	if (new_tbl == NULL)
355 		return -ENOMEM;
356 
357 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
358 	if (err)
359 		bucket_table_free(new_tbl);
360 
361 	return err;
362 }
363 
364 /**
365  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
366  * @ht:		the hash table to shrink
367  *
368  * This function shrinks the hash table to fit, i.e., the smallest
369  * size would not cause it to expand right away automatically.
370  *
371  * The caller must ensure that no concurrent resizing occurs by holding
372  * ht->mutex.
373  *
374  * The caller must ensure that no concurrent table mutations take place.
375  * It is however valid to have concurrent lookups if they are RCU protected.
376  *
377  * It is valid to have concurrent insertions and deletions protected by per
378  * bucket locks or concurrent RCU protected lookups and traversals.
379  */
380 static int rhashtable_shrink(struct rhashtable *ht)
381 {
382 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
383 	unsigned int nelems = atomic_read(&ht->nelems);
384 	unsigned int size = 0;
385 
386 	if (nelems)
387 		size = roundup_pow_of_two(nelems * 3 / 2);
388 	if (size < ht->p.min_size)
389 		size = ht->p.min_size;
390 
391 	if (old_tbl->size <= size)
392 		return 0;
393 
394 	if (rht_dereference(old_tbl->future_tbl, ht))
395 		return -EEXIST;
396 
397 	return rhashtable_rehash_alloc(ht, old_tbl, size);
398 }
399 
400 static void rht_deferred_worker(struct work_struct *work)
401 {
402 	struct rhashtable *ht;
403 	struct bucket_table *tbl;
404 	int err = 0;
405 
406 	ht = container_of(work, struct rhashtable, run_work);
407 	mutex_lock(&ht->mutex);
408 
409 	tbl = rht_dereference(ht->tbl, ht);
410 	tbl = rhashtable_last_table(ht, tbl);
411 
412 	if (rht_grow_above_75(ht, tbl))
413 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
414 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
415 		err = rhashtable_shrink(ht);
416 	else if (tbl->nest)
417 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
418 
419 	if (!err || err == -EEXIST) {
420 		int nerr;
421 
422 		nerr = rhashtable_rehash_table(ht);
423 		err = err ?: nerr;
424 	}
425 
426 	mutex_unlock(&ht->mutex);
427 
428 	if (err)
429 		schedule_work(&ht->run_work);
430 }
431 
432 static int rhashtable_insert_rehash(struct rhashtable *ht,
433 				    struct bucket_table *tbl)
434 {
435 	struct bucket_table *old_tbl;
436 	struct bucket_table *new_tbl;
437 	unsigned int size;
438 	int err;
439 
440 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
441 
442 	size = tbl->size;
443 
444 	err = -EBUSY;
445 
446 	if (rht_grow_above_75(ht, tbl))
447 		size *= 2;
448 	/* Do not schedule more than one rehash */
449 	else if (old_tbl != tbl)
450 		goto fail;
451 
452 	err = -ENOMEM;
453 
454 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
455 	if (new_tbl == NULL)
456 		goto fail;
457 
458 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
459 	if (err) {
460 		bucket_table_free(new_tbl);
461 		if (err == -EEXIST)
462 			err = 0;
463 	} else
464 		schedule_work(&ht->run_work);
465 
466 	return err;
467 
468 fail:
469 	/* Do not fail the insert if someone else did a rehash. */
470 	if (likely(rcu_access_pointer(tbl->future_tbl)))
471 		return 0;
472 
473 	/* Schedule async rehash to retry allocation in process context. */
474 	if (err == -ENOMEM)
475 		schedule_work(&ht->run_work);
476 
477 	return err;
478 }
479 
480 static void *rhashtable_lookup_one(struct rhashtable *ht,
481 				   struct rhash_lock_head __rcu **bkt,
482 				   struct bucket_table *tbl, unsigned int hash,
483 				   const void *key, struct rhash_head *obj)
484 {
485 	struct rhashtable_compare_arg arg = {
486 		.ht = ht,
487 		.key = key,
488 	};
489 	struct rhash_head __rcu **pprev = NULL;
490 	struct rhash_head *head;
491 	int elasticity;
492 
493 	elasticity = RHT_ELASTICITY;
494 	rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
495 		struct rhlist_head *list;
496 		struct rhlist_head *plist;
497 
498 		elasticity--;
499 		if (!key ||
500 		    (ht->p.obj_cmpfn ?
501 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
502 		     rhashtable_compare(&arg, rht_obj(ht, head)))) {
503 			pprev = &head->next;
504 			continue;
505 		}
506 
507 		if (!ht->rhlist)
508 			return rht_obj(ht, head);
509 
510 		list = container_of(obj, struct rhlist_head, rhead);
511 		plist = container_of(head, struct rhlist_head, rhead);
512 
513 		RCU_INIT_POINTER(list->next, plist);
514 		head = rht_dereference_bucket(head->next, tbl, hash);
515 		RCU_INIT_POINTER(list->rhead.next, head);
516 		if (pprev)
517 			rcu_assign_pointer(*pprev, obj);
518 		else
519 			/* Need to preserve the bit lock */
520 			rht_assign_locked(bkt, obj);
521 
522 		return NULL;
523 	}
524 
525 	if (elasticity <= 0)
526 		return ERR_PTR(-EAGAIN);
527 
528 	return ERR_PTR(-ENOENT);
529 }
530 
531 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
532 						  struct rhash_lock_head __rcu **bkt,
533 						  struct bucket_table *tbl,
534 						  unsigned int hash,
535 						  struct rhash_head *obj,
536 						  void *data)
537 {
538 	struct bucket_table *new_tbl;
539 	struct rhash_head *head;
540 
541 	if (!IS_ERR_OR_NULL(data))
542 		return ERR_PTR(-EEXIST);
543 
544 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
545 		return ERR_CAST(data);
546 
547 	new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
548 	if (new_tbl)
549 		return new_tbl;
550 
551 	if (PTR_ERR(data) != -ENOENT)
552 		return ERR_CAST(data);
553 
554 	if (unlikely(rht_grow_above_max(ht, tbl)))
555 		return ERR_PTR(-E2BIG);
556 
557 	if (unlikely(rht_grow_above_100(ht, tbl)))
558 		return ERR_PTR(-EAGAIN);
559 
560 	head = rht_ptr(bkt, tbl, hash);
561 
562 	RCU_INIT_POINTER(obj->next, head);
563 	if (ht->rhlist) {
564 		struct rhlist_head *list;
565 
566 		list = container_of(obj, struct rhlist_head, rhead);
567 		RCU_INIT_POINTER(list->next, NULL);
568 	}
569 
570 	/* bkt is always the head of the list, so it holds
571 	 * the lock, which we need to preserve
572 	 */
573 	rht_assign_locked(bkt, obj);
574 
575 	atomic_inc(&ht->nelems);
576 	if (rht_grow_above_75(ht, tbl))
577 		schedule_work(&ht->run_work);
578 
579 	return NULL;
580 }
581 
582 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
583 				   struct rhash_head *obj)
584 {
585 	struct bucket_table *new_tbl;
586 	struct bucket_table *tbl;
587 	struct rhash_lock_head __rcu **bkt;
588 	unsigned int hash;
589 	void *data;
590 
591 	new_tbl = rcu_dereference(ht->tbl);
592 
593 	do {
594 		tbl = new_tbl;
595 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
596 		if (rcu_access_pointer(tbl->future_tbl))
597 			/* Failure is OK */
598 			bkt = rht_bucket_var(tbl, hash);
599 		else
600 			bkt = rht_bucket_insert(ht, tbl, hash);
601 		if (bkt == NULL) {
602 			new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
603 			data = ERR_PTR(-EAGAIN);
604 		} else {
605 			rht_lock(tbl, bkt);
606 			data = rhashtable_lookup_one(ht, bkt, tbl,
607 						     hash, key, obj);
608 			new_tbl = rhashtable_insert_one(ht, bkt, tbl,
609 							hash, obj, data);
610 			if (PTR_ERR(new_tbl) != -EEXIST)
611 				data = ERR_CAST(new_tbl);
612 
613 			rht_unlock(tbl, bkt);
614 		}
615 	} while (!IS_ERR_OR_NULL(new_tbl));
616 
617 	if (PTR_ERR(data) == -EAGAIN)
618 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
619 			       -EAGAIN);
620 
621 	return data;
622 }
623 
624 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
625 			     struct rhash_head *obj)
626 {
627 	void *data;
628 
629 	do {
630 		rcu_read_lock();
631 		data = rhashtable_try_insert(ht, key, obj);
632 		rcu_read_unlock();
633 	} while (PTR_ERR(data) == -EAGAIN);
634 
635 	return data;
636 }
637 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
638 
639 /**
640  * rhashtable_walk_enter - Initialise an iterator
641  * @ht:		Table to walk over
642  * @iter:	Hash table Iterator
643  *
644  * This function prepares a hash table walk.
645  *
646  * Note that if you restart a walk after rhashtable_walk_stop you
647  * may see the same object twice.  Also, you may miss objects if
648  * there are removals in between rhashtable_walk_stop and the next
649  * call to rhashtable_walk_start.
650  *
651  * For a completely stable walk you should construct your own data
652  * structure outside the hash table.
653  *
654  * This function may be called from any process context, including
655  * non-preemptable context, but cannot be called from softirq or
656  * hardirq context.
657  *
658  * You must call rhashtable_walk_exit after this function returns.
659  */
660 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
661 {
662 	iter->ht = ht;
663 	iter->p = NULL;
664 	iter->slot = 0;
665 	iter->skip = 0;
666 	iter->end_of_table = 0;
667 
668 	spin_lock(&ht->lock);
669 	iter->walker.tbl =
670 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
671 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
672 	spin_unlock(&ht->lock);
673 }
674 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
675 
676 /**
677  * rhashtable_walk_exit - Free an iterator
678  * @iter:	Hash table Iterator
679  *
680  * This function frees resources allocated by rhashtable_walk_enter.
681  */
682 void rhashtable_walk_exit(struct rhashtable_iter *iter)
683 {
684 	spin_lock(&iter->ht->lock);
685 	if (iter->walker.tbl)
686 		list_del(&iter->walker.list);
687 	spin_unlock(&iter->ht->lock);
688 }
689 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
690 
691 /**
692  * rhashtable_walk_start_check - Start a hash table walk
693  * @iter:	Hash table iterator
694  *
695  * Start a hash table walk at the current iterator position.  Note that we take
696  * the RCU lock in all cases including when we return an error.  So you must
697  * always call rhashtable_walk_stop to clean up.
698  *
699  * Returns zero if successful.
700  *
701  * Returns -EAGAIN if resize event occured.  Note that the iterator
702  * will rewind back to the beginning and you may use it immediately
703  * by calling rhashtable_walk_next.
704  *
705  * rhashtable_walk_start is defined as an inline variant that returns
706  * void. This is preferred in cases where the caller would ignore
707  * resize events and always continue.
708  */
709 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
710 	__acquires(RCU)
711 {
712 	struct rhashtable *ht = iter->ht;
713 	bool rhlist = ht->rhlist;
714 
715 	rcu_read_lock();
716 
717 	spin_lock(&ht->lock);
718 	if (iter->walker.tbl)
719 		list_del(&iter->walker.list);
720 	spin_unlock(&ht->lock);
721 
722 	if (iter->end_of_table)
723 		return 0;
724 	if (!iter->walker.tbl) {
725 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
726 		iter->slot = 0;
727 		iter->skip = 0;
728 		return -EAGAIN;
729 	}
730 
731 	if (iter->p && !rhlist) {
732 		/*
733 		 * We need to validate that 'p' is still in the table, and
734 		 * if so, update 'skip'
735 		 */
736 		struct rhash_head *p;
737 		int skip = 0;
738 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
739 			skip++;
740 			if (p == iter->p) {
741 				iter->skip = skip;
742 				goto found;
743 			}
744 		}
745 		iter->p = NULL;
746 	} else if (iter->p && rhlist) {
747 		/* Need to validate that 'list' is still in the table, and
748 		 * if so, update 'skip' and 'p'.
749 		 */
750 		struct rhash_head *p;
751 		struct rhlist_head *list;
752 		int skip = 0;
753 		rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
754 			for (list = container_of(p, struct rhlist_head, rhead);
755 			     list;
756 			     list = rcu_dereference(list->next)) {
757 				skip++;
758 				if (list == iter->list) {
759 					iter->p = p;
760 					iter->skip = skip;
761 					goto found;
762 				}
763 			}
764 		}
765 		iter->p = NULL;
766 	}
767 found:
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
771 
772 /**
773  * __rhashtable_walk_find_next - Find the next element in a table (or the first
774  * one in case of a new walk).
775  *
776  * @iter:	Hash table iterator
777  *
778  * Returns the found object or NULL when the end of the table is reached.
779  *
780  * Returns -EAGAIN if resize event occurred.
781  */
782 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
783 {
784 	struct bucket_table *tbl = iter->walker.tbl;
785 	struct rhlist_head *list = iter->list;
786 	struct rhashtable *ht = iter->ht;
787 	struct rhash_head *p = iter->p;
788 	bool rhlist = ht->rhlist;
789 
790 	if (!tbl)
791 		return NULL;
792 
793 	for (; iter->slot < tbl->size; iter->slot++) {
794 		int skip = iter->skip;
795 
796 		rht_for_each_rcu(p, tbl, iter->slot) {
797 			if (rhlist) {
798 				list = container_of(p, struct rhlist_head,
799 						    rhead);
800 				do {
801 					if (!skip)
802 						goto next;
803 					skip--;
804 					list = rcu_dereference(list->next);
805 				} while (list);
806 
807 				continue;
808 			}
809 			if (!skip)
810 				break;
811 			skip--;
812 		}
813 
814 next:
815 		if (!rht_is_a_nulls(p)) {
816 			iter->skip++;
817 			iter->p = p;
818 			iter->list = list;
819 			return rht_obj(ht, rhlist ? &list->rhead : p);
820 		}
821 
822 		iter->skip = 0;
823 	}
824 
825 	iter->p = NULL;
826 
827 	/* Ensure we see any new tables. */
828 	smp_rmb();
829 
830 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
831 	if (iter->walker.tbl) {
832 		iter->slot = 0;
833 		iter->skip = 0;
834 		return ERR_PTR(-EAGAIN);
835 	} else {
836 		iter->end_of_table = true;
837 	}
838 
839 	return NULL;
840 }
841 
842 /**
843  * rhashtable_walk_next - Return the next object and advance the iterator
844  * @iter:	Hash table iterator
845  *
846  * Note that you must call rhashtable_walk_stop when you are finished
847  * with the walk.
848  *
849  * Returns the next object or NULL when the end of the table is reached.
850  *
851  * Returns -EAGAIN if resize event occurred.  Note that the iterator
852  * will rewind back to the beginning and you may continue to use it.
853  */
854 void *rhashtable_walk_next(struct rhashtable_iter *iter)
855 {
856 	struct rhlist_head *list = iter->list;
857 	struct rhashtable *ht = iter->ht;
858 	struct rhash_head *p = iter->p;
859 	bool rhlist = ht->rhlist;
860 
861 	if (p) {
862 		if (!rhlist || !(list = rcu_dereference(list->next))) {
863 			p = rcu_dereference(p->next);
864 			list = container_of(p, struct rhlist_head, rhead);
865 		}
866 		if (!rht_is_a_nulls(p)) {
867 			iter->skip++;
868 			iter->p = p;
869 			iter->list = list;
870 			return rht_obj(ht, rhlist ? &list->rhead : p);
871 		}
872 
873 		/* At the end of this slot, switch to next one and then find
874 		 * next entry from that point.
875 		 */
876 		iter->skip = 0;
877 		iter->slot++;
878 	}
879 
880 	return __rhashtable_walk_find_next(iter);
881 }
882 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
883 
884 /**
885  * rhashtable_walk_peek - Return the next object but don't advance the iterator
886  * @iter:	Hash table iterator
887  *
888  * Returns the next object or NULL when the end of the table is reached.
889  *
890  * Returns -EAGAIN if resize event occurred.  Note that the iterator
891  * will rewind back to the beginning and you may continue to use it.
892  */
893 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
894 {
895 	struct rhlist_head *list = iter->list;
896 	struct rhashtable *ht = iter->ht;
897 	struct rhash_head *p = iter->p;
898 
899 	if (p)
900 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
901 
902 	/* No object found in current iter, find next one in the table. */
903 
904 	if (iter->skip) {
905 		/* A nonzero skip value points to the next entry in the table
906 		 * beyond that last one that was found. Decrement skip so
907 		 * we find the current value. __rhashtable_walk_find_next
908 		 * will restore the original value of skip assuming that
909 		 * the table hasn't changed.
910 		 */
911 		iter->skip--;
912 	}
913 
914 	return __rhashtable_walk_find_next(iter);
915 }
916 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
917 
918 /**
919  * rhashtable_walk_stop - Finish a hash table walk
920  * @iter:	Hash table iterator
921  *
922  * Finish a hash table walk.  Does not reset the iterator to the start of the
923  * hash table.
924  */
925 void rhashtable_walk_stop(struct rhashtable_iter *iter)
926 	__releases(RCU)
927 {
928 	struct rhashtable *ht;
929 	struct bucket_table *tbl = iter->walker.tbl;
930 
931 	if (!tbl)
932 		goto out;
933 
934 	ht = iter->ht;
935 
936 	spin_lock(&ht->lock);
937 	if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
938 		/* This bucket table is being freed, don't re-link it. */
939 		iter->walker.tbl = NULL;
940 	else
941 		list_add(&iter->walker.list, &tbl->walkers);
942 	spin_unlock(&ht->lock);
943 
944 out:
945 	rcu_read_unlock();
946 }
947 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
948 
949 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
950 {
951 	size_t retsize;
952 
953 	if (params->nelem_hint)
954 		retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
955 			      (unsigned long)params->min_size);
956 	else
957 		retsize = max(HASH_DEFAULT_SIZE,
958 			      (unsigned long)params->min_size);
959 
960 	return retsize;
961 }
962 
963 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
964 {
965 	return jhash2(key, length, seed);
966 }
967 
968 /**
969  * rhashtable_init - initialize a new hash table
970  * @ht:		hash table to be initialized
971  * @params:	configuration parameters
972  *
973  * Initializes a new hash table based on the provided configuration
974  * parameters. A table can be configured either with a variable or
975  * fixed length key:
976  *
977  * Configuration Example 1: Fixed length keys
978  * struct test_obj {
979  *	int			key;
980  *	void *			my_member;
981  *	struct rhash_head	node;
982  * };
983  *
984  * struct rhashtable_params params = {
985  *	.head_offset = offsetof(struct test_obj, node),
986  *	.key_offset = offsetof(struct test_obj, key),
987  *	.key_len = sizeof(int),
988  *	.hashfn = jhash,
989  * };
990  *
991  * Configuration Example 2: Variable length keys
992  * struct test_obj {
993  *	[...]
994  *	struct rhash_head	node;
995  * };
996  *
997  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
998  * {
999  *	struct test_obj *obj = data;
1000  *
1001  *	return [... hash ...];
1002  * }
1003  *
1004  * struct rhashtable_params params = {
1005  *	.head_offset = offsetof(struct test_obj, node),
1006  *	.hashfn = jhash,
1007  *	.obj_hashfn = my_hash_fn,
1008  * };
1009  */
1010 int rhashtable_init(struct rhashtable *ht,
1011 		    const struct rhashtable_params *params)
1012 {
1013 	struct bucket_table *tbl;
1014 	size_t size;
1015 
1016 	if ((!params->key_len && !params->obj_hashfn) ||
1017 	    (params->obj_hashfn && !params->obj_cmpfn))
1018 		return -EINVAL;
1019 
1020 	memset(ht, 0, sizeof(*ht));
1021 	mutex_init(&ht->mutex);
1022 	spin_lock_init(&ht->lock);
1023 	memcpy(&ht->p, params, sizeof(*params));
1024 
1025 	if (params->min_size)
1026 		ht->p.min_size = roundup_pow_of_two(params->min_size);
1027 
1028 	/* Cap total entries at 2^31 to avoid nelems overflow. */
1029 	ht->max_elems = 1u << 31;
1030 
1031 	if (params->max_size) {
1032 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1033 		if (ht->p.max_size < ht->max_elems / 2)
1034 			ht->max_elems = ht->p.max_size * 2;
1035 	}
1036 
1037 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1038 
1039 	size = rounded_hashtable_size(&ht->p);
1040 
1041 	ht->key_len = ht->p.key_len;
1042 	if (!params->hashfn) {
1043 		ht->p.hashfn = jhash;
1044 
1045 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1046 			ht->key_len /= sizeof(u32);
1047 			ht->p.hashfn = rhashtable_jhash2;
1048 		}
1049 	}
1050 
1051 	/*
1052 	 * This is api initialization and thus we need to guarantee the
1053 	 * initial rhashtable allocation. Upon failure, retry with the
1054 	 * smallest possible size with __GFP_NOFAIL semantics.
1055 	 */
1056 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1057 	if (unlikely(tbl == NULL)) {
1058 		size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1059 		tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1060 	}
1061 
1062 	atomic_set(&ht->nelems, 0);
1063 
1064 	RCU_INIT_POINTER(ht->tbl, tbl);
1065 
1066 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1067 
1068 	return 0;
1069 }
1070 EXPORT_SYMBOL_GPL(rhashtable_init);
1071 
1072 /**
1073  * rhltable_init - initialize a new hash list table
1074  * @hlt:	hash list table to be initialized
1075  * @params:	configuration parameters
1076  *
1077  * Initializes a new hash list table.
1078  *
1079  * See documentation for rhashtable_init.
1080  */
1081 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1082 {
1083 	int err;
1084 
1085 	err = rhashtable_init(&hlt->ht, params);
1086 	hlt->ht.rhlist = true;
1087 	return err;
1088 }
1089 EXPORT_SYMBOL_GPL(rhltable_init);
1090 
1091 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1092 				void (*free_fn)(void *ptr, void *arg),
1093 				void *arg)
1094 {
1095 	struct rhlist_head *list;
1096 
1097 	if (!ht->rhlist) {
1098 		free_fn(rht_obj(ht, obj), arg);
1099 		return;
1100 	}
1101 
1102 	list = container_of(obj, struct rhlist_head, rhead);
1103 	do {
1104 		obj = &list->rhead;
1105 		list = rht_dereference(list->next, ht);
1106 		free_fn(rht_obj(ht, obj), arg);
1107 	} while (list);
1108 }
1109 
1110 /**
1111  * rhashtable_free_and_destroy - free elements and destroy hash table
1112  * @ht:		the hash table to destroy
1113  * @free_fn:	callback to release resources of element
1114  * @arg:	pointer passed to free_fn
1115  *
1116  * Stops an eventual async resize. If defined, invokes free_fn for each
1117  * element to releasal resources. Please note that RCU protected
1118  * readers may still be accessing the elements. Releasing of resources
1119  * must occur in a compatible manner. Then frees the bucket array.
1120  *
1121  * This function will eventually sleep to wait for an async resize
1122  * to complete. The caller is responsible that no further write operations
1123  * occurs in parallel.
1124  */
1125 void rhashtable_free_and_destroy(struct rhashtable *ht,
1126 				 void (*free_fn)(void *ptr, void *arg),
1127 				 void *arg)
1128 {
1129 	struct bucket_table *tbl, *next_tbl;
1130 	unsigned int i;
1131 
1132 	cancel_work_sync(&ht->run_work);
1133 
1134 	mutex_lock(&ht->mutex);
1135 	tbl = rht_dereference(ht->tbl, ht);
1136 restart:
1137 	if (free_fn) {
1138 		for (i = 0; i < tbl->size; i++) {
1139 			struct rhash_head *pos, *next;
1140 
1141 			cond_resched();
1142 			for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1143 			     next = !rht_is_a_nulls(pos) ?
1144 					rht_dereference(pos->next, ht) : NULL;
1145 			     !rht_is_a_nulls(pos);
1146 			     pos = next,
1147 			     next = !rht_is_a_nulls(pos) ?
1148 					rht_dereference(pos->next, ht) : NULL)
1149 				rhashtable_free_one(ht, pos, free_fn, arg);
1150 		}
1151 	}
1152 
1153 	next_tbl = rht_dereference(tbl->future_tbl, ht);
1154 	bucket_table_free(tbl);
1155 	if (next_tbl) {
1156 		tbl = next_tbl;
1157 		goto restart;
1158 	}
1159 	mutex_unlock(&ht->mutex);
1160 }
1161 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1162 
1163 void rhashtable_destroy(struct rhashtable *ht)
1164 {
1165 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1166 }
1167 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1168 
1169 struct rhash_lock_head __rcu **__rht_bucket_nested(const struct bucket_table *tbl,
1170 						   unsigned int hash)
1171 {
1172 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1173 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1174 	unsigned int size = tbl->size >> tbl->nest;
1175 	unsigned int subhash = hash;
1176 	union nested_table *ntbl;
1177 
1178 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1179 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1180 	subhash >>= tbl->nest;
1181 
1182 	while (ntbl && size > (1 << shift)) {
1183 		index = subhash & ((1 << shift) - 1);
1184 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1185 						  tbl, hash);
1186 		size >>= shift;
1187 		subhash >>= shift;
1188 	}
1189 
1190 	if (!ntbl)
1191 		return NULL;
1192 
1193 	return &ntbl[subhash].bucket;
1194 
1195 }
1196 EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1197 
1198 struct rhash_lock_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1199 						 unsigned int hash)
1200 {
1201 	static struct rhash_lock_head __rcu *rhnull;
1202 
1203 	if (!rhnull)
1204 		INIT_RHT_NULLS_HEAD(rhnull);
1205 	return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1206 }
1207 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1208 
1209 struct rhash_lock_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1210 							struct bucket_table *tbl,
1211 							unsigned int hash)
1212 {
1213 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1214 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1215 	unsigned int size = tbl->size >> tbl->nest;
1216 	union nested_table *ntbl;
1217 
1218 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1219 	hash >>= tbl->nest;
1220 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1221 				  size <= (1 << shift));
1222 
1223 	while (ntbl && size > (1 << shift)) {
1224 		index = hash & ((1 << shift) - 1);
1225 		size >>= shift;
1226 		hash >>= shift;
1227 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1228 					  size <= (1 << shift));
1229 	}
1230 
1231 	if (!ntbl)
1232 		return NULL;
1233 
1234 	return &ntbl[hash].bucket;
1235 
1236 }
1237 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1238