xref: /openbmc/linux/lib/rhashtable.c (revision 10c1d542)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 
32 #define HASH_DEFAULT_SIZE	64UL
33 #define HASH_MIN_SIZE		4U
34 #define BUCKET_LOCKS_PER_CPU	32UL
35 
36 union nested_table {
37 	union nested_table __rcu *table;
38 	struct rhash_head __rcu *bucket;
39 };
40 
41 static u32 head_hashfn(struct rhashtable *ht,
42 		       const struct bucket_table *tbl,
43 		       const struct rhash_head *he)
44 {
45 	return rht_head_hashfn(ht, tbl, he, ht->p);
46 }
47 
48 #ifdef CONFIG_PROVE_LOCKING
49 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
50 
51 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
52 {
53 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
54 }
55 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
56 
57 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
58 {
59 	spinlock_t *lock = rht_bucket_lock(tbl, hash);
60 
61 	return (debug_locks) ? lockdep_is_held(lock) : 1;
62 }
63 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
64 #else
65 #define ASSERT_RHT_MUTEX(HT)
66 #endif
67 
68 static void nested_table_free(union nested_table *ntbl, unsigned int size)
69 {
70 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
71 	const unsigned int len = 1 << shift;
72 	unsigned int i;
73 
74 	ntbl = rcu_dereference_raw(ntbl->table);
75 	if (!ntbl)
76 		return;
77 
78 	if (size > len) {
79 		size >>= shift;
80 		for (i = 0; i < len; i++)
81 			nested_table_free(ntbl + i, size);
82 	}
83 
84 	kfree(ntbl);
85 }
86 
87 static void nested_bucket_table_free(const struct bucket_table *tbl)
88 {
89 	unsigned int size = tbl->size >> tbl->nest;
90 	unsigned int len = 1 << tbl->nest;
91 	union nested_table *ntbl;
92 	unsigned int i;
93 
94 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
95 
96 	for (i = 0; i < len; i++)
97 		nested_table_free(ntbl + i, size);
98 
99 	kfree(ntbl);
100 }
101 
102 static void bucket_table_free(const struct bucket_table *tbl)
103 {
104 	if (tbl->nest)
105 		nested_bucket_table_free(tbl);
106 
107 	free_bucket_spinlocks(tbl->locks);
108 	kvfree(tbl);
109 }
110 
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113 	bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115 
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117 					      union nested_table __rcu **prev,
118 					      unsigned int shifted,
119 					      unsigned int nhash)
120 {
121 	union nested_table *ntbl;
122 	int i;
123 
124 	ntbl = rcu_dereference(*prev);
125 	if (ntbl)
126 		return ntbl;
127 
128 	ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129 
130 	if (ntbl && shifted) {
131 		for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0].bucket); i++)
132 			INIT_RHT_NULLS_HEAD(ntbl[i].bucket, ht,
133 					    (i << shifted) | nhash);
134 	}
135 
136 	rcu_assign_pointer(*prev, ntbl);
137 
138 	return ntbl;
139 }
140 
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142 						      size_t nbuckets,
143 						      gfp_t gfp)
144 {
145 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146 	struct bucket_table *tbl;
147 	size_t size;
148 
149 	if (nbuckets < (1 << (shift + 1)))
150 		return NULL;
151 
152 	size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153 
154 	tbl = kzalloc(size, gfp);
155 	if (!tbl)
156 		return NULL;
157 
158 	if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159 				0, 0)) {
160 		kfree(tbl);
161 		return NULL;
162 	}
163 
164 	tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165 
166 	return tbl;
167 }
168 
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170 					       size_t nbuckets,
171 					       gfp_t gfp)
172 {
173 	struct bucket_table *tbl = NULL;
174 	size_t size, max_locks;
175 	int i;
176 
177 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
178 	if (gfp != GFP_KERNEL)
179 		tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
180 	else
181 		tbl = kvzalloc(size, gfp);
182 
183 	size = nbuckets;
184 
185 	if (tbl == NULL && gfp != GFP_KERNEL) {
186 		tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
187 		nbuckets = 0;
188 	}
189 	if (tbl == NULL)
190 		return NULL;
191 
192 	tbl->size = size;
193 
194 	max_locks = size >> 1;
195 	if (tbl->nest)
196 		max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
197 
198 	if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
199 				   ht->p.locks_mul, gfp) < 0) {
200 		bucket_table_free(tbl);
201 		return NULL;
202 	}
203 
204 	INIT_LIST_HEAD(&tbl->walkers);
205 
206 	tbl->hash_rnd = get_random_u32();
207 
208 	for (i = 0; i < nbuckets; i++)
209 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
210 
211 	return tbl;
212 }
213 
214 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
215 						  struct bucket_table *tbl)
216 {
217 	struct bucket_table *new_tbl;
218 
219 	do {
220 		new_tbl = tbl;
221 		tbl = rht_dereference_rcu(tbl->future_tbl, ht);
222 	} while (tbl);
223 
224 	return new_tbl;
225 }
226 
227 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
228 {
229 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
230 	struct bucket_table *new_tbl = rhashtable_last_table(ht,
231 		rht_dereference_rcu(old_tbl->future_tbl, ht));
232 	struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
233 	int err = -EAGAIN;
234 	struct rhash_head *head, *next, *entry;
235 	spinlock_t *new_bucket_lock;
236 	unsigned int new_hash;
237 
238 	if (new_tbl->nest)
239 		goto out;
240 
241 	err = -ENOENT;
242 
243 	rht_for_each(entry, old_tbl, old_hash) {
244 		err = 0;
245 		next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
246 
247 		if (rht_is_a_nulls(next))
248 			break;
249 
250 		pprev = &entry->next;
251 	}
252 
253 	if (err)
254 		goto out;
255 
256 	new_hash = head_hashfn(ht, new_tbl, entry);
257 
258 	new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
259 
260 	spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
261 	head = rht_dereference_bucket(new_tbl->buckets[new_hash],
262 				      new_tbl, new_hash);
263 
264 	RCU_INIT_POINTER(entry->next, head);
265 
266 	rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
267 	spin_unlock(new_bucket_lock);
268 
269 	rcu_assign_pointer(*pprev, next);
270 
271 out:
272 	return err;
273 }
274 
275 static int rhashtable_rehash_chain(struct rhashtable *ht,
276 				    unsigned int old_hash)
277 {
278 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
279 	spinlock_t *old_bucket_lock;
280 	int err;
281 
282 	old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
283 
284 	spin_lock_bh(old_bucket_lock);
285 	while (!(err = rhashtable_rehash_one(ht, old_hash)))
286 		;
287 
288 	if (err == -ENOENT) {
289 		old_tbl->rehash++;
290 		err = 0;
291 	}
292 	spin_unlock_bh(old_bucket_lock);
293 
294 	return err;
295 }
296 
297 static int rhashtable_rehash_attach(struct rhashtable *ht,
298 				    struct bucket_table *old_tbl,
299 				    struct bucket_table *new_tbl)
300 {
301 	/* Protect future_tbl using the first bucket lock. */
302 	spin_lock_bh(old_tbl->locks);
303 
304 	/* Did somebody beat us to it? */
305 	if (rcu_access_pointer(old_tbl->future_tbl)) {
306 		spin_unlock_bh(old_tbl->locks);
307 		return -EEXIST;
308 	}
309 
310 	/* Make insertions go into the new, empty table right away. Deletions
311 	 * and lookups will be attempted in both tables until we synchronize.
312 	 */
313 	rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
314 
315 	spin_unlock_bh(old_tbl->locks);
316 
317 	return 0;
318 }
319 
320 static int rhashtable_rehash_table(struct rhashtable *ht)
321 {
322 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
323 	struct bucket_table *new_tbl;
324 	struct rhashtable_walker *walker;
325 	unsigned int old_hash;
326 	int err;
327 
328 	new_tbl = rht_dereference(old_tbl->future_tbl, ht);
329 	if (!new_tbl)
330 		return 0;
331 
332 	for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
333 		err = rhashtable_rehash_chain(ht, old_hash);
334 		if (err)
335 			return err;
336 	}
337 
338 	/* Publish the new table pointer. */
339 	rcu_assign_pointer(ht->tbl, new_tbl);
340 
341 	spin_lock(&ht->lock);
342 	list_for_each_entry(walker, &old_tbl->walkers, list)
343 		walker->tbl = NULL;
344 	spin_unlock(&ht->lock);
345 
346 	/* Wait for readers. All new readers will see the new
347 	 * table, and thus no references to the old table will
348 	 * remain.
349 	 */
350 	call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
351 
352 	return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
353 }
354 
355 static int rhashtable_rehash_alloc(struct rhashtable *ht,
356 				   struct bucket_table *old_tbl,
357 				   unsigned int size)
358 {
359 	struct bucket_table *new_tbl;
360 	int err;
361 
362 	ASSERT_RHT_MUTEX(ht);
363 
364 	new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
365 	if (new_tbl == NULL)
366 		return -ENOMEM;
367 
368 	err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
369 	if (err)
370 		bucket_table_free(new_tbl);
371 
372 	return err;
373 }
374 
375 /**
376  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
377  * @ht:		the hash table to shrink
378  *
379  * This function shrinks the hash table to fit, i.e., the smallest
380  * size would not cause it to expand right away automatically.
381  *
382  * The caller must ensure that no concurrent resizing occurs by holding
383  * ht->mutex.
384  *
385  * The caller must ensure that no concurrent table mutations take place.
386  * It is however valid to have concurrent lookups if they are RCU protected.
387  *
388  * It is valid to have concurrent insertions and deletions protected by per
389  * bucket locks or concurrent RCU protected lookups and traversals.
390  */
391 static int rhashtable_shrink(struct rhashtable *ht)
392 {
393 	struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
394 	unsigned int nelems = atomic_read(&ht->nelems);
395 	unsigned int size = 0;
396 
397 	if (nelems)
398 		size = roundup_pow_of_two(nelems * 3 / 2);
399 	if (size < ht->p.min_size)
400 		size = ht->p.min_size;
401 
402 	if (old_tbl->size <= size)
403 		return 0;
404 
405 	if (rht_dereference(old_tbl->future_tbl, ht))
406 		return -EEXIST;
407 
408 	return rhashtable_rehash_alloc(ht, old_tbl, size);
409 }
410 
411 static void rht_deferred_worker(struct work_struct *work)
412 {
413 	struct rhashtable *ht;
414 	struct bucket_table *tbl;
415 	int err = 0;
416 
417 	ht = container_of(work, struct rhashtable, run_work);
418 	mutex_lock(&ht->mutex);
419 
420 	tbl = rht_dereference(ht->tbl, ht);
421 	tbl = rhashtable_last_table(ht, tbl);
422 
423 	if (rht_grow_above_75(ht, tbl))
424 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
425 	else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
426 		err = rhashtable_shrink(ht);
427 	else if (tbl->nest)
428 		err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
429 
430 	if (!err)
431 		err = rhashtable_rehash_table(ht);
432 
433 	mutex_unlock(&ht->mutex);
434 
435 	if (err)
436 		schedule_work(&ht->run_work);
437 }
438 
439 static int rhashtable_insert_rehash(struct rhashtable *ht,
440 				    struct bucket_table *tbl)
441 {
442 	struct bucket_table *old_tbl;
443 	struct bucket_table *new_tbl;
444 	unsigned int size;
445 	int err;
446 
447 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
448 
449 	size = tbl->size;
450 
451 	err = -EBUSY;
452 
453 	if (rht_grow_above_75(ht, tbl))
454 		size *= 2;
455 	/* Do not schedule more than one rehash */
456 	else if (old_tbl != tbl)
457 		goto fail;
458 
459 	err = -ENOMEM;
460 
461 	new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
462 	if (new_tbl == NULL)
463 		goto fail;
464 
465 	err = rhashtable_rehash_attach(ht, tbl, new_tbl);
466 	if (err) {
467 		bucket_table_free(new_tbl);
468 		if (err == -EEXIST)
469 			err = 0;
470 	} else
471 		schedule_work(&ht->run_work);
472 
473 	return err;
474 
475 fail:
476 	/* Do not fail the insert if someone else did a rehash. */
477 	if (likely(rcu_dereference_raw(tbl->future_tbl)))
478 		return 0;
479 
480 	/* Schedule async rehash to retry allocation in process context. */
481 	if (err == -ENOMEM)
482 		schedule_work(&ht->run_work);
483 
484 	return err;
485 }
486 
487 static void *rhashtable_lookup_one(struct rhashtable *ht,
488 				   struct bucket_table *tbl, unsigned int hash,
489 				   const void *key, struct rhash_head *obj)
490 {
491 	struct rhashtable_compare_arg arg = {
492 		.ht = ht,
493 		.key = key,
494 	};
495 	struct rhash_head __rcu **pprev;
496 	struct rhash_head *head;
497 	int elasticity;
498 
499 	elasticity = RHT_ELASTICITY;
500 	pprev = rht_bucket_var(tbl, hash);
501 	rht_for_each_continue(head, *pprev, tbl, hash) {
502 		struct rhlist_head *list;
503 		struct rhlist_head *plist;
504 
505 		elasticity--;
506 		if (!key ||
507 		    (ht->p.obj_cmpfn ?
508 		     ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
509 		     rhashtable_compare(&arg, rht_obj(ht, head))))
510 			continue;
511 
512 		if (!ht->rhlist)
513 			return rht_obj(ht, head);
514 
515 		list = container_of(obj, struct rhlist_head, rhead);
516 		plist = container_of(head, struct rhlist_head, rhead);
517 
518 		RCU_INIT_POINTER(list->next, plist);
519 		head = rht_dereference_bucket(head->next, tbl, hash);
520 		RCU_INIT_POINTER(list->rhead.next, head);
521 		rcu_assign_pointer(*pprev, obj);
522 
523 		return NULL;
524 	}
525 
526 	if (elasticity <= 0)
527 		return ERR_PTR(-EAGAIN);
528 
529 	return ERR_PTR(-ENOENT);
530 }
531 
532 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
533 						  struct bucket_table *tbl,
534 						  unsigned int hash,
535 						  struct rhash_head *obj,
536 						  void *data)
537 {
538 	struct rhash_head __rcu **pprev;
539 	struct bucket_table *new_tbl;
540 	struct rhash_head *head;
541 
542 	if (!IS_ERR_OR_NULL(data))
543 		return ERR_PTR(-EEXIST);
544 
545 	if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
546 		return ERR_CAST(data);
547 
548 	new_tbl = rcu_dereference(tbl->future_tbl);
549 	if (new_tbl)
550 		return new_tbl;
551 
552 	if (PTR_ERR(data) != -ENOENT)
553 		return ERR_CAST(data);
554 
555 	if (unlikely(rht_grow_above_max(ht, tbl)))
556 		return ERR_PTR(-E2BIG);
557 
558 	if (unlikely(rht_grow_above_100(ht, tbl)))
559 		return ERR_PTR(-EAGAIN);
560 
561 	pprev = rht_bucket_insert(ht, tbl, hash);
562 	if (!pprev)
563 		return ERR_PTR(-ENOMEM);
564 
565 	head = rht_dereference_bucket(*pprev, tbl, hash);
566 
567 	RCU_INIT_POINTER(obj->next, head);
568 	if (ht->rhlist) {
569 		struct rhlist_head *list;
570 
571 		list = container_of(obj, struct rhlist_head, rhead);
572 		RCU_INIT_POINTER(list->next, NULL);
573 	}
574 
575 	rcu_assign_pointer(*pprev, obj);
576 
577 	atomic_inc(&ht->nelems);
578 	if (rht_grow_above_75(ht, tbl))
579 		schedule_work(&ht->run_work);
580 
581 	return NULL;
582 }
583 
584 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
585 				   struct rhash_head *obj)
586 {
587 	struct bucket_table *new_tbl;
588 	struct bucket_table *tbl;
589 	unsigned int hash;
590 	spinlock_t *lock;
591 	void *data;
592 
593 	tbl = rcu_dereference(ht->tbl);
594 
595 	/* All insertions must grab the oldest table containing
596 	 * the hashed bucket that is yet to be rehashed.
597 	 */
598 	for (;;) {
599 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
600 		lock = rht_bucket_lock(tbl, hash);
601 		spin_lock_bh(lock);
602 
603 		if (tbl->rehash <= hash)
604 			break;
605 
606 		spin_unlock_bh(lock);
607 		tbl = rcu_dereference(tbl->future_tbl);
608 	}
609 
610 	data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
611 	new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
612 	if (PTR_ERR(new_tbl) != -EEXIST)
613 		data = ERR_CAST(new_tbl);
614 
615 	while (!IS_ERR_OR_NULL(new_tbl)) {
616 		tbl = new_tbl;
617 		hash = rht_head_hashfn(ht, tbl, obj, ht->p);
618 		spin_lock_nested(rht_bucket_lock(tbl, hash),
619 				 SINGLE_DEPTH_NESTING);
620 
621 		data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
622 		new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
623 		if (PTR_ERR(new_tbl) != -EEXIST)
624 			data = ERR_CAST(new_tbl);
625 
626 		spin_unlock(rht_bucket_lock(tbl, hash));
627 	}
628 
629 	spin_unlock_bh(lock);
630 
631 	if (PTR_ERR(data) == -EAGAIN)
632 		data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
633 			       -EAGAIN);
634 
635 	return data;
636 }
637 
638 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
639 			     struct rhash_head *obj)
640 {
641 	void *data;
642 
643 	do {
644 		rcu_read_lock();
645 		data = rhashtable_try_insert(ht, key, obj);
646 		rcu_read_unlock();
647 	} while (PTR_ERR(data) == -EAGAIN);
648 
649 	return data;
650 }
651 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
652 
653 /**
654  * rhashtable_walk_enter - Initialise an iterator
655  * @ht:		Table to walk over
656  * @iter:	Hash table Iterator
657  *
658  * This function prepares a hash table walk.
659  *
660  * Note that if you restart a walk after rhashtable_walk_stop you
661  * may see the same object twice.  Also, you may miss objects if
662  * there are removals in between rhashtable_walk_stop and the next
663  * call to rhashtable_walk_start.
664  *
665  * For a completely stable walk you should construct your own data
666  * structure outside the hash table.
667  *
668  * This function may sleep so you must not call it from interrupt
669  * context or with spin locks held.
670  *
671  * You must call rhashtable_walk_exit after this function returns.
672  */
673 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
674 {
675 	iter->ht = ht;
676 	iter->p = NULL;
677 	iter->slot = 0;
678 	iter->skip = 0;
679 	iter->end_of_table = 0;
680 
681 	spin_lock(&ht->lock);
682 	iter->walker.tbl =
683 		rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
684 	list_add(&iter->walker.list, &iter->walker.tbl->walkers);
685 	spin_unlock(&ht->lock);
686 }
687 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
688 
689 /**
690  * rhashtable_walk_exit - Free an iterator
691  * @iter:	Hash table Iterator
692  *
693  * This function frees resources allocated by rhashtable_walk_init.
694  */
695 void rhashtable_walk_exit(struct rhashtable_iter *iter)
696 {
697 	spin_lock(&iter->ht->lock);
698 	if (iter->walker.tbl)
699 		list_del(&iter->walker.list);
700 	spin_unlock(&iter->ht->lock);
701 }
702 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
703 
704 /**
705  * rhashtable_walk_start_check - Start a hash table walk
706  * @iter:	Hash table iterator
707  *
708  * Start a hash table walk at the current iterator position.  Note that we take
709  * the RCU lock in all cases including when we return an error.  So you must
710  * always call rhashtable_walk_stop to clean up.
711  *
712  * Returns zero if successful.
713  *
714  * Returns -EAGAIN if resize event occured.  Note that the iterator
715  * will rewind back to the beginning and you may use it immediately
716  * by calling rhashtable_walk_next.
717  *
718  * rhashtable_walk_start is defined as an inline variant that returns
719  * void. This is preferred in cases where the caller would ignore
720  * resize events and always continue.
721  */
722 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
723 	__acquires(RCU)
724 {
725 	struct rhashtable *ht = iter->ht;
726 
727 	rcu_read_lock();
728 
729 	spin_lock(&ht->lock);
730 	if (iter->walker.tbl)
731 		list_del(&iter->walker.list);
732 	spin_unlock(&ht->lock);
733 
734 	if (!iter->walker.tbl && !iter->end_of_table) {
735 		iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
736 		return -EAGAIN;
737 	}
738 
739 	return 0;
740 }
741 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
742 
743 /**
744  * __rhashtable_walk_find_next - Find the next element in a table (or the first
745  * one in case of a new walk).
746  *
747  * @iter:	Hash table iterator
748  *
749  * Returns the found object or NULL when the end of the table is reached.
750  *
751  * Returns -EAGAIN if resize event occurred.
752  */
753 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
754 {
755 	struct bucket_table *tbl = iter->walker.tbl;
756 	struct rhlist_head *list = iter->list;
757 	struct rhashtable *ht = iter->ht;
758 	struct rhash_head *p = iter->p;
759 	bool rhlist = ht->rhlist;
760 
761 	if (!tbl)
762 		return NULL;
763 
764 	for (; iter->slot < tbl->size; iter->slot++) {
765 		int skip = iter->skip;
766 
767 		rht_for_each_rcu(p, tbl, iter->slot) {
768 			if (rhlist) {
769 				list = container_of(p, struct rhlist_head,
770 						    rhead);
771 				do {
772 					if (!skip)
773 						goto next;
774 					skip--;
775 					list = rcu_dereference(list->next);
776 				} while (list);
777 
778 				continue;
779 			}
780 			if (!skip)
781 				break;
782 			skip--;
783 		}
784 
785 next:
786 		if (!rht_is_a_nulls(p)) {
787 			iter->skip++;
788 			iter->p = p;
789 			iter->list = list;
790 			return rht_obj(ht, rhlist ? &list->rhead : p);
791 		}
792 
793 		iter->skip = 0;
794 	}
795 
796 	iter->p = NULL;
797 
798 	/* Ensure we see any new tables. */
799 	smp_rmb();
800 
801 	iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
802 	if (iter->walker.tbl) {
803 		iter->slot = 0;
804 		iter->skip = 0;
805 		return ERR_PTR(-EAGAIN);
806 	} else {
807 		iter->end_of_table = true;
808 	}
809 
810 	return NULL;
811 }
812 
813 /**
814  * rhashtable_walk_next - Return the next object and advance the iterator
815  * @iter:	Hash table iterator
816  *
817  * Note that you must call rhashtable_walk_stop when you are finished
818  * with the walk.
819  *
820  * Returns the next object or NULL when the end of the table is reached.
821  *
822  * Returns -EAGAIN if resize event occurred.  Note that the iterator
823  * will rewind back to the beginning and you may continue to use it.
824  */
825 void *rhashtable_walk_next(struct rhashtable_iter *iter)
826 {
827 	struct rhlist_head *list = iter->list;
828 	struct rhashtable *ht = iter->ht;
829 	struct rhash_head *p = iter->p;
830 	bool rhlist = ht->rhlist;
831 
832 	if (p) {
833 		if (!rhlist || !(list = rcu_dereference(list->next))) {
834 			p = rcu_dereference(p->next);
835 			list = container_of(p, struct rhlist_head, rhead);
836 		}
837 		if (!rht_is_a_nulls(p)) {
838 			iter->skip++;
839 			iter->p = p;
840 			iter->list = list;
841 			return rht_obj(ht, rhlist ? &list->rhead : p);
842 		}
843 
844 		/* At the end of this slot, switch to next one and then find
845 		 * next entry from that point.
846 		 */
847 		iter->skip = 0;
848 		iter->slot++;
849 	}
850 
851 	return __rhashtable_walk_find_next(iter);
852 }
853 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
854 
855 /**
856  * rhashtable_walk_peek - Return the next object but don't advance the iterator
857  * @iter:	Hash table iterator
858  *
859  * Returns the next object or NULL when the end of the table is reached.
860  *
861  * Returns -EAGAIN if resize event occurred.  Note that the iterator
862  * will rewind back to the beginning and you may continue to use it.
863  */
864 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
865 {
866 	struct rhlist_head *list = iter->list;
867 	struct rhashtable *ht = iter->ht;
868 	struct rhash_head *p = iter->p;
869 
870 	if (p)
871 		return rht_obj(ht, ht->rhlist ? &list->rhead : p);
872 
873 	/* No object found in current iter, find next one in the table. */
874 
875 	if (iter->skip) {
876 		/* A nonzero skip value points to the next entry in the table
877 		 * beyond that last one that was found. Decrement skip so
878 		 * we find the current value. __rhashtable_walk_find_next
879 		 * will restore the original value of skip assuming that
880 		 * the table hasn't changed.
881 		 */
882 		iter->skip--;
883 	}
884 
885 	return __rhashtable_walk_find_next(iter);
886 }
887 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
888 
889 /**
890  * rhashtable_walk_stop - Finish a hash table walk
891  * @iter:	Hash table iterator
892  *
893  * Finish a hash table walk.  Does not reset the iterator to the start of the
894  * hash table.
895  */
896 void rhashtable_walk_stop(struct rhashtable_iter *iter)
897 	__releases(RCU)
898 {
899 	struct rhashtable *ht;
900 	struct bucket_table *tbl = iter->walker.tbl;
901 
902 	if (!tbl)
903 		goto out;
904 
905 	ht = iter->ht;
906 
907 	spin_lock(&ht->lock);
908 	if (tbl->rehash < tbl->size)
909 		list_add(&iter->walker.list, &tbl->walkers);
910 	else
911 		iter->walker.tbl = NULL;
912 	spin_unlock(&ht->lock);
913 
914 	iter->p = NULL;
915 
916 out:
917 	rcu_read_unlock();
918 }
919 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
920 
921 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
922 {
923 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
924 		   (unsigned long)params->min_size);
925 }
926 
927 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
928 {
929 	return jhash2(key, length, seed);
930 }
931 
932 /**
933  * rhashtable_init - initialize a new hash table
934  * @ht:		hash table to be initialized
935  * @params:	configuration parameters
936  *
937  * Initializes a new hash table based on the provided configuration
938  * parameters. A table can be configured either with a variable or
939  * fixed length key:
940  *
941  * Configuration Example 1: Fixed length keys
942  * struct test_obj {
943  *	int			key;
944  *	void *			my_member;
945  *	struct rhash_head	node;
946  * };
947  *
948  * struct rhashtable_params params = {
949  *	.head_offset = offsetof(struct test_obj, node),
950  *	.key_offset = offsetof(struct test_obj, key),
951  *	.key_len = sizeof(int),
952  *	.hashfn = jhash,
953  *	.nulls_base = (1U << RHT_BASE_SHIFT),
954  * };
955  *
956  * Configuration Example 2: Variable length keys
957  * struct test_obj {
958  *	[...]
959  *	struct rhash_head	node;
960  * };
961  *
962  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
963  * {
964  *	struct test_obj *obj = data;
965  *
966  *	return [... hash ...];
967  * }
968  *
969  * struct rhashtable_params params = {
970  *	.head_offset = offsetof(struct test_obj, node),
971  *	.hashfn = jhash,
972  *	.obj_hashfn = my_hash_fn,
973  * };
974  */
975 int rhashtable_init(struct rhashtable *ht,
976 		    const struct rhashtable_params *params)
977 {
978 	struct bucket_table *tbl;
979 	size_t size;
980 
981 	size = HASH_DEFAULT_SIZE;
982 
983 	if ((!params->key_len && !params->obj_hashfn) ||
984 	    (params->obj_hashfn && !params->obj_cmpfn))
985 		return -EINVAL;
986 
987 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
988 		return -EINVAL;
989 
990 	memset(ht, 0, sizeof(*ht));
991 	mutex_init(&ht->mutex);
992 	spin_lock_init(&ht->lock);
993 	memcpy(&ht->p, params, sizeof(*params));
994 
995 	if (params->min_size)
996 		ht->p.min_size = roundup_pow_of_two(params->min_size);
997 
998 	/* Cap total entries at 2^31 to avoid nelems overflow. */
999 	ht->max_elems = 1u << 31;
1000 
1001 	if (params->max_size) {
1002 		ht->p.max_size = rounddown_pow_of_two(params->max_size);
1003 		if (ht->p.max_size < ht->max_elems / 2)
1004 			ht->max_elems = ht->p.max_size * 2;
1005 	}
1006 
1007 	ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1008 
1009 	if (params->nelem_hint)
1010 		size = rounded_hashtable_size(&ht->p);
1011 
1012 	if (params->locks_mul)
1013 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1014 	else
1015 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1016 
1017 	ht->key_len = ht->p.key_len;
1018 	if (!params->hashfn) {
1019 		ht->p.hashfn = jhash;
1020 
1021 		if (!(ht->key_len & (sizeof(u32) - 1))) {
1022 			ht->key_len /= sizeof(u32);
1023 			ht->p.hashfn = rhashtable_jhash2;
1024 		}
1025 	}
1026 
1027 	tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1028 	if (tbl == NULL)
1029 		return -ENOMEM;
1030 
1031 	atomic_set(&ht->nelems, 0);
1032 
1033 	RCU_INIT_POINTER(ht->tbl, tbl);
1034 
1035 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1036 
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL_GPL(rhashtable_init);
1040 
1041 /**
1042  * rhltable_init - initialize a new hash list table
1043  * @hlt:	hash list table to be initialized
1044  * @params:	configuration parameters
1045  *
1046  * Initializes a new hash list table.
1047  *
1048  * See documentation for rhashtable_init.
1049  */
1050 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1051 {
1052 	int err;
1053 
1054 	/* No rhlist NULLs marking for now. */
1055 	if (params->nulls_base)
1056 		return -EINVAL;
1057 
1058 	err = rhashtable_init(&hlt->ht, params);
1059 	hlt->ht.rhlist = true;
1060 	return err;
1061 }
1062 EXPORT_SYMBOL_GPL(rhltable_init);
1063 
1064 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1065 				void (*free_fn)(void *ptr, void *arg),
1066 				void *arg)
1067 {
1068 	struct rhlist_head *list;
1069 
1070 	if (!ht->rhlist) {
1071 		free_fn(rht_obj(ht, obj), arg);
1072 		return;
1073 	}
1074 
1075 	list = container_of(obj, struct rhlist_head, rhead);
1076 	do {
1077 		obj = &list->rhead;
1078 		list = rht_dereference(list->next, ht);
1079 		free_fn(rht_obj(ht, obj), arg);
1080 	} while (list);
1081 }
1082 
1083 /**
1084  * rhashtable_free_and_destroy - free elements and destroy hash table
1085  * @ht:		the hash table to destroy
1086  * @free_fn:	callback to release resources of element
1087  * @arg:	pointer passed to free_fn
1088  *
1089  * Stops an eventual async resize. If defined, invokes free_fn for each
1090  * element to releasal resources. Please note that RCU protected
1091  * readers may still be accessing the elements. Releasing of resources
1092  * must occur in a compatible manner. Then frees the bucket array.
1093  *
1094  * This function will eventually sleep to wait for an async resize
1095  * to complete. The caller is responsible that no further write operations
1096  * occurs in parallel.
1097  */
1098 void rhashtable_free_and_destroy(struct rhashtable *ht,
1099 				 void (*free_fn)(void *ptr, void *arg),
1100 				 void *arg)
1101 {
1102 	struct bucket_table *tbl;
1103 	unsigned int i;
1104 
1105 	cancel_work_sync(&ht->run_work);
1106 
1107 	mutex_lock(&ht->mutex);
1108 	tbl = rht_dereference(ht->tbl, ht);
1109 	if (free_fn) {
1110 		for (i = 0; i < tbl->size; i++) {
1111 			struct rhash_head *pos, *next;
1112 
1113 			for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1114 			     next = !rht_is_a_nulls(pos) ?
1115 					rht_dereference(pos->next, ht) : NULL;
1116 			     !rht_is_a_nulls(pos);
1117 			     pos = next,
1118 			     next = !rht_is_a_nulls(pos) ?
1119 					rht_dereference(pos->next, ht) : NULL)
1120 				rhashtable_free_one(ht, pos, free_fn, arg);
1121 		}
1122 	}
1123 
1124 	bucket_table_free(tbl);
1125 	mutex_unlock(&ht->mutex);
1126 }
1127 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1128 
1129 void rhashtable_destroy(struct rhashtable *ht)
1130 {
1131 	return rhashtable_free_and_destroy(ht, NULL, NULL);
1132 }
1133 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1134 
1135 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1136 					    unsigned int hash)
1137 {
1138 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1139 	static struct rhash_head __rcu *rhnull =
1140 		(struct rhash_head __rcu *)NULLS_MARKER(0);
1141 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1142 	unsigned int size = tbl->size >> tbl->nest;
1143 	unsigned int subhash = hash;
1144 	union nested_table *ntbl;
1145 
1146 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1147 	ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1148 	subhash >>= tbl->nest;
1149 
1150 	while (ntbl && size > (1 << shift)) {
1151 		index = subhash & ((1 << shift) - 1);
1152 		ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1153 						  tbl, hash);
1154 		size >>= shift;
1155 		subhash >>= shift;
1156 	}
1157 
1158 	if (!ntbl)
1159 		return &rhnull;
1160 
1161 	return &ntbl[subhash].bucket;
1162 
1163 }
1164 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1165 
1166 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1167 						   struct bucket_table *tbl,
1168 						   unsigned int hash)
1169 {
1170 	const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1171 	unsigned int index = hash & ((1 << tbl->nest) - 1);
1172 	unsigned int size = tbl->size >> tbl->nest;
1173 	union nested_table *ntbl;
1174 	unsigned int shifted;
1175 	unsigned int nhash;
1176 
1177 	ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1178 	hash >>= tbl->nest;
1179 	nhash = index;
1180 	shifted = tbl->nest;
1181 	ntbl = nested_table_alloc(ht, &ntbl[index].table,
1182 				  size <= (1 << shift) ? shifted : 0, nhash);
1183 
1184 	while (ntbl && size > (1 << shift)) {
1185 		index = hash & ((1 << shift) - 1);
1186 		size >>= shift;
1187 		hash >>= shift;
1188 		nhash |= index << shifted;
1189 		shifted += shift;
1190 		ntbl = nested_table_alloc(ht, &ntbl[index].table,
1191 					  size <= (1 << shift) ? shifted : 0,
1192 					  nhash);
1193 	}
1194 
1195 	if (!ntbl)
1196 		return NULL;
1197 
1198 	return &ntbl[hash].bucket;
1199 
1200 }
1201 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);
1202