xref: /openbmc/linux/lib/rhashtable.c (revision 034f90b3)
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
5  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
6  *
7  * Based on the following paper:
8  * https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
9  *
10  * Code partially derived from nft_hash
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/mm.h>
24 #include <linux/jhash.h>
25 #include <linux/random.h>
26 #include <linux/rhashtable.h>
27 #include <linux/err.h>
28 
29 #define HASH_DEFAULT_SIZE	64UL
30 #define HASH_MIN_SIZE		4UL
31 #define BUCKET_LOCKS_PER_CPU   128UL
32 
33 /* Base bits plus 1 bit for nulls marker */
34 #define HASH_RESERVED_SPACE	(RHT_BASE_BITS + 1)
35 
36 enum {
37 	RHT_LOCK_NORMAL,
38 	RHT_LOCK_NESTED,
39 };
40 
41 /* The bucket lock is selected based on the hash and protects mutations
42  * on a group of hash buckets.
43  *
44  * A maximum of tbl->size/2 bucket locks is allocated. This ensures that
45  * a single lock always covers both buckets which may both contains
46  * entries which link to the same bucket of the old table during resizing.
47  * This allows to simplify the locking as locking the bucket in both
48  * tables during resize always guarantee protection.
49  *
50  * IMPORTANT: When holding the bucket lock of both the old and new table
51  * during expansions and shrinking, the old bucket lock must always be
52  * acquired first.
53  */
54 static spinlock_t *bucket_lock(const struct bucket_table *tbl, u32 hash)
55 {
56 	return &tbl->locks[hash & tbl->locks_mask];
57 }
58 
59 static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
60 {
61 	return (void *) he - ht->p.head_offset;
62 }
63 
64 static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
65 {
66 	return hash & (tbl->size - 1);
67 }
68 
69 static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
70 {
71 	u32 hash;
72 
73 	if (unlikely(!ht->p.key_len))
74 		hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
75 	else
76 		hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
77 				    ht->p.hash_rnd);
78 
79 	return hash >> HASH_RESERVED_SPACE;
80 }
81 
82 static u32 key_hashfn(struct rhashtable *ht, const void *key, u32 len)
83 {
84 	return ht->p.hashfn(key, len, ht->p.hash_rnd) >> HASH_RESERVED_SPACE;
85 }
86 
87 static u32 head_hashfn(const struct rhashtable *ht,
88 		       const struct bucket_table *tbl,
89 		       const struct rhash_head *he)
90 {
91 	return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
92 }
93 
94 #ifdef CONFIG_PROVE_LOCKING
95 static void debug_dump_buckets(const struct rhashtable *ht,
96 			       const struct bucket_table *tbl)
97 {
98 	struct rhash_head *he;
99 	unsigned int i, hash;
100 
101 	for (i = 0; i < tbl->size; i++) {
102 		pr_warn(" [Bucket %d] ", i);
103 		rht_for_each_rcu(he, tbl, i) {
104 			hash = head_hashfn(ht, tbl, he);
105 			pr_cont("[hash = %#x, lock = %p] ",
106 				hash, bucket_lock(tbl, hash));
107 		}
108 		pr_cont("\n");
109 	}
110 
111 }
112 
113 static void debug_dump_table(struct rhashtable *ht,
114 			     const struct bucket_table *tbl,
115 			     unsigned int hash)
116 {
117 	struct bucket_table *old_tbl, *future_tbl;
118 
119 	pr_emerg("BUG: lock for hash %#x in table %p not held\n",
120 		 hash, tbl);
121 
122 	rcu_read_lock();
123 	future_tbl = rht_dereference_rcu(ht->future_tbl, ht);
124 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
125 	if (future_tbl != old_tbl) {
126 		pr_warn("Future table %p (size: %zd)\n",
127 			future_tbl, future_tbl->size);
128 		debug_dump_buckets(ht, future_tbl);
129 	}
130 
131 	pr_warn("Table %p (size: %zd)\n", old_tbl, old_tbl->size);
132 	debug_dump_buckets(ht, old_tbl);
133 
134 	rcu_read_unlock();
135 }
136 
137 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
138 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)				\
139 	do {								\
140 		if (unlikely(!lockdep_rht_bucket_is_held(TBL, HASH))) {	\
141 			debug_dump_table(HT, TBL, HASH);		\
142 			BUG();						\
143 		}							\
144 	} while (0)
145 
146 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
147 {
148 	return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
149 }
150 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
151 
152 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
153 {
154 	spinlock_t *lock = bucket_lock(tbl, hash);
155 
156 	return (debug_locks) ? lockdep_is_held(lock) : 1;
157 }
158 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
159 #else
160 #define ASSERT_RHT_MUTEX(HT)
161 #define ASSERT_BUCKET_LOCK(HT, TBL, HASH)
162 #endif
163 
164 
165 static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
166 {
167 	struct rhash_head __rcu **pprev;
168 
169 	for (pprev = &tbl->buckets[n];
170 	     !rht_is_a_nulls(rht_dereference_bucket(*pprev, tbl, n));
171 	     pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
172 		;
173 
174 	return pprev;
175 }
176 
177 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl)
178 {
179 	unsigned int i, size;
180 #if defined(CONFIG_PROVE_LOCKING)
181 	unsigned int nr_pcpus = 2;
182 #else
183 	unsigned int nr_pcpus = num_possible_cpus();
184 #endif
185 
186 	nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
187 	size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
188 
189 	/* Never allocate more than 0.5 locks per bucket */
190 	size = min_t(unsigned int, size, tbl->size >> 1);
191 
192 	if (sizeof(spinlock_t) != 0) {
193 #ifdef CONFIG_NUMA
194 		if (size * sizeof(spinlock_t) > PAGE_SIZE)
195 			tbl->locks = vmalloc(size * sizeof(spinlock_t));
196 		else
197 #endif
198 		tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
199 					   GFP_KERNEL);
200 		if (!tbl->locks)
201 			return -ENOMEM;
202 		for (i = 0; i < size; i++)
203 			spin_lock_init(&tbl->locks[i]);
204 	}
205 	tbl->locks_mask = size - 1;
206 
207 	return 0;
208 }
209 
210 static void bucket_table_free(const struct bucket_table *tbl)
211 {
212 	if (tbl)
213 		kvfree(tbl->locks);
214 
215 	kvfree(tbl);
216 }
217 
218 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
219 					       size_t nbuckets)
220 {
221 	struct bucket_table *tbl = NULL;
222 	size_t size;
223 	int i;
224 
225 	size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
226 	if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
227 		tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
228 	if (tbl == NULL)
229 		tbl = vzalloc(size);
230 	if (tbl == NULL)
231 		return NULL;
232 
233 	tbl->size = nbuckets;
234 
235 	if (alloc_bucket_locks(ht, tbl) < 0) {
236 		bucket_table_free(tbl);
237 		return NULL;
238 	}
239 
240 	for (i = 0; i < nbuckets; i++)
241 		INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
242 
243 	return tbl;
244 }
245 
246 /**
247  * rht_grow_above_75 - returns true if nelems > 0.75 * table-size
248  * @ht:		hash table
249  * @new_size:	new table size
250  */
251 static bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
252 {
253 	/* Expand table when exceeding 75% load */
254 	return atomic_read(&ht->nelems) > (new_size / 4 * 3) &&
255 	       (!ht->p.max_shift || atomic_read(&ht->shift) < ht->p.max_shift);
256 }
257 
258 /**
259  * rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
260  * @ht:		hash table
261  * @new_size:	new table size
262  */
263 static bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
264 {
265 	/* Shrink table beneath 30% load */
266 	return atomic_read(&ht->nelems) < (new_size * 3 / 10) &&
267 	       (atomic_read(&ht->shift) > ht->p.min_shift);
268 }
269 
270 static void lock_buckets(struct bucket_table *new_tbl,
271 			 struct bucket_table *old_tbl, unsigned int hash)
272 	__acquires(old_bucket_lock)
273 {
274 	spin_lock_bh(bucket_lock(old_tbl, hash));
275 	if (new_tbl != old_tbl)
276 		spin_lock_bh_nested(bucket_lock(new_tbl, hash),
277 				    RHT_LOCK_NESTED);
278 }
279 
280 static void unlock_buckets(struct bucket_table *new_tbl,
281 			   struct bucket_table *old_tbl, unsigned int hash)
282 	__releases(old_bucket_lock)
283 {
284 	if (new_tbl != old_tbl)
285 		spin_unlock_bh(bucket_lock(new_tbl, hash));
286 	spin_unlock_bh(bucket_lock(old_tbl, hash));
287 }
288 
289 /**
290  * Unlink entries on bucket which hash to different bucket.
291  *
292  * Returns true if no more work needs to be performed on the bucket.
293  */
294 static bool hashtable_chain_unzip(struct rhashtable *ht,
295 				  const struct bucket_table *new_tbl,
296 				  struct bucket_table *old_tbl,
297 				  size_t old_hash)
298 {
299 	struct rhash_head *he, *p, *next;
300 	unsigned int new_hash, new_hash2;
301 
302 	ASSERT_BUCKET_LOCK(ht, old_tbl, old_hash);
303 
304 	/* Old bucket empty, no work needed. */
305 	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
306 				   old_hash);
307 	if (rht_is_a_nulls(p))
308 		return false;
309 
310 	new_hash = head_hashfn(ht, new_tbl, p);
311 	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
312 
313 	/* Advance the old bucket pointer one or more times until it
314 	 * reaches a node that doesn't hash to the same bucket as the
315 	 * previous node p. Call the previous node p;
316 	 */
317 	rht_for_each_continue(he, p->next, old_tbl, old_hash) {
318 		new_hash2 = head_hashfn(ht, new_tbl, he);
319 		ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash2);
320 
321 		if (new_hash != new_hash2)
322 			break;
323 		p = he;
324 	}
325 	rcu_assign_pointer(old_tbl->buckets[old_hash], p->next);
326 
327 	/* Find the subsequent node which does hash to the same
328 	 * bucket as node P, or NULL if no such node exists.
329 	 */
330 	INIT_RHT_NULLS_HEAD(next, ht, old_hash);
331 	if (!rht_is_a_nulls(he)) {
332 		rht_for_each_continue(he, he->next, old_tbl, old_hash) {
333 			if (head_hashfn(ht, new_tbl, he) == new_hash) {
334 				next = he;
335 				break;
336 			}
337 		}
338 	}
339 
340 	/* Set p's next pointer to that subsequent node pointer,
341 	 * bypassing the nodes which do not hash to p's bucket
342 	 */
343 	rcu_assign_pointer(p->next, next);
344 
345 	p = rht_dereference_bucket(old_tbl->buckets[old_hash], old_tbl,
346 				   old_hash);
347 
348 	return !rht_is_a_nulls(p);
349 }
350 
351 static void link_old_to_new(struct rhashtable *ht, struct bucket_table *new_tbl,
352 			    unsigned int new_hash, struct rhash_head *entry)
353 {
354 	ASSERT_BUCKET_LOCK(ht, new_tbl, new_hash);
355 
356 	rcu_assign_pointer(*bucket_tail(new_tbl, new_hash), entry);
357 }
358 
359 /**
360  * rhashtable_expand - Expand hash table while allowing concurrent lookups
361  * @ht:		the hash table to expand
362  *
363  * A secondary bucket array is allocated and the hash entries are migrated
364  * while keeping them on both lists until the end of the RCU grace period.
365  *
366  * This function may only be called in a context where it is safe to call
367  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
368  *
369  * The caller must ensure that no concurrent resizing occurs by holding
370  * ht->mutex.
371  *
372  * It is valid to have concurrent insertions and deletions protected by per
373  * bucket locks or concurrent RCU protected lookups and traversals.
374  */
375 int rhashtable_expand(struct rhashtable *ht)
376 {
377 	struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
378 	struct rhash_head *he;
379 	unsigned int new_hash, old_hash;
380 	bool complete = false;
381 
382 	ASSERT_RHT_MUTEX(ht);
383 
384 	new_tbl = bucket_table_alloc(ht, old_tbl->size * 2);
385 	if (new_tbl == NULL)
386 		return -ENOMEM;
387 
388 	atomic_inc(&ht->shift);
389 
390 	/* Make insertions go into the new, empty table right away. Deletions
391 	 * and lookups will be attempted in both tables until we synchronize.
392 	 * The synchronize_rcu() guarantees for the new table to be picked up
393 	 * so no new additions go into the old table while we relink.
394 	 */
395 	rcu_assign_pointer(ht->future_tbl, new_tbl);
396 	synchronize_rcu();
397 
398 	/* For each new bucket, search the corresponding old bucket for the
399 	 * first entry that hashes to the new bucket, and link the end of
400 	 * newly formed bucket chain (containing entries added to future
401 	 * table) to that entry. Since all the entries which will end up in
402 	 * the new bucket appear in the same old bucket, this constructs an
403 	 * entirely valid new hash table, but with multiple buckets
404 	 * "zipped" together into a single imprecise chain.
405 	 */
406 	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
407 		old_hash = rht_bucket_index(old_tbl, new_hash);
408 		lock_buckets(new_tbl, old_tbl, new_hash);
409 		rht_for_each(he, old_tbl, old_hash) {
410 			if (head_hashfn(ht, new_tbl, he) == new_hash) {
411 				link_old_to_new(ht, new_tbl, new_hash, he);
412 				break;
413 			}
414 		}
415 		unlock_buckets(new_tbl, old_tbl, new_hash);
416 		cond_resched();
417 	}
418 
419 	/* Unzip interleaved hash chains */
420 	while (!complete && !ht->being_destroyed) {
421 		/* Wait for readers. All new readers will see the new
422 		 * table, and thus no references to the old table will
423 		 * remain.
424 		 */
425 		synchronize_rcu();
426 
427 		/* For each bucket in the old table (each of which
428 		 * contains items from multiple buckets of the new
429 		 * table): ...
430 		 */
431 		complete = true;
432 		for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
433 			lock_buckets(new_tbl, old_tbl, old_hash);
434 
435 			if (hashtable_chain_unzip(ht, new_tbl, old_tbl,
436 						  old_hash))
437 				complete = false;
438 
439 			unlock_buckets(new_tbl, old_tbl, old_hash);
440 			cond_resched();
441 		}
442 	}
443 
444 	rcu_assign_pointer(ht->tbl, new_tbl);
445 	synchronize_rcu();
446 
447 	bucket_table_free(old_tbl);
448 	return 0;
449 }
450 EXPORT_SYMBOL_GPL(rhashtable_expand);
451 
452 /**
453  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
454  * @ht:		the hash table to shrink
455  *
456  * This function may only be called in a context where it is safe to call
457  * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
458  *
459  * The caller must ensure that no concurrent resizing occurs by holding
460  * ht->mutex.
461  *
462  * The caller must ensure that no concurrent table mutations take place.
463  * It is however valid to have concurrent lookups if they are RCU protected.
464  *
465  * It is valid to have concurrent insertions and deletions protected by per
466  * bucket locks or concurrent RCU protected lookups and traversals.
467  */
468 int rhashtable_shrink(struct rhashtable *ht)
469 {
470 	struct bucket_table *new_tbl, *tbl = rht_dereference(ht->tbl, ht);
471 	unsigned int new_hash;
472 
473 	ASSERT_RHT_MUTEX(ht);
474 
475 	new_tbl = bucket_table_alloc(ht, tbl->size / 2);
476 	if (new_tbl == NULL)
477 		return -ENOMEM;
478 
479 	rcu_assign_pointer(ht->future_tbl, new_tbl);
480 	synchronize_rcu();
481 
482 	/* Link the first entry in the old bucket to the end of the
483 	 * bucket in the new table. As entries are concurrently being
484 	 * added to the new table, lock down the new bucket. As we
485 	 * always divide the size in half when shrinking, each bucket
486 	 * in the new table maps to exactly two buckets in the old
487 	 * table.
488 	 */
489 	for (new_hash = 0; new_hash < new_tbl->size; new_hash++) {
490 		lock_buckets(new_tbl, tbl, new_hash);
491 
492 		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
493 				   tbl->buckets[new_hash]);
494 		ASSERT_BUCKET_LOCK(ht, tbl, new_hash + new_tbl->size);
495 		rcu_assign_pointer(*bucket_tail(new_tbl, new_hash),
496 				   tbl->buckets[new_hash + new_tbl->size]);
497 
498 		unlock_buckets(new_tbl, tbl, new_hash);
499 		cond_resched();
500 	}
501 
502 	/* Publish the new, valid hash table */
503 	rcu_assign_pointer(ht->tbl, new_tbl);
504 	atomic_dec(&ht->shift);
505 
506 	/* Wait for readers. No new readers will have references to the
507 	 * old hash table.
508 	 */
509 	synchronize_rcu();
510 
511 	bucket_table_free(tbl);
512 
513 	return 0;
514 }
515 EXPORT_SYMBOL_GPL(rhashtable_shrink);
516 
517 static void rht_deferred_worker(struct work_struct *work)
518 {
519 	struct rhashtable *ht;
520 	struct bucket_table *tbl;
521 	struct rhashtable_walker *walker;
522 
523 	ht = container_of(work, struct rhashtable, run_work);
524 	mutex_lock(&ht->mutex);
525 	if (ht->being_destroyed)
526 		goto unlock;
527 
528 	tbl = rht_dereference(ht->tbl, ht);
529 
530 	list_for_each_entry(walker, &ht->walkers, list)
531 		walker->resize = true;
532 
533 	if (rht_grow_above_75(ht, tbl->size))
534 		rhashtable_expand(ht);
535 	else if (rht_shrink_below_30(ht, tbl->size))
536 		rhashtable_shrink(ht);
537 unlock:
538 	mutex_unlock(&ht->mutex);
539 }
540 
541 static void __rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj,
542 				struct bucket_table *tbl,
543 				const struct bucket_table *old_tbl, u32 hash)
544 {
545 	bool no_resize_running = tbl == old_tbl;
546 	struct rhash_head *head;
547 
548 	hash = rht_bucket_index(tbl, hash);
549 	head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
550 
551 	ASSERT_BUCKET_LOCK(ht, tbl, hash);
552 
553 	if (rht_is_a_nulls(head))
554 		INIT_RHT_NULLS_HEAD(obj->next, ht, hash);
555 	else
556 		RCU_INIT_POINTER(obj->next, head);
557 
558 	rcu_assign_pointer(tbl->buckets[hash], obj);
559 
560 	atomic_inc(&ht->nelems);
561 	if (no_resize_running && rht_grow_above_75(ht, tbl->size))
562 		schedule_work(&ht->run_work);
563 }
564 
565 /**
566  * rhashtable_insert - insert object into hash table
567  * @ht:		hash table
568  * @obj:	pointer to hash head inside object
569  *
570  * Will take a per bucket spinlock to protect against mutual mutations
571  * on the same bucket. Multiple insertions may occur in parallel unless
572  * they map to the same bucket lock.
573  *
574  * It is safe to call this function from atomic context.
575  *
576  * Will trigger an automatic deferred table resizing if the size grows
577  * beyond the watermark indicated by grow_decision() which can be passed
578  * to rhashtable_init().
579  */
580 void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
581 {
582 	struct bucket_table *tbl, *old_tbl;
583 	unsigned hash;
584 
585 	rcu_read_lock();
586 
587 	tbl = rht_dereference_rcu(ht->future_tbl, ht);
588 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
589 	hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
590 
591 	lock_buckets(tbl, old_tbl, hash);
592 	__rhashtable_insert(ht, obj, tbl, old_tbl, hash);
593 	unlock_buckets(tbl, old_tbl, hash);
594 
595 	rcu_read_unlock();
596 }
597 EXPORT_SYMBOL_GPL(rhashtable_insert);
598 
599 /**
600  * rhashtable_remove - remove object from hash table
601  * @ht:		hash table
602  * @obj:	pointer to hash head inside object
603  *
604  * Since the hash chain is single linked, the removal operation needs to
605  * walk the bucket chain upon removal. The removal operation is thus
606  * considerable slow if the hash table is not correctly sized.
607  *
608  * Will automatically shrink the table via rhashtable_expand() if the
609  * shrink_decision function specified at rhashtable_init() returns true.
610  *
611  * The caller must ensure that no concurrent table mutations occur. It is
612  * however valid to have concurrent lookups if they are RCU protected.
613  */
614 bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
615 {
616 	struct bucket_table *tbl, *new_tbl, *old_tbl;
617 	struct rhash_head __rcu **pprev;
618 	struct rhash_head *he, *he2;
619 	unsigned int hash, new_hash;
620 	bool ret = false;
621 
622 	rcu_read_lock();
623 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
624 	tbl = new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
625 	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
626 
627 	lock_buckets(new_tbl, old_tbl, new_hash);
628 restart:
629 	hash = rht_bucket_index(tbl, new_hash);
630 	pprev = &tbl->buckets[hash];
631 	rht_for_each(he, tbl, hash) {
632 		if (he != obj) {
633 			pprev = &he->next;
634 			continue;
635 		}
636 
637 		ASSERT_BUCKET_LOCK(ht, tbl, hash);
638 
639 		if (old_tbl->size > new_tbl->size && tbl == old_tbl &&
640 		    !rht_is_a_nulls(obj->next) &&
641 		    head_hashfn(ht, tbl, obj->next) != hash) {
642 			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
643 		} else if (unlikely(old_tbl->size < new_tbl->size && tbl == new_tbl)) {
644 			rht_for_each_continue(he2, obj->next, tbl, hash) {
645 				if (head_hashfn(ht, tbl, he2) == hash) {
646 					rcu_assign_pointer(*pprev, he2);
647 					goto found;
648 				}
649 			}
650 
651 			rcu_assign_pointer(*pprev, (struct rhash_head *) rht_marker(ht, hash));
652 		} else {
653 			rcu_assign_pointer(*pprev, obj->next);
654 		}
655 
656 found:
657 		ret = true;
658 		break;
659 	}
660 
661 	/* The entry may be linked in either 'tbl', 'future_tbl', or both.
662 	 * 'future_tbl' only exists for a short period of time during
663 	 * resizing. Thus traversing both is fine and the added cost is
664 	 * very rare.
665 	 */
666 	if (tbl != old_tbl) {
667 		tbl = old_tbl;
668 		goto restart;
669 	}
670 
671 	unlock_buckets(new_tbl, old_tbl, new_hash);
672 
673 	if (ret) {
674 		bool no_resize_running = new_tbl == old_tbl;
675 
676 		atomic_dec(&ht->nelems);
677 		if (no_resize_running && rht_shrink_below_30(ht, new_tbl->size))
678 			schedule_work(&ht->run_work);
679 	}
680 
681 	rcu_read_unlock();
682 
683 	return ret;
684 }
685 EXPORT_SYMBOL_GPL(rhashtable_remove);
686 
687 struct rhashtable_compare_arg {
688 	struct rhashtable *ht;
689 	const void *key;
690 };
691 
692 static bool rhashtable_compare(void *ptr, void *arg)
693 {
694 	struct rhashtable_compare_arg *x = arg;
695 	struct rhashtable *ht = x->ht;
696 
697 	return !memcmp(ptr + ht->p.key_offset, x->key, ht->p.key_len);
698 }
699 
700 /**
701  * rhashtable_lookup - lookup key in hash table
702  * @ht:		hash table
703  * @key:	pointer to key
704  *
705  * Computes the hash value for the key and traverses the bucket chain looking
706  * for a entry with an identical key. The first matching entry is returned.
707  *
708  * This lookup function may only be used for fixed key hash table (key_len
709  * parameter set). It will BUG() if used inappropriately.
710  *
711  * Lookups may occur in parallel with hashtable mutations and resizing.
712  */
713 void *rhashtable_lookup(struct rhashtable *ht, const void *key)
714 {
715 	struct rhashtable_compare_arg arg = {
716 		.ht = ht,
717 		.key = key,
718 	};
719 
720 	BUG_ON(!ht->p.key_len);
721 
722 	return rhashtable_lookup_compare(ht, key, &rhashtable_compare, &arg);
723 }
724 EXPORT_SYMBOL_GPL(rhashtable_lookup);
725 
726 /**
727  * rhashtable_lookup_compare - search hash table with compare function
728  * @ht:		hash table
729  * @key:	the pointer to the key
730  * @compare:	compare function, must return true on match
731  * @arg:	argument passed on to compare function
732  *
733  * Traverses the bucket chain behind the provided hash value and calls the
734  * specified compare function for each entry.
735  *
736  * Lookups may occur in parallel with hashtable mutations and resizing.
737  *
738  * Returns the first entry on which the compare function returned true.
739  */
740 void *rhashtable_lookup_compare(struct rhashtable *ht, const void *key,
741 				bool (*compare)(void *, void *), void *arg)
742 {
743 	const struct bucket_table *tbl, *old_tbl;
744 	struct rhash_head *he;
745 	u32 hash;
746 
747 	rcu_read_lock();
748 
749 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
750 	tbl = rht_dereference_rcu(ht->future_tbl, ht);
751 	hash = key_hashfn(ht, key, ht->p.key_len);
752 restart:
753 	rht_for_each_rcu(he, tbl, rht_bucket_index(tbl, hash)) {
754 		if (!compare(rht_obj(ht, he), arg))
755 			continue;
756 		rcu_read_unlock();
757 		return rht_obj(ht, he);
758 	}
759 
760 	if (unlikely(tbl != old_tbl)) {
761 		tbl = old_tbl;
762 		goto restart;
763 	}
764 	rcu_read_unlock();
765 
766 	return NULL;
767 }
768 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
769 
770 /**
771  * rhashtable_lookup_insert - lookup and insert object into hash table
772  * @ht:		hash table
773  * @obj:	pointer to hash head inside object
774  *
775  * Locks down the bucket chain in both the old and new table if a resize
776  * is in progress to ensure that writers can't remove from the old table
777  * and can't insert to the new table during the atomic operation of search
778  * and insertion. Searches for duplicates in both the old and new table if
779  * a resize is in progress.
780  *
781  * This lookup function may only be used for fixed key hash table (key_len
782  * parameter set). It will BUG() if used inappropriately.
783  *
784  * It is safe to call this function from atomic context.
785  *
786  * Will trigger an automatic deferred table resizing if the size grows
787  * beyond the watermark indicated by grow_decision() which can be passed
788  * to rhashtable_init().
789  */
790 bool rhashtable_lookup_insert(struct rhashtable *ht, struct rhash_head *obj)
791 {
792 	struct rhashtable_compare_arg arg = {
793 		.ht = ht,
794 		.key = rht_obj(ht, obj) + ht->p.key_offset,
795 	};
796 
797 	BUG_ON(!ht->p.key_len);
798 
799 	return rhashtable_lookup_compare_insert(ht, obj, &rhashtable_compare,
800 						&arg);
801 }
802 EXPORT_SYMBOL_GPL(rhashtable_lookup_insert);
803 
804 /**
805  * rhashtable_lookup_compare_insert - search and insert object to hash table
806  *                                    with compare function
807  * @ht:		hash table
808  * @obj:	pointer to hash head inside object
809  * @compare:	compare function, must return true on match
810  * @arg:	argument passed on to compare function
811  *
812  * Locks down the bucket chain in both the old and new table if a resize
813  * is in progress to ensure that writers can't remove from the old table
814  * and can't insert to the new table during the atomic operation of search
815  * and insertion. Searches for duplicates in both the old and new table if
816  * a resize is in progress.
817  *
818  * Lookups may occur in parallel with hashtable mutations and resizing.
819  *
820  * Will trigger an automatic deferred table resizing if the size grows
821  * beyond the watermark indicated by grow_decision() which can be passed
822  * to rhashtable_init().
823  */
824 bool rhashtable_lookup_compare_insert(struct rhashtable *ht,
825 				      struct rhash_head *obj,
826 				      bool (*compare)(void *, void *),
827 				      void *arg)
828 {
829 	struct bucket_table *new_tbl, *old_tbl;
830 	u32 new_hash;
831 	bool success = true;
832 
833 	BUG_ON(!ht->p.key_len);
834 
835 	rcu_read_lock();
836 	old_tbl = rht_dereference_rcu(ht->tbl, ht);
837 	new_tbl = rht_dereference_rcu(ht->future_tbl, ht);
838 	new_hash = obj_raw_hashfn(ht, rht_obj(ht, obj));
839 
840 	lock_buckets(new_tbl, old_tbl, new_hash);
841 
842 	if (rhashtable_lookup_compare(ht, rht_obj(ht, obj) + ht->p.key_offset,
843 				      compare, arg)) {
844 		success = false;
845 		goto exit;
846 	}
847 
848 	__rhashtable_insert(ht, obj, new_tbl, old_tbl, new_hash);
849 
850 exit:
851 	unlock_buckets(new_tbl, old_tbl, new_hash);
852 	rcu_read_unlock();
853 
854 	return success;
855 }
856 EXPORT_SYMBOL_GPL(rhashtable_lookup_compare_insert);
857 
858 /**
859  * rhashtable_walk_init - Initialise an iterator
860  * @ht:		Table to walk over
861  * @iter:	Hash table Iterator
862  *
863  * This function prepares a hash table walk.
864  *
865  * Note that if you restart a walk after rhashtable_walk_stop you
866  * may see the same object twice.  Also, you may miss objects if
867  * there are removals in between rhashtable_walk_stop and the next
868  * call to rhashtable_walk_start.
869  *
870  * For a completely stable walk you should construct your own data
871  * structure outside the hash table.
872  *
873  * This function may sleep so you must not call it from interrupt
874  * context or with spin locks held.
875  *
876  * You must call rhashtable_walk_exit if this function returns
877  * successfully.
878  */
879 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
880 {
881 	iter->ht = ht;
882 	iter->p = NULL;
883 	iter->slot = 0;
884 	iter->skip = 0;
885 
886 	iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
887 	if (!iter->walker)
888 		return -ENOMEM;
889 
890 	INIT_LIST_HEAD(&iter->walker->list);
891 	iter->walker->resize = false;
892 
893 	mutex_lock(&ht->mutex);
894 	list_add(&iter->walker->list, &ht->walkers);
895 	mutex_unlock(&ht->mutex);
896 
897 	return 0;
898 }
899 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
900 
901 /**
902  * rhashtable_walk_exit - Free an iterator
903  * @iter:	Hash table Iterator
904  *
905  * This function frees resources allocated by rhashtable_walk_init.
906  */
907 void rhashtable_walk_exit(struct rhashtable_iter *iter)
908 {
909 	mutex_lock(&iter->ht->mutex);
910 	list_del(&iter->walker->list);
911 	mutex_unlock(&iter->ht->mutex);
912 	kfree(iter->walker);
913 }
914 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
915 
916 /**
917  * rhashtable_walk_start - Start a hash table walk
918  * @iter:	Hash table iterator
919  *
920  * Start a hash table walk.  Note that we take the RCU lock in all
921  * cases including when we return an error.  So you must always call
922  * rhashtable_walk_stop to clean up.
923  *
924  * Returns zero if successful.
925  *
926  * Returns -EAGAIN if resize event occured.  Note that the iterator
927  * will rewind back to the beginning and you may use it immediately
928  * by calling rhashtable_walk_next.
929  */
930 int rhashtable_walk_start(struct rhashtable_iter *iter)
931 {
932 	rcu_read_lock();
933 
934 	if (iter->walker->resize) {
935 		iter->slot = 0;
936 		iter->skip = 0;
937 		iter->walker->resize = false;
938 		return -EAGAIN;
939 	}
940 
941 	return 0;
942 }
943 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
944 
945 /**
946  * rhashtable_walk_next - Return the next object and advance the iterator
947  * @iter:	Hash table iterator
948  *
949  * Note that you must call rhashtable_walk_stop when you are finished
950  * with the walk.
951  *
952  * Returns the next object or NULL when the end of the table is reached.
953  *
954  * Returns -EAGAIN if resize event occured.  Note that the iterator
955  * will rewind back to the beginning and you may continue to use it.
956  */
957 void *rhashtable_walk_next(struct rhashtable_iter *iter)
958 {
959 	const struct bucket_table *tbl;
960 	struct rhashtable *ht = iter->ht;
961 	struct rhash_head *p = iter->p;
962 	void *obj = NULL;
963 
964 	tbl = rht_dereference_rcu(ht->tbl, ht);
965 
966 	if (p) {
967 		p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
968 		goto next;
969 	}
970 
971 	for (; iter->slot < tbl->size; iter->slot++) {
972 		int skip = iter->skip;
973 
974 		rht_for_each_rcu(p, tbl, iter->slot) {
975 			if (!skip)
976 				break;
977 			skip--;
978 		}
979 
980 next:
981 		if (!rht_is_a_nulls(p)) {
982 			iter->skip++;
983 			iter->p = p;
984 			obj = rht_obj(ht, p);
985 			goto out;
986 		}
987 
988 		iter->skip = 0;
989 	}
990 
991 	iter->p = NULL;
992 
993 out:
994 	if (iter->walker->resize) {
995 		iter->p = NULL;
996 		iter->slot = 0;
997 		iter->skip = 0;
998 		iter->walker->resize = false;
999 		return ERR_PTR(-EAGAIN);
1000 	}
1001 
1002 	return obj;
1003 }
1004 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
1005 
1006 /**
1007  * rhashtable_walk_stop - Finish a hash table walk
1008  * @iter:	Hash table iterator
1009  *
1010  * Finish a hash table walk.
1011  */
1012 void rhashtable_walk_stop(struct rhashtable_iter *iter)
1013 {
1014 	rcu_read_unlock();
1015 	iter->p = NULL;
1016 }
1017 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
1018 
1019 static size_t rounded_hashtable_size(struct rhashtable_params *params)
1020 {
1021 	return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1022 		   1UL << params->min_shift);
1023 }
1024 
1025 /**
1026  * rhashtable_init - initialize a new hash table
1027  * @ht:		hash table to be initialized
1028  * @params:	configuration parameters
1029  *
1030  * Initializes a new hash table based on the provided configuration
1031  * parameters. A table can be configured either with a variable or
1032  * fixed length key:
1033  *
1034  * Configuration Example 1: Fixed length keys
1035  * struct test_obj {
1036  *	int			key;
1037  *	void *			my_member;
1038  *	struct rhash_head	node;
1039  * };
1040  *
1041  * struct rhashtable_params params = {
1042  *	.head_offset = offsetof(struct test_obj, node),
1043  *	.key_offset = offsetof(struct test_obj, key),
1044  *	.key_len = sizeof(int),
1045  *	.hashfn = jhash,
1046  *	.nulls_base = (1U << RHT_BASE_SHIFT),
1047  * };
1048  *
1049  * Configuration Example 2: Variable length keys
1050  * struct test_obj {
1051  *	[...]
1052  *	struct rhash_head	node;
1053  * };
1054  *
1055  * u32 my_hash_fn(const void *data, u32 seed)
1056  * {
1057  *	struct test_obj *obj = data;
1058  *
1059  *	return [... hash ...];
1060  * }
1061  *
1062  * struct rhashtable_params params = {
1063  *	.head_offset = offsetof(struct test_obj, node),
1064  *	.hashfn = jhash,
1065  *	.obj_hashfn = my_hash_fn,
1066  * };
1067  */
1068 int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
1069 {
1070 	struct bucket_table *tbl;
1071 	size_t size;
1072 
1073 	size = HASH_DEFAULT_SIZE;
1074 
1075 	if ((params->key_len && !params->hashfn) ||
1076 	    (!params->key_len && !params->obj_hashfn))
1077 		return -EINVAL;
1078 
1079 	if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
1080 		return -EINVAL;
1081 
1082 	params->min_shift = max_t(size_t, params->min_shift,
1083 				  ilog2(HASH_MIN_SIZE));
1084 
1085 	if (params->nelem_hint)
1086 		size = rounded_hashtable_size(params);
1087 
1088 	memset(ht, 0, sizeof(*ht));
1089 	mutex_init(&ht->mutex);
1090 	memcpy(&ht->p, params, sizeof(*params));
1091 	INIT_LIST_HEAD(&ht->walkers);
1092 
1093 	if (params->locks_mul)
1094 		ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1095 	else
1096 		ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1097 
1098 	tbl = bucket_table_alloc(ht, size);
1099 	if (tbl == NULL)
1100 		return -ENOMEM;
1101 
1102 	atomic_set(&ht->nelems, 0);
1103 	atomic_set(&ht->shift, ilog2(tbl->size));
1104 	RCU_INIT_POINTER(ht->tbl, tbl);
1105 	RCU_INIT_POINTER(ht->future_tbl, tbl);
1106 
1107 	if (!ht->p.hash_rnd)
1108 		get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
1109 
1110 	INIT_WORK(&ht->run_work, rht_deferred_worker);
1111 
1112 	return 0;
1113 }
1114 EXPORT_SYMBOL_GPL(rhashtable_init);
1115 
1116 /**
1117  * rhashtable_destroy - destroy hash table
1118  * @ht:		the hash table to destroy
1119  *
1120  * Frees the bucket array. This function is not rcu safe, therefore the caller
1121  * has to make sure that no resizing may happen by unpublishing the hashtable
1122  * and waiting for the quiescent cycle before releasing the bucket array.
1123  */
1124 void rhashtable_destroy(struct rhashtable *ht)
1125 {
1126 	ht->being_destroyed = true;
1127 
1128 	cancel_work_sync(&ht->run_work);
1129 
1130 	mutex_lock(&ht->mutex);
1131 	bucket_table_free(rht_dereference(ht->tbl, ht));
1132 	mutex_unlock(&ht->mutex);
1133 }
1134 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1135