1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic Reed Solomon encoder / decoder library 4 * 5 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 6 * 7 * Reed Solomon code lifted from reed solomon library written by Phil Karn 8 * Copyright 2002 Phil Karn, KA9Q 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License version 2 as 12 * published by the Free Software Foundation. 13 * 14 * Description: 15 * 16 * The generic Reed Solomon library provides runtime configurable 17 * encoding / decoding of RS codes. 18 * Each user must call init_rs to get a pointer to a rs_control 19 * structure for the given rs parameters. This structure is either 20 * generated or a already available matching control structure is used. 21 * If a structure is generated then the polynomial arrays for 22 * fast encoding / decoding are built. This can take some time so 23 * make sure not to call this function from a time critical path. 24 * Usually a module / driver should initialize the necessary 25 * rs_control structure on module / driver init and release it 26 * on exit. 27 * The encoding puts the calculated syndrome into a given syndrome 28 * buffer. 29 * The decoding is a two step process. The first step calculates 30 * the syndrome over the received (data + syndrome) and calls the 31 * second stage, which does the decoding / error correction itself. 32 * Many hw encoders provide a syndrome calculation over the received 33 * data + syndrome and can call the second stage directly. 34 */ 35 #include <linux/errno.h> 36 #include <linux/kernel.h> 37 #include <linux/init.h> 38 #include <linux/module.h> 39 #include <linux/rslib.h> 40 #include <linux/slab.h> 41 #include <linux/mutex.h> 42 43 /* This list holds all currently allocated rs control structures */ 44 static LIST_HEAD (rslist); 45 /* Protection for the list */ 46 static DEFINE_MUTEX(rslistlock); 47 48 /** 49 * rs_init - Initialize a Reed-Solomon codec 50 * @symsize: symbol size, bits (1-8) 51 * @gfpoly: Field generator polynomial coefficients 52 * @gffunc: Field generator function 53 * @fcr: first root of RS code generator polynomial, index form 54 * @prim: primitive element to generate polynomial roots 55 * @nroots: RS code generator polynomial degree (number of roots) 56 * @gfp: GFP_ flags for allocations 57 * 58 * Allocate a control structure and the polynom arrays for faster 59 * en/decoding. Fill the arrays according to the given parameters. 60 */ 61 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int), 62 int fcr, int prim, int nroots, gfp_t gfp) 63 { 64 struct rs_control *rs; 65 int i, j, sr, root, iprim; 66 67 /* Allocate the control structure */ 68 rs = kmalloc(sizeof(*rs), gfp); 69 if (!rs) 70 return NULL; 71 72 INIT_LIST_HEAD(&rs->list); 73 74 rs->mm = symsize; 75 rs->nn = (1 << symsize) - 1; 76 rs->fcr = fcr; 77 rs->prim = prim; 78 rs->nroots = nroots; 79 rs->gfpoly = gfpoly; 80 rs->gffunc = gffunc; 81 82 /* Allocate the arrays */ 83 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 84 if (rs->alpha_to == NULL) 85 goto errrs; 86 87 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 88 if (rs->index_of == NULL) 89 goto erralp; 90 91 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp); 92 if(rs->genpoly == NULL) 93 goto erridx; 94 95 /* Generate Galois field lookup tables */ 96 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 97 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 98 if (gfpoly) { 99 sr = 1; 100 for (i = 0; i < rs->nn; i++) { 101 rs->index_of[sr] = i; 102 rs->alpha_to[i] = sr; 103 sr <<= 1; 104 if (sr & (1 << symsize)) 105 sr ^= gfpoly; 106 sr &= rs->nn; 107 } 108 } else { 109 sr = gffunc(0); 110 for (i = 0; i < rs->nn; i++) { 111 rs->index_of[sr] = i; 112 rs->alpha_to[i] = sr; 113 sr = gffunc(sr); 114 } 115 } 116 /* If it's not primitive, exit */ 117 if(sr != rs->alpha_to[0]) 118 goto errpol; 119 120 /* Find prim-th root of 1, used in decoding */ 121 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 122 /* prim-th root of 1, index form */ 123 rs->iprim = iprim / prim; 124 125 /* Form RS code generator polynomial from its roots */ 126 rs->genpoly[0] = 1; 127 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 128 rs->genpoly[i + 1] = 1; 129 /* Multiply rs->genpoly[] by @**(root + x) */ 130 for (j = i; j > 0; j--) { 131 if (rs->genpoly[j] != 0) { 132 rs->genpoly[j] = rs->genpoly[j -1] ^ 133 rs->alpha_to[rs_modnn(rs, 134 rs->index_of[rs->genpoly[j]] + root)]; 135 } else 136 rs->genpoly[j] = rs->genpoly[j - 1]; 137 } 138 /* rs->genpoly[0] can never be zero */ 139 rs->genpoly[0] = 140 rs->alpha_to[rs_modnn(rs, 141 rs->index_of[rs->genpoly[0]] + root)]; 142 } 143 /* convert rs->genpoly[] to index form for quicker encoding */ 144 for (i = 0; i <= nroots; i++) 145 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 146 return rs; 147 148 /* Error exit */ 149 errpol: 150 kfree(rs->genpoly); 151 erridx: 152 kfree(rs->index_of); 153 erralp: 154 kfree(rs->alpha_to); 155 errrs: 156 kfree(rs); 157 return NULL; 158 } 159 160 161 /** 162 * free_rs - Free the rs control structure, if it is no longer used 163 * @rs: the control structure which is not longer used by the 164 * caller 165 */ 166 void free_rs(struct rs_control *rs) 167 { 168 mutex_lock(&rslistlock); 169 rs->users--; 170 if(!rs->users) { 171 list_del(&rs->list); 172 kfree(rs->alpha_to); 173 kfree(rs->index_of); 174 kfree(rs->genpoly); 175 kfree(rs); 176 } 177 mutex_unlock(&rslistlock); 178 } 179 EXPORT_SYMBOL_GPL(free_rs); 180 181 /** 182 * init_rs_internal - Find a matching or allocate a new rs control structure 183 * @symsize: the symbol size (number of bits) 184 * @gfpoly: the extended Galois field generator polynomial coefficients, 185 * with the 0th coefficient in the low order bit. The polynomial 186 * must be primitive; 187 * @gffunc: pointer to function to generate the next field element, 188 * or the multiplicative identity element if given 0. Used 189 * instead of gfpoly if gfpoly is 0 190 * @fcr: the first consecutive root of the rs code generator polynomial 191 * in index form 192 * @prim: primitive element to generate polynomial roots 193 * @nroots: RS code generator polynomial degree (number of roots) 194 * @gfp: GFP_ flags for allocations 195 */ 196 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 197 int (*gffunc)(int), int fcr, 198 int prim, int nroots, gfp_t gfp) 199 { 200 struct list_head *tmp; 201 struct rs_control *rs; 202 203 /* Sanity checks */ 204 if (symsize < 1) 205 return NULL; 206 if (fcr < 0 || fcr >= (1<<symsize)) 207 return NULL; 208 if (prim <= 0 || prim >= (1<<symsize)) 209 return NULL; 210 if (nroots < 0 || nroots >= (1<<symsize)) 211 return NULL; 212 213 mutex_lock(&rslistlock); 214 215 /* Walk through the list and look for a matching entry */ 216 list_for_each(tmp, &rslist) { 217 rs = list_entry(tmp, struct rs_control, list); 218 if (symsize != rs->mm) 219 continue; 220 if (gfpoly != rs->gfpoly) 221 continue; 222 if (gffunc != rs->gffunc) 223 continue; 224 if (fcr != rs->fcr) 225 continue; 226 if (prim != rs->prim) 227 continue; 228 if (nroots != rs->nroots) 229 continue; 230 /* We have a matching one already */ 231 rs->users++; 232 goto out; 233 } 234 235 /* Create a new one */ 236 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 237 if (rs) { 238 rs->users = 1; 239 list_add(&rs->list, &rslist); 240 } 241 out: 242 mutex_unlock(&rslistlock); 243 return rs; 244 } 245 246 /** 247 * init_rs_gfp - Find a matching or allocate a new rs control structure 248 * @symsize: the symbol size (number of bits) 249 * @gfpoly: the extended Galois field generator polynomial coefficients, 250 * with the 0th coefficient in the low order bit. The polynomial 251 * must be primitive; 252 * @fcr: the first consecutive root of the rs code generator polynomial 253 * in index form 254 * @prim: primitive element to generate polynomial roots 255 * @nroots: RS code generator polynomial degree (number of roots) 256 * @gfp: GFP_ flags for allocations 257 */ 258 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 259 int nroots, gfp_t gfp) 260 { 261 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 262 } 263 EXPORT_SYMBOL_GPL(init_rs_gfp); 264 265 /** 266 * init_rs_non_canonical - Find a matching or allocate a new rs control 267 * structure, for fields with non-canonical 268 * representation 269 * @symsize: the symbol size (number of bits) 270 * @gffunc: pointer to function to generate the next field element, 271 * or the multiplicative identity element if given 0. Used 272 * instead of gfpoly if gfpoly is 0 273 * @fcr: the first consecutive root of the rs code generator polynomial 274 * in index form 275 * @prim: primitive element to generate polynomial roots 276 * @nroots: RS code generator polynomial degree (number of roots) 277 */ 278 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 279 int fcr, int prim, int nroots) 280 { 281 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 282 GFP_KERNEL); 283 } 284 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 285 286 #ifdef CONFIG_REED_SOLOMON_ENC8 287 /** 288 * encode_rs8 - Calculate the parity for data values (8bit data width) 289 * @rs: the rs control structure 290 * @data: data field of a given type 291 * @len: data length 292 * @par: parity data, must be initialized by caller (usually all 0) 293 * @invmsk: invert data mask (will be xored on data) 294 * 295 * The parity uses a uint16_t data type to enable 296 * symbol size > 8. The calling code must take care of encoding of the 297 * syndrome result for storage itself. 298 */ 299 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, 300 uint16_t invmsk) 301 { 302 #include "encode_rs.c" 303 } 304 EXPORT_SYMBOL_GPL(encode_rs8); 305 #endif 306 307 #ifdef CONFIG_REED_SOLOMON_DEC8 308 /** 309 * decode_rs8 - Decode codeword (8bit data width) 310 * @rs: the rs control structure 311 * @data: data field of a given type 312 * @par: received parity data field 313 * @len: data length 314 * @s: syndrome data field (if NULL, syndrome is calculated) 315 * @no_eras: number of erasures 316 * @eras_pos: position of erasures, can be NULL 317 * @invmsk: invert data mask (will be xored on data, not on parity!) 318 * @corr: buffer to store correction bitmask on eras_pos 319 * 320 * The syndrome and parity uses a uint16_t data type to enable 321 * symbol size > 8. The calling code must take care of decoding of the 322 * syndrome result and the received parity before calling this code. 323 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 324 */ 325 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, 326 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 327 uint16_t *corr) 328 { 329 #include "decode_rs.c" 330 } 331 EXPORT_SYMBOL_GPL(decode_rs8); 332 #endif 333 334 #ifdef CONFIG_REED_SOLOMON_ENC16 335 /** 336 * encode_rs16 - Calculate the parity for data values (16bit data width) 337 * @rs: the rs control structure 338 * @data: data field of a given type 339 * @len: data length 340 * @par: parity data, must be initialized by caller (usually all 0) 341 * @invmsk: invert data mask (will be xored on data, not on parity!) 342 * 343 * Each field in the data array contains up to symbol size bits of valid data. 344 */ 345 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, 346 uint16_t invmsk) 347 { 348 #include "encode_rs.c" 349 } 350 EXPORT_SYMBOL_GPL(encode_rs16); 351 #endif 352 353 #ifdef CONFIG_REED_SOLOMON_DEC16 354 /** 355 * decode_rs16 - Decode codeword (16bit data width) 356 * @rs: the rs control structure 357 * @data: data field of a given type 358 * @par: received parity data field 359 * @len: data length 360 * @s: syndrome data field (if NULL, syndrome is calculated) 361 * @no_eras: number of erasures 362 * @eras_pos: position of erasures, can be NULL 363 * @invmsk: invert data mask (will be xored on data, not on parity!) 364 * @corr: buffer to store correction bitmask on eras_pos 365 * 366 * Each field in the data array contains up to symbol size bits of valid data. 367 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 368 */ 369 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, 370 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 371 uint16_t *corr) 372 { 373 #include "decode_rs.c" 374 } 375 EXPORT_SYMBOL_GPL(decode_rs16); 376 #endif 377 378 MODULE_LICENSE("GPL"); 379 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 380 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 381 382