1 /* 2 * lib/reed_solomon/reed_solomon.c 3 * 4 * Overview: 5 * Generic Reed Solomon encoder / decoder library 6 * 7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 8 * 9 * Reed Solomon code lifted from reed solomon library written by Phil Karn 10 * Copyright 2002 Phil Karn, KA9Q 11 * 12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 * 18 * Description: 19 * 20 * The generic Reed Solomon library provides runtime configurable 21 * encoding / decoding of RS codes. 22 * Each user must call init_rs to get a pointer to a rs_control 23 * structure for the given rs parameters. This structure is either 24 * generated or a already available matching control structure is used. 25 * If a structure is generated then the polynomial arrays for 26 * fast encoding / decoding are built. This can take some time so 27 * make sure not to call this function from a time critical path. 28 * Usually a module / driver should initialize the necessary 29 * rs_control structure on module / driver init and release it 30 * on exit. 31 * The encoding puts the calculated syndrome into a given syndrome 32 * buffer. 33 * The decoding is a two step process. The first step calculates 34 * the syndrome over the received (data + syndrome) and calls the 35 * second stage, which does the decoding / error correction itself. 36 * Many hw encoders provide a syndrome calculation over the received 37 * data + syndrome and can call the second stage directly. 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/module.h> 45 #include <linux/rslib.h> 46 #include <linux/slab.h> 47 #include <linux/mutex.h> 48 49 /* This list holds all currently allocated rs control structures */ 50 static LIST_HEAD (rslist); 51 /* Protection for the list */ 52 static DEFINE_MUTEX(rslistlock); 53 54 /** 55 * rs_init - Initialize a Reed-Solomon codec 56 * @symsize: symbol size, bits (1-8) 57 * @gfpoly: Field generator polynomial coefficients 58 * @gffunc: Field generator function 59 * @fcr: first root of RS code generator polynomial, index form 60 * @prim: primitive element to generate polynomial roots 61 * @nroots: RS code generator polynomial degree (number of roots) 62 * @gfp: GFP_ flags for allocations 63 * 64 * Allocate a control structure and the polynom arrays for faster 65 * en/decoding. Fill the arrays according to the given parameters. 66 */ 67 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int), 68 int fcr, int prim, int nroots, gfp_t gfp) 69 { 70 struct rs_control *rs; 71 int i, j, sr, root, iprim; 72 73 /* Allocate the control structure */ 74 rs = kmalloc(sizeof(*rs), gfp); 75 if (!rs) 76 return NULL; 77 78 INIT_LIST_HEAD(&rs->list); 79 80 rs->mm = symsize; 81 rs->nn = (1 << symsize) - 1; 82 rs->fcr = fcr; 83 rs->prim = prim; 84 rs->nroots = nroots; 85 rs->gfpoly = gfpoly; 86 rs->gffunc = gffunc; 87 88 /* Allocate the arrays */ 89 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 90 if (rs->alpha_to == NULL) 91 goto errrs; 92 93 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 94 if (rs->index_of == NULL) 95 goto erralp; 96 97 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp); 98 if(rs->genpoly == NULL) 99 goto erridx; 100 101 /* Generate Galois field lookup tables */ 102 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 103 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 104 if (gfpoly) { 105 sr = 1; 106 for (i = 0; i < rs->nn; i++) { 107 rs->index_of[sr] = i; 108 rs->alpha_to[i] = sr; 109 sr <<= 1; 110 if (sr & (1 << symsize)) 111 sr ^= gfpoly; 112 sr &= rs->nn; 113 } 114 } else { 115 sr = gffunc(0); 116 for (i = 0; i < rs->nn; i++) { 117 rs->index_of[sr] = i; 118 rs->alpha_to[i] = sr; 119 sr = gffunc(sr); 120 } 121 } 122 /* If it's not primitive, exit */ 123 if(sr != rs->alpha_to[0]) 124 goto errpol; 125 126 /* Find prim-th root of 1, used in decoding */ 127 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 128 /* prim-th root of 1, index form */ 129 rs->iprim = iprim / prim; 130 131 /* Form RS code generator polynomial from its roots */ 132 rs->genpoly[0] = 1; 133 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 134 rs->genpoly[i + 1] = 1; 135 /* Multiply rs->genpoly[] by @**(root + x) */ 136 for (j = i; j > 0; j--) { 137 if (rs->genpoly[j] != 0) { 138 rs->genpoly[j] = rs->genpoly[j -1] ^ 139 rs->alpha_to[rs_modnn(rs, 140 rs->index_of[rs->genpoly[j]] + root)]; 141 } else 142 rs->genpoly[j] = rs->genpoly[j - 1]; 143 } 144 /* rs->genpoly[0] can never be zero */ 145 rs->genpoly[0] = 146 rs->alpha_to[rs_modnn(rs, 147 rs->index_of[rs->genpoly[0]] + root)]; 148 } 149 /* convert rs->genpoly[] to index form for quicker encoding */ 150 for (i = 0; i <= nroots; i++) 151 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 152 return rs; 153 154 /* Error exit */ 155 errpol: 156 kfree(rs->genpoly); 157 erridx: 158 kfree(rs->index_of); 159 erralp: 160 kfree(rs->alpha_to); 161 errrs: 162 kfree(rs); 163 return NULL; 164 } 165 166 167 /** 168 * free_rs - Free the rs control structure, if it is no longer used 169 * @rs: the control structure which is not longer used by the 170 * caller 171 */ 172 void free_rs(struct rs_control *rs) 173 { 174 mutex_lock(&rslistlock); 175 rs->users--; 176 if(!rs->users) { 177 list_del(&rs->list); 178 kfree(rs->alpha_to); 179 kfree(rs->index_of); 180 kfree(rs->genpoly); 181 kfree(rs); 182 } 183 mutex_unlock(&rslistlock); 184 } 185 EXPORT_SYMBOL_GPL(free_rs); 186 187 /** 188 * init_rs_internal - Find a matching or allocate a new rs control structure 189 * @symsize: the symbol size (number of bits) 190 * @gfpoly: the extended Galois field generator polynomial coefficients, 191 * with the 0th coefficient in the low order bit. The polynomial 192 * must be primitive; 193 * @gffunc: pointer to function to generate the next field element, 194 * or the multiplicative identity element if given 0. Used 195 * instead of gfpoly if gfpoly is 0 196 * @fcr: the first consecutive root of the rs code generator polynomial 197 * in index form 198 * @prim: primitive element to generate polynomial roots 199 * @nroots: RS code generator polynomial degree (number of roots) 200 * @gfp: GFP_ flags for allocations 201 */ 202 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 203 int (*gffunc)(int), int fcr, 204 int prim, int nroots, gfp_t gfp) 205 { 206 struct list_head *tmp; 207 struct rs_control *rs; 208 209 /* Sanity checks */ 210 if (symsize < 1) 211 return NULL; 212 if (fcr < 0 || fcr >= (1<<symsize)) 213 return NULL; 214 if (prim <= 0 || prim >= (1<<symsize)) 215 return NULL; 216 if (nroots < 0 || nroots >= (1<<symsize)) 217 return NULL; 218 219 mutex_lock(&rslistlock); 220 221 /* Walk through the list and look for a matching entry */ 222 list_for_each(tmp, &rslist) { 223 rs = list_entry(tmp, struct rs_control, list); 224 if (symsize != rs->mm) 225 continue; 226 if (gfpoly != rs->gfpoly) 227 continue; 228 if (gffunc != rs->gffunc) 229 continue; 230 if (fcr != rs->fcr) 231 continue; 232 if (prim != rs->prim) 233 continue; 234 if (nroots != rs->nroots) 235 continue; 236 /* We have a matching one already */ 237 rs->users++; 238 goto out; 239 } 240 241 /* Create a new one */ 242 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 243 if (rs) { 244 rs->users = 1; 245 list_add(&rs->list, &rslist); 246 } 247 out: 248 mutex_unlock(&rslistlock); 249 return rs; 250 } 251 252 /** 253 * init_rs_gfp - Find a matching or allocate a new rs control structure 254 * @symsize: the symbol size (number of bits) 255 * @gfpoly: the extended Galois field generator polynomial coefficients, 256 * with the 0th coefficient in the low order bit. The polynomial 257 * must be primitive; 258 * @fcr: the first consecutive root of the rs code generator polynomial 259 * in index form 260 * @prim: primitive element to generate polynomial roots 261 * @nroots: RS code generator polynomial degree (number of roots) 262 * @gfp: GFP_ flags for allocations 263 */ 264 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 265 int nroots, gfp_t gfp) 266 { 267 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 268 } 269 EXPORT_SYMBOL_GPL(init_rs_gfp); 270 271 /** 272 * init_rs_non_canonical - Find a matching or allocate a new rs control 273 * structure, for fields with non-canonical 274 * representation 275 * @symsize: the symbol size (number of bits) 276 * @gffunc: pointer to function to generate the next field element, 277 * or the multiplicative identity element if given 0. Used 278 * instead of gfpoly if gfpoly is 0 279 * @fcr: the first consecutive root of the rs code generator polynomial 280 * in index form 281 * @prim: primitive element to generate polynomial roots 282 * @nroots: RS code generator polynomial degree (number of roots) 283 */ 284 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 285 int fcr, int prim, int nroots) 286 { 287 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 288 GFP_KERNEL); 289 } 290 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 291 292 #ifdef CONFIG_REED_SOLOMON_ENC8 293 /** 294 * encode_rs8 - Calculate the parity for data values (8bit data width) 295 * @rs: the rs control structure 296 * @data: data field of a given type 297 * @len: data length 298 * @par: parity data, must be initialized by caller (usually all 0) 299 * @invmsk: invert data mask (will be xored on data) 300 * 301 * The parity uses a uint16_t data type to enable 302 * symbol size > 8. The calling code must take care of encoding of the 303 * syndrome result for storage itself. 304 */ 305 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, 306 uint16_t invmsk) 307 { 308 #include "encode_rs.c" 309 } 310 EXPORT_SYMBOL_GPL(encode_rs8); 311 #endif 312 313 #ifdef CONFIG_REED_SOLOMON_DEC8 314 /** 315 * decode_rs8 - Decode codeword (8bit data width) 316 * @rs: the rs control structure 317 * @data: data field of a given type 318 * @par: received parity data field 319 * @len: data length 320 * @s: syndrome data field (if NULL, syndrome is calculated) 321 * @no_eras: number of erasures 322 * @eras_pos: position of erasures, can be NULL 323 * @invmsk: invert data mask (will be xored on data, not on parity!) 324 * @corr: buffer to store correction bitmask on eras_pos 325 * 326 * The syndrome and parity uses a uint16_t data type to enable 327 * symbol size > 8. The calling code must take care of decoding of the 328 * syndrome result and the received parity before calling this code. 329 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 330 */ 331 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, 332 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 333 uint16_t *corr) 334 { 335 #include "decode_rs.c" 336 } 337 EXPORT_SYMBOL_GPL(decode_rs8); 338 #endif 339 340 #ifdef CONFIG_REED_SOLOMON_ENC16 341 /** 342 * encode_rs16 - Calculate the parity for data values (16bit data width) 343 * @rs: the rs control structure 344 * @data: data field of a given type 345 * @len: data length 346 * @par: parity data, must be initialized by caller (usually all 0) 347 * @invmsk: invert data mask (will be xored on data, not on parity!) 348 * 349 * Each field in the data array contains up to symbol size bits of valid data. 350 */ 351 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, 352 uint16_t invmsk) 353 { 354 #include "encode_rs.c" 355 } 356 EXPORT_SYMBOL_GPL(encode_rs16); 357 #endif 358 359 #ifdef CONFIG_REED_SOLOMON_DEC16 360 /** 361 * decode_rs16 - Decode codeword (16bit data width) 362 * @rs: the rs control structure 363 * @data: data field of a given type 364 * @par: received parity data field 365 * @len: data length 366 * @s: syndrome data field (if NULL, syndrome is calculated) 367 * @no_eras: number of erasures 368 * @eras_pos: position of erasures, can be NULL 369 * @invmsk: invert data mask (will be xored on data, not on parity!) 370 * @corr: buffer to store correction bitmask on eras_pos 371 * 372 * Each field in the data array contains up to symbol size bits of valid data. 373 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 374 */ 375 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, 376 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 377 uint16_t *corr) 378 { 379 #include "decode_rs.c" 380 } 381 EXPORT_SYMBOL_GPL(decode_rs16); 382 #endif 383 384 MODULE_LICENSE("GPL"); 385 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 386 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 387 388