1 /* 2 * lib/reed_solomon/reed_solomon.c 3 * 4 * Overview: 5 * Generic Reed Solomon encoder / decoder library 6 * 7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 8 * 9 * Reed Solomon code lifted from reed solomon library written by Phil Karn 10 * Copyright 2002 Phil Karn, KA9Q 11 * 12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 * 18 * Description: 19 * 20 * The generic Reed Solomon library provides runtime configurable 21 * encoding / decoding of RS codes. 22 * Each user must call init_rs to get a pointer to a rs_control 23 * structure for the given rs parameters. This structure is either 24 * generated or a already available matching control structure is used. 25 * If a structure is generated then the polynomial arrays for 26 * fast encoding / decoding are built. This can take some time so 27 * make sure not to call this function from a time critical path. 28 * Usually a module / driver should initialize the necessary 29 * rs_control structure on module / driver init and release it 30 * on exit. 31 * The encoding puts the calculated syndrome into a given syndrome 32 * buffer. 33 * The decoding is a two step process. The first step calculates 34 * the syndrome over the received (data + syndrome) and calls the 35 * second stage, which does the decoding / error correction itself. 36 * Many hw encoders provide a syndrome calculation over the received 37 * data + syndrome and can call the second stage directly. 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/module.h> 45 #include <linux/rslib.h> 46 #include <linux/slab.h> 47 #include <linux/mutex.h> 48 49 /* This list holds all currently allocated rs control structures */ 50 static LIST_HEAD (rslist); 51 /* Protection for the list */ 52 static DEFINE_MUTEX(rslistlock); 53 54 /** 55 * rs_init - Initialize a Reed-Solomon codec 56 * @symsize: symbol size, bits (1-8) 57 * @gfpoly: Field generator polynomial coefficients 58 * @gffunc: Field generator function 59 * @fcr: first root of RS code generator polynomial, index form 60 * @prim: primitive element to generate polynomial roots 61 * @nroots: RS code generator polynomial degree (number of roots) 62 * 63 * Allocate a control structure and the polynom arrays for faster 64 * en/decoding. Fill the arrays according to the given parameters. 65 */ 66 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int), 67 int fcr, int prim, int nroots) 68 { 69 struct rs_control *rs; 70 int i, j, sr, root, iprim; 71 72 /* Allocate the control structure */ 73 rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL); 74 if (rs == NULL) 75 return NULL; 76 77 INIT_LIST_HEAD(&rs->list); 78 79 rs->mm = symsize; 80 rs->nn = (1 << symsize) - 1; 81 rs->fcr = fcr; 82 rs->prim = prim; 83 rs->nroots = nroots; 84 rs->gfpoly = gfpoly; 85 rs->gffunc = gffunc; 86 87 /* Allocate the arrays */ 88 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); 89 if (rs->alpha_to == NULL) 90 goto errrs; 91 92 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); 93 if (rs->index_of == NULL) 94 goto erralp; 95 96 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL); 97 if(rs->genpoly == NULL) 98 goto erridx; 99 100 /* Generate Galois field lookup tables */ 101 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 102 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 103 if (gfpoly) { 104 sr = 1; 105 for (i = 0; i < rs->nn; i++) { 106 rs->index_of[sr] = i; 107 rs->alpha_to[i] = sr; 108 sr <<= 1; 109 if (sr & (1 << symsize)) 110 sr ^= gfpoly; 111 sr &= rs->nn; 112 } 113 } else { 114 sr = gffunc(0); 115 for (i = 0; i < rs->nn; i++) { 116 rs->index_of[sr] = i; 117 rs->alpha_to[i] = sr; 118 sr = gffunc(sr); 119 } 120 } 121 /* If it's not primitive, exit */ 122 if(sr != rs->alpha_to[0]) 123 goto errpol; 124 125 /* Find prim-th root of 1, used in decoding */ 126 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 127 /* prim-th root of 1, index form */ 128 rs->iprim = iprim / prim; 129 130 /* Form RS code generator polynomial from its roots */ 131 rs->genpoly[0] = 1; 132 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 133 rs->genpoly[i + 1] = 1; 134 /* Multiply rs->genpoly[] by @**(root + x) */ 135 for (j = i; j > 0; j--) { 136 if (rs->genpoly[j] != 0) { 137 rs->genpoly[j] = rs->genpoly[j -1] ^ 138 rs->alpha_to[rs_modnn(rs, 139 rs->index_of[rs->genpoly[j]] + root)]; 140 } else 141 rs->genpoly[j] = rs->genpoly[j - 1]; 142 } 143 /* rs->genpoly[0] can never be zero */ 144 rs->genpoly[0] = 145 rs->alpha_to[rs_modnn(rs, 146 rs->index_of[rs->genpoly[0]] + root)]; 147 } 148 /* convert rs->genpoly[] to index form for quicker encoding */ 149 for (i = 0; i <= nroots; i++) 150 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 151 return rs; 152 153 /* Error exit */ 154 errpol: 155 kfree(rs->genpoly); 156 erridx: 157 kfree(rs->index_of); 158 erralp: 159 kfree(rs->alpha_to); 160 errrs: 161 kfree(rs); 162 return NULL; 163 } 164 165 166 /** 167 * free_rs - Free the rs control structure, if it is no longer used 168 * @rs: the control structure which is not longer used by the 169 * caller 170 */ 171 void free_rs(struct rs_control *rs) 172 { 173 mutex_lock(&rslistlock); 174 rs->users--; 175 if(!rs->users) { 176 list_del(&rs->list); 177 kfree(rs->alpha_to); 178 kfree(rs->index_of); 179 kfree(rs->genpoly); 180 kfree(rs); 181 } 182 mutex_unlock(&rslistlock); 183 } 184 185 /** 186 * init_rs_internal - Find a matching or allocate a new rs control structure 187 * @symsize: the symbol size (number of bits) 188 * @gfpoly: the extended Galois field generator polynomial coefficients, 189 * with the 0th coefficient in the low order bit. The polynomial 190 * must be primitive; 191 * @gffunc: pointer to function to generate the next field element, 192 * or the multiplicative identity element if given 0. Used 193 * instead of gfpoly if gfpoly is 0 194 * @fcr: the first consecutive root of the rs code generator polynomial 195 * in index form 196 * @prim: primitive element to generate polynomial roots 197 * @nroots: RS code generator polynomial degree (number of roots) 198 */ 199 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 200 int (*gffunc)(int), int fcr, 201 int prim, int nroots) 202 { 203 struct list_head *tmp; 204 struct rs_control *rs; 205 206 /* Sanity checks */ 207 if (symsize < 1) 208 return NULL; 209 if (fcr < 0 || fcr >= (1<<symsize)) 210 return NULL; 211 if (prim <= 0 || prim >= (1<<symsize)) 212 return NULL; 213 if (nroots < 0 || nroots >= (1<<symsize)) 214 return NULL; 215 216 mutex_lock(&rslistlock); 217 218 /* Walk through the list and look for a matching entry */ 219 list_for_each(tmp, &rslist) { 220 rs = list_entry(tmp, struct rs_control, list); 221 if (symsize != rs->mm) 222 continue; 223 if (gfpoly != rs->gfpoly) 224 continue; 225 if (gffunc != rs->gffunc) 226 continue; 227 if (fcr != rs->fcr) 228 continue; 229 if (prim != rs->prim) 230 continue; 231 if (nroots != rs->nroots) 232 continue; 233 /* We have a matching one already */ 234 rs->users++; 235 goto out; 236 } 237 238 /* Create a new one */ 239 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots); 240 if (rs) { 241 rs->users = 1; 242 list_add(&rs->list, &rslist); 243 } 244 out: 245 mutex_unlock(&rslistlock); 246 return rs; 247 } 248 249 /** 250 * init_rs - Find a matching or allocate a new rs control structure 251 * @symsize: the symbol size (number of bits) 252 * @gfpoly: the extended Galois field generator polynomial coefficients, 253 * with the 0th coefficient in the low order bit. The polynomial 254 * must be primitive; 255 * @fcr: the first consecutive root of the rs code generator polynomial 256 * in index form 257 * @prim: primitive element to generate polynomial roots 258 * @nroots: RS code generator polynomial degree (number of roots) 259 */ 260 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim, 261 int nroots) 262 { 263 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots); 264 } 265 266 /** 267 * init_rs_non_canonical - Find a matching or allocate a new rs control 268 * structure, for fields with non-canonical 269 * representation 270 * @symsize: the symbol size (number of bits) 271 * @gffunc: pointer to function to generate the next field element, 272 * or the multiplicative identity element if given 0. Used 273 * instead of gfpoly if gfpoly is 0 274 * @fcr: the first consecutive root of the rs code generator polynomial 275 * in index form 276 * @prim: primitive element to generate polynomial roots 277 * @nroots: RS code generator polynomial degree (number of roots) 278 */ 279 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 280 int fcr, int prim, int nroots) 281 { 282 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots); 283 } 284 285 #ifdef CONFIG_REED_SOLOMON_ENC8 286 /** 287 * encode_rs8 - Calculate the parity for data values (8bit data width) 288 * @rs: the rs control structure 289 * @data: data field of a given type 290 * @len: data length 291 * @par: parity data, must be initialized by caller (usually all 0) 292 * @invmsk: invert data mask (will be xored on data) 293 * 294 * The parity uses a uint16_t data type to enable 295 * symbol size > 8. The calling code must take care of encoding of the 296 * syndrome result for storage itself. 297 */ 298 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, 299 uint16_t invmsk) 300 { 301 #include "encode_rs.c" 302 } 303 EXPORT_SYMBOL_GPL(encode_rs8); 304 #endif 305 306 #ifdef CONFIG_REED_SOLOMON_DEC8 307 /** 308 * decode_rs8 - Decode codeword (8bit data width) 309 * @rs: the rs control structure 310 * @data: data field of a given type 311 * @par: received parity data field 312 * @len: data length 313 * @s: syndrome data field (if NULL, syndrome is calculated) 314 * @no_eras: number of erasures 315 * @eras_pos: position of erasures, can be NULL 316 * @invmsk: invert data mask (will be xored on data, not on parity!) 317 * @corr: buffer to store correction bitmask on eras_pos 318 * 319 * The syndrome and parity uses a uint16_t data type to enable 320 * symbol size > 8. The calling code must take care of decoding of the 321 * syndrome result and the received parity before calling this code. 322 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 323 */ 324 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, 325 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 326 uint16_t *corr) 327 { 328 #include "decode_rs.c" 329 } 330 EXPORT_SYMBOL_GPL(decode_rs8); 331 #endif 332 333 #ifdef CONFIG_REED_SOLOMON_ENC16 334 /** 335 * encode_rs16 - Calculate the parity for data values (16bit data width) 336 * @rs: the rs control structure 337 * @data: data field of a given type 338 * @len: data length 339 * @par: parity data, must be initialized by caller (usually all 0) 340 * @invmsk: invert data mask (will be xored on data, not on parity!) 341 * 342 * Each field in the data array contains up to symbol size bits of valid data. 343 */ 344 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, 345 uint16_t invmsk) 346 { 347 #include "encode_rs.c" 348 } 349 EXPORT_SYMBOL_GPL(encode_rs16); 350 #endif 351 352 #ifdef CONFIG_REED_SOLOMON_DEC16 353 /** 354 * decode_rs16 - Decode codeword (16bit data width) 355 * @rs: the rs control structure 356 * @data: data field of a given type 357 * @par: received parity data field 358 * @len: data length 359 * @s: syndrome data field (if NULL, syndrome is calculated) 360 * @no_eras: number of erasures 361 * @eras_pos: position of erasures, can be NULL 362 * @invmsk: invert data mask (will be xored on data, not on parity!) 363 * @corr: buffer to store correction bitmask on eras_pos 364 * 365 * Each field in the data array contains up to symbol size bits of valid data. 366 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 367 */ 368 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, 369 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 370 uint16_t *corr) 371 { 372 #include "decode_rs.c" 373 } 374 EXPORT_SYMBOL_GPL(decode_rs16); 375 #endif 376 377 EXPORT_SYMBOL_GPL(init_rs); 378 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 379 EXPORT_SYMBOL_GPL(free_rs); 380 381 MODULE_LICENSE("GPL"); 382 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 383 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 384 385