1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic Reed Solomon encoder / decoder library
4  *
5  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
6  *
7  * Reed Solomon code lifted from reed solomon library written by Phil Karn
8  * Copyright 2002 Phil Karn, KA9Q
9  *
10  * Description:
11  *
12  * The generic Reed Solomon library provides runtime configurable
13  * encoding / decoding of RS codes.
14  * Each user must call init_rs to get a pointer to a rs_control
15  * structure for the given rs parameters. This structure is either
16  * generated or a already available matching control structure is used.
17  * If a structure is generated then the polynomial arrays for
18  * fast encoding / decoding are built. This can take some time so
19  * make sure not to call this function from a time critical path.
20  * Usually a module / driver should initialize the necessary
21  * rs_control structure on module / driver init and release it
22  * on exit.
23  * The encoding puts the calculated syndrome into a given syndrome
24  * buffer.
25  * The decoding is a two step process. The first step calculates
26  * the syndrome over the received (data + syndrome) and calls the
27  * second stage, which does the decoding / error correction itself.
28  * Many hw encoders provide a syndrome calculation over the received
29  * data + syndrome and can call the second stage directly.
30  */
31 #include <linux/errno.h>
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/rslib.h>
36 #include <linux/slab.h>
37 #include <linux/mutex.h>
38 
39 /* This list holds all currently allocated rs control structures */
40 static LIST_HEAD (rslist);
41 /* Protection for the list */
42 static DEFINE_MUTEX(rslistlock);
43 
44 /**
45  * rs_init - Initialize a Reed-Solomon codec
46  * @symsize:	symbol size, bits (1-8)
47  * @gfpoly:	Field generator polynomial coefficients
48  * @gffunc:	Field generator function
49  * @fcr:	first root of RS code generator polynomial, index form
50  * @prim:	primitive element to generate polynomial roots
51  * @nroots:	RS code generator polynomial degree (number of roots)
52  * @gfp:	GFP_ flags for allocations
53  *
54  * Allocate a control structure and the polynom arrays for faster
55  * en/decoding. Fill the arrays according to the given parameters.
56  */
57 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
58 				  int fcr, int prim, int nroots, gfp_t gfp)
59 {
60 	struct rs_control *rs;
61 	int i, j, sr, root, iprim;
62 
63 	/* Allocate the control structure */
64 	rs = kmalloc(sizeof(*rs), gfp);
65 	if (!rs)
66 		return NULL;
67 
68 	INIT_LIST_HEAD(&rs->list);
69 
70 	rs->mm = symsize;
71 	rs->nn = (1 << symsize) - 1;
72 	rs->fcr = fcr;
73 	rs->prim = prim;
74 	rs->nroots = nroots;
75 	rs->gfpoly = gfpoly;
76 	rs->gffunc = gffunc;
77 
78 	/* Allocate the arrays */
79 	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
80 	if (rs->alpha_to == NULL)
81 		goto errrs;
82 
83 	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
84 	if (rs->index_of == NULL)
85 		goto erralp;
86 
87 	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp);
88 	if(rs->genpoly == NULL)
89 		goto erridx;
90 
91 	/* Generate Galois field lookup tables */
92 	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
93 	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
94 	if (gfpoly) {
95 		sr = 1;
96 		for (i = 0; i < rs->nn; i++) {
97 			rs->index_of[sr] = i;
98 			rs->alpha_to[i] = sr;
99 			sr <<= 1;
100 			if (sr & (1 << symsize))
101 				sr ^= gfpoly;
102 			sr &= rs->nn;
103 		}
104 	} else {
105 		sr = gffunc(0);
106 		for (i = 0; i < rs->nn; i++) {
107 			rs->index_of[sr] = i;
108 			rs->alpha_to[i] = sr;
109 			sr = gffunc(sr);
110 		}
111 	}
112 	/* If it's not primitive, exit */
113 	if(sr != rs->alpha_to[0])
114 		goto errpol;
115 
116 	/* Find prim-th root of 1, used in decoding */
117 	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
118 	/* prim-th root of 1, index form */
119 	rs->iprim = iprim / prim;
120 
121 	/* Form RS code generator polynomial from its roots */
122 	rs->genpoly[0] = 1;
123 	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
124 		rs->genpoly[i + 1] = 1;
125 		/* Multiply rs->genpoly[] by  @**(root + x) */
126 		for (j = i; j > 0; j--) {
127 			if (rs->genpoly[j] != 0) {
128 				rs->genpoly[j] = rs->genpoly[j -1] ^
129 					rs->alpha_to[rs_modnn(rs,
130 					rs->index_of[rs->genpoly[j]] + root)];
131 			} else
132 				rs->genpoly[j] = rs->genpoly[j - 1];
133 		}
134 		/* rs->genpoly[0] can never be zero */
135 		rs->genpoly[0] =
136 			rs->alpha_to[rs_modnn(rs,
137 				rs->index_of[rs->genpoly[0]] + root)];
138 	}
139 	/* convert rs->genpoly[] to index form for quicker encoding */
140 	for (i = 0; i <= nroots; i++)
141 		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
142 	return rs;
143 
144 	/* Error exit */
145 errpol:
146 	kfree(rs->genpoly);
147 erridx:
148 	kfree(rs->index_of);
149 erralp:
150 	kfree(rs->alpha_to);
151 errrs:
152 	kfree(rs);
153 	return NULL;
154 }
155 
156 
157 /**
158  *  free_rs - Free the rs control structure, if it is no longer used
159  *  @rs:	the control structure which is not longer used by the
160  *		caller
161  */
162 void free_rs(struct rs_control *rs)
163 {
164 	mutex_lock(&rslistlock);
165 	rs->users--;
166 	if(!rs->users) {
167 		list_del(&rs->list);
168 		kfree(rs->alpha_to);
169 		kfree(rs->index_of);
170 		kfree(rs->genpoly);
171 		kfree(rs);
172 	}
173 	mutex_unlock(&rslistlock);
174 }
175 EXPORT_SYMBOL_GPL(free_rs);
176 
177 /**
178  * init_rs_internal - Find a matching or allocate a new rs control structure
179  *  @symsize:	the symbol size (number of bits)
180  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
181  *		with the 0th coefficient in the low order bit. The polynomial
182  *		must be primitive;
183  *  @gffunc:	pointer to function to generate the next field element,
184  *		or the multiplicative identity element if given 0.  Used
185  *		instead of gfpoly if gfpoly is 0
186  *  @fcr:	the first consecutive root of the rs code generator polynomial
187  *		in index form
188  *  @prim:	primitive element to generate polynomial roots
189  *  @nroots:	RS code generator polynomial degree (number of roots)
190  *  @gfp:	GFP_ flags for allocations
191  */
192 static struct rs_control *init_rs_internal(int symsize, int gfpoly,
193 					   int (*gffunc)(int), int fcr,
194 					   int prim, int nroots, gfp_t gfp)
195 {
196 	struct list_head *tmp;
197 	struct rs_control *rs;
198 
199 	/* Sanity checks */
200 	if (symsize < 1)
201 		return NULL;
202 	if (fcr < 0 || fcr >= (1<<symsize))
203 		return NULL;
204 	if (prim <= 0 || prim >= (1<<symsize))
205 		return NULL;
206 	if (nroots < 0 || nroots >= (1<<symsize))
207 		return NULL;
208 
209 	mutex_lock(&rslistlock);
210 
211 	/* Walk through the list and look for a matching entry */
212 	list_for_each(tmp, &rslist) {
213 		rs = list_entry(tmp, struct rs_control, list);
214 		if (symsize != rs->mm)
215 			continue;
216 		if (gfpoly != rs->gfpoly)
217 			continue;
218 		if (gffunc != rs->gffunc)
219 			continue;
220 		if (fcr != rs->fcr)
221 			continue;
222 		if (prim != rs->prim)
223 			continue;
224 		if (nroots != rs->nroots)
225 			continue;
226 		/* We have a matching one already */
227 		rs->users++;
228 		goto out;
229 	}
230 
231 	/* Create a new one */
232 	rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
233 	if (rs) {
234 		rs->users = 1;
235 		list_add(&rs->list, &rslist);
236 	}
237 out:
238 	mutex_unlock(&rslistlock);
239 	return rs;
240 }
241 
242 /**
243  * init_rs_gfp - Find a matching or allocate a new rs control structure
244  *  @symsize:	the symbol size (number of bits)
245  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
246  *		with the 0th coefficient in the low order bit. The polynomial
247  *		must be primitive;
248  *  @fcr:	the first consecutive root of the rs code generator polynomial
249  *		in index form
250  *  @prim:	primitive element to generate polynomial roots
251  *  @nroots:	RS code generator polynomial degree (number of roots)
252  *  @gfp:	GFP_ flags for allocations
253  */
254 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
255 			       int nroots, gfp_t gfp)
256 {
257 	return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
258 }
259 EXPORT_SYMBOL_GPL(init_rs_gfp);
260 
261 /**
262  * init_rs_non_canonical - Find a matching or allocate a new rs control
263  *                         structure, for fields with non-canonical
264  *                         representation
265  *  @symsize:	the symbol size (number of bits)
266  *  @gffunc:	pointer to function to generate the next field element,
267  *		or the multiplicative identity element if given 0.  Used
268  *		instead of gfpoly if gfpoly is 0
269  *  @fcr:	the first consecutive root of the rs code generator polynomial
270  *		in index form
271  *  @prim:	primitive element to generate polynomial roots
272  *  @nroots:	RS code generator polynomial degree (number of roots)
273  */
274 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
275 					 int fcr, int prim, int nroots)
276 {
277 	return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
278 				GFP_KERNEL);
279 }
280 EXPORT_SYMBOL_GPL(init_rs_non_canonical);
281 
282 #ifdef CONFIG_REED_SOLOMON_ENC8
283 /**
284  *  encode_rs8 - Calculate the parity for data values (8bit data width)
285  *  @rs:	the rs control structure
286  *  @data:	data field of a given type
287  *  @len:	data length
288  *  @par:	parity data, must be initialized by caller (usually all 0)
289  *  @invmsk:	invert data mask (will be xored on data)
290  *
291  *  The parity uses a uint16_t data type to enable
292  *  symbol size > 8. The calling code must take care of encoding of the
293  *  syndrome result for storage itself.
294  */
295 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
296 	       uint16_t invmsk)
297 {
298 #include "encode_rs.c"
299 }
300 EXPORT_SYMBOL_GPL(encode_rs8);
301 #endif
302 
303 #ifdef CONFIG_REED_SOLOMON_DEC8
304 /**
305  *  decode_rs8 - Decode codeword (8bit data width)
306  *  @rs:	the rs control structure
307  *  @data:	data field of a given type
308  *  @par:	received parity data field
309  *  @len:	data length
310  *  @s:		syndrome data field (if NULL, syndrome is calculated)
311  *  @no_eras:	number of erasures
312  *  @eras_pos:	position of erasures, can be NULL
313  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
314  *  @corr:	buffer to store correction bitmask on eras_pos
315  *
316  *  The syndrome and parity uses a uint16_t data type to enable
317  *  symbol size > 8. The calling code must take care of decoding of the
318  *  syndrome result and the received parity before calling this code.
319  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
320  */
321 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
322 	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
323 	       uint16_t *corr)
324 {
325 #include "decode_rs.c"
326 }
327 EXPORT_SYMBOL_GPL(decode_rs8);
328 #endif
329 
330 #ifdef CONFIG_REED_SOLOMON_ENC16
331 /**
332  *  encode_rs16 - Calculate the parity for data values (16bit data width)
333  *  @rs:	the rs control structure
334  *  @data:	data field of a given type
335  *  @len:	data length
336  *  @par:	parity data, must be initialized by caller (usually all 0)
337  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
338  *
339  *  Each field in the data array contains up to symbol size bits of valid data.
340  */
341 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
342 	uint16_t invmsk)
343 {
344 #include "encode_rs.c"
345 }
346 EXPORT_SYMBOL_GPL(encode_rs16);
347 #endif
348 
349 #ifdef CONFIG_REED_SOLOMON_DEC16
350 /**
351  *  decode_rs16 - Decode codeword (16bit data width)
352  *  @rs:	the rs control structure
353  *  @data:	data field of a given type
354  *  @par:	received parity data field
355  *  @len:	data length
356  *  @s:		syndrome data field (if NULL, syndrome is calculated)
357  *  @no_eras:	number of erasures
358  *  @eras_pos:	position of erasures, can be NULL
359  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
360  *  @corr:	buffer to store correction bitmask on eras_pos
361  *
362  *  Each field in the data array contains up to symbol size bits of valid data.
363  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
364  */
365 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
366 		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
367 		uint16_t *corr)
368 {
369 #include "decode_rs.c"
370 }
371 EXPORT_SYMBOL_GPL(decode_rs16);
372 #endif
373 
374 MODULE_LICENSE("GPL");
375 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
376 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
377 
378