1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic Reed Solomon encoder / decoder library 4 * 5 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 6 * 7 * Reed Solomon code lifted from reed solomon library written by Phil Karn 8 * Copyright 2002 Phil Karn, KA9Q 9 * 10 * Description: 11 * 12 * The generic Reed Solomon library provides runtime configurable 13 * encoding / decoding of RS codes. 14 * Each user must call init_rs to get a pointer to a rs_control 15 * structure for the given rs parameters. This structure is either 16 * generated or a already available matching control structure is used. 17 * If a structure is generated then the polynomial arrays for 18 * fast encoding / decoding are built. This can take some time so 19 * make sure not to call this function from a time critical path. 20 * Usually a module / driver should initialize the necessary 21 * rs_control structure on module / driver init and release it 22 * on exit. 23 * The encoding puts the calculated syndrome into a given syndrome 24 * buffer. 25 * The decoding is a two step process. The first step calculates 26 * the syndrome over the received (data + syndrome) and calls the 27 * second stage, which does the decoding / error correction itself. 28 * Many hw encoders provide a syndrome calculation over the received 29 * data + syndrome and can call the second stage directly. 30 */ 31 #include <linux/errno.h> 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/module.h> 35 #include <linux/rslib.h> 36 #include <linux/slab.h> 37 #include <linux/mutex.h> 38 39 /* This list holds all currently allocated rs control structures */ 40 static LIST_HEAD (rslist); 41 /* Protection for the list */ 42 static DEFINE_MUTEX(rslistlock); 43 44 /** 45 * rs_init - Initialize a Reed-Solomon codec 46 * @symsize: symbol size, bits (1-8) 47 * @gfpoly: Field generator polynomial coefficients 48 * @gffunc: Field generator function 49 * @fcr: first root of RS code generator polynomial, index form 50 * @prim: primitive element to generate polynomial roots 51 * @nroots: RS code generator polynomial degree (number of roots) 52 * @gfp: GFP_ flags for allocations 53 * 54 * Allocate a control structure and the polynom arrays for faster 55 * en/decoding. Fill the arrays according to the given parameters. 56 */ 57 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int), 58 int fcr, int prim, int nroots, gfp_t gfp) 59 { 60 struct rs_control *rs; 61 int i, j, sr, root, iprim; 62 63 /* Allocate the control structure */ 64 rs = kmalloc(sizeof(*rs), gfp); 65 if (!rs) 66 return NULL; 67 68 INIT_LIST_HEAD(&rs->list); 69 70 rs->mm = symsize; 71 rs->nn = (1 << symsize) - 1; 72 rs->fcr = fcr; 73 rs->prim = prim; 74 rs->nroots = nroots; 75 rs->gfpoly = gfpoly; 76 rs->gffunc = gffunc; 77 78 /* Allocate the arrays */ 79 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 80 if (rs->alpha_to == NULL) 81 goto errrs; 82 83 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 84 if (rs->index_of == NULL) 85 goto erralp; 86 87 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp); 88 if(rs->genpoly == NULL) 89 goto erridx; 90 91 /* Generate Galois field lookup tables */ 92 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 93 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 94 if (gfpoly) { 95 sr = 1; 96 for (i = 0; i < rs->nn; i++) { 97 rs->index_of[sr] = i; 98 rs->alpha_to[i] = sr; 99 sr <<= 1; 100 if (sr & (1 << symsize)) 101 sr ^= gfpoly; 102 sr &= rs->nn; 103 } 104 } else { 105 sr = gffunc(0); 106 for (i = 0; i < rs->nn; i++) { 107 rs->index_of[sr] = i; 108 rs->alpha_to[i] = sr; 109 sr = gffunc(sr); 110 } 111 } 112 /* If it's not primitive, exit */ 113 if(sr != rs->alpha_to[0]) 114 goto errpol; 115 116 /* Find prim-th root of 1, used in decoding */ 117 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 118 /* prim-th root of 1, index form */ 119 rs->iprim = iprim / prim; 120 121 /* Form RS code generator polynomial from its roots */ 122 rs->genpoly[0] = 1; 123 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 124 rs->genpoly[i + 1] = 1; 125 /* Multiply rs->genpoly[] by @**(root + x) */ 126 for (j = i; j > 0; j--) { 127 if (rs->genpoly[j] != 0) { 128 rs->genpoly[j] = rs->genpoly[j -1] ^ 129 rs->alpha_to[rs_modnn(rs, 130 rs->index_of[rs->genpoly[j]] + root)]; 131 } else 132 rs->genpoly[j] = rs->genpoly[j - 1]; 133 } 134 /* rs->genpoly[0] can never be zero */ 135 rs->genpoly[0] = 136 rs->alpha_to[rs_modnn(rs, 137 rs->index_of[rs->genpoly[0]] + root)]; 138 } 139 /* convert rs->genpoly[] to index form for quicker encoding */ 140 for (i = 0; i <= nroots; i++) 141 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 142 return rs; 143 144 /* Error exit */ 145 errpol: 146 kfree(rs->genpoly); 147 erridx: 148 kfree(rs->index_of); 149 erralp: 150 kfree(rs->alpha_to); 151 errrs: 152 kfree(rs); 153 return NULL; 154 } 155 156 157 /** 158 * free_rs - Free the rs control structure, if it is no longer used 159 * @rs: the control structure which is not longer used by the 160 * caller 161 */ 162 void free_rs(struct rs_control *rs) 163 { 164 mutex_lock(&rslistlock); 165 rs->users--; 166 if(!rs->users) { 167 list_del(&rs->list); 168 kfree(rs->alpha_to); 169 kfree(rs->index_of); 170 kfree(rs->genpoly); 171 kfree(rs); 172 } 173 mutex_unlock(&rslistlock); 174 } 175 EXPORT_SYMBOL_GPL(free_rs); 176 177 /** 178 * init_rs_internal - Find a matching or allocate a new rs control structure 179 * @symsize: the symbol size (number of bits) 180 * @gfpoly: the extended Galois field generator polynomial coefficients, 181 * with the 0th coefficient in the low order bit. The polynomial 182 * must be primitive; 183 * @gffunc: pointer to function to generate the next field element, 184 * or the multiplicative identity element if given 0. Used 185 * instead of gfpoly if gfpoly is 0 186 * @fcr: the first consecutive root of the rs code generator polynomial 187 * in index form 188 * @prim: primitive element to generate polynomial roots 189 * @nroots: RS code generator polynomial degree (number of roots) 190 * @gfp: GFP_ flags for allocations 191 */ 192 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 193 int (*gffunc)(int), int fcr, 194 int prim, int nroots, gfp_t gfp) 195 { 196 struct list_head *tmp; 197 struct rs_control *rs; 198 199 /* Sanity checks */ 200 if (symsize < 1) 201 return NULL; 202 if (fcr < 0 || fcr >= (1<<symsize)) 203 return NULL; 204 if (prim <= 0 || prim >= (1<<symsize)) 205 return NULL; 206 if (nroots < 0 || nroots >= (1<<symsize)) 207 return NULL; 208 209 mutex_lock(&rslistlock); 210 211 /* Walk through the list and look for a matching entry */ 212 list_for_each(tmp, &rslist) { 213 rs = list_entry(tmp, struct rs_control, list); 214 if (symsize != rs->mm) 215 continue; 216 if (gfpoly != rs->gfpoly) 217 continue; 218 if (gffunc != rs->gffunc) 219 continue; 220 if (fcr != rs->fcr) 221 continue; 222 if (prim != rs->prim) 223 continue; 224 if (nroots != rs->nroots) 225 continue; 226 /* We have a matching one already */ 227 rs->users++; 228 goto out; 229 } 230 231 /* Create a new one */ 232 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 233 if (rs) { 234 rs->users = 1; 235 list_add(&rs->list, &rslist); 236 } 237 out: 238 mutex_unlock(&rslistlock); 239 return rs; 240 } 241 242 /** 243 * init_rs_gfp - Find a matching or allocate a new rs control structure 244 * @symsize: the symbol size (number of bits) 245 * @gfpoly: the extended Galois field generator polynomial coefficients, 246 * with the 0th coefficient in the low order bit. The polynomial 247 * must be primitive; 248 * @fcr: the first consecutive root of the rs code generator polynomial 249 * in index form 250 * @prim: primitive element to generate polynomial roots 251 * @nroots: RS code generator polynomial degree (number of roots) 252 * @gfp: GFP_ flags for allocations 253 */ 254 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 255 int nroots, gfp_t gfp) 256 { 257 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 258 } 259 EXPORT_SYMBOL_GPL(init_rs_gfp); 260 261 /** 262 * init_rs_non_canonical - Find a matching or allocate a new rs control 263 * structure, for fields with non-canonical 264 * representation 265 * @symsize: the symbol size (number of bits) 266 * @gffunc: pointer to function to generate the next field element, 267 * or the multiplicative identity element if given 0. Used 268 * instead of gfpoly if gfpoly is 0 269 * @fcr: the first consecutive root of the rs code generator polynomial 270 * in index form 271 * @prim: primitive element to generate polynomial roots 272 * @nroots: RS code generator polynomial degree (number of roots) 273 */ 274 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 275 int fcr, int prim, int nroots) 276 { 277 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 278 GFP_KERNEL); 279 } 280 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 281 282 #ifdef CONFIG_REED_SOLOMON_ENC8 283 /** 284 * encode_rs8 - Calculate the parity for data values (8bit data width) 285 * @rs: the rs control structure 286 * @data: data field of a given type 287 * @len: data length 288 * @par: parity data, must be initialized by caller (usually all 0) 289 * @invmsk: invert data mask (will be xored on data) 290 * 291 * The parity uses a uint16_t data type to enable 292 * symbol size > 8. The calling code must take care of encoding of the 293 * syndrome result for storage itself. 294 */ 295 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, 296 uint16_t invmsk) 297 { 298 #include "encode_rs.c" 299 } 300 EXPORT_SYMBOL_GPL(encode_rs8); 301 #endif 302 303 #ifdef CONFIG_REED_SOLOMON_DEC8 304 /** 305 * decode_rs8 - Decode codeword (8bit data width) 306 * @rs: the rs control structure 307 * @data: data field of a given type 308 * @par: received parity data field 309 * @len: data length 310 * @s: syndrome data field (if NULL, syndrome is calculated) 311 * @no_eras: number of erasures 312 * @eras_pos: position of erasures, can be NULL 313 * @invmsk: invert data mask (will be xored on data, not on parity!) 314 * @corr: buffer to store correction bitmask on eras_pos 315 * 316 * The syndrome and parity uses a uint16_t data type to enable 317 * symbol size > 8. The calling code must take care of decoding of the 318 * syndrome result and the received parity before calling this code. 319 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 320 */ 321 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, 322 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 323 uint16_t *corr) 324 { 325 #include "decode_rs.c" 326 } 327 EXPORT_SYMBOL_GPL(decode_rs8); 328 #endif 329 330 #ifdef CONFIG_REED_SOLOMON_ENC16 331 /** 332 * encode_rs16 - Calculate the parity for data values (16bit data width) 333 * @rs: the rs control structure 334 * @data: data field of a given type 335 * @len: data length 336 * @par: parity data, must be initialized by caller (usually all 0) 337 * @invmsk: invert data mask (will be xored on data, not on parity!) 338 * 339 * Each field in the data array contains up to symbol size bits of valid data. 340 */ 341 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, 342 uint16_t invmsk) 343 { 344 #include "encode_rs.c" 345 } 346 EXPORT_SYMBOL_GPL(encode_rs16); 347 #endif 348 349 #ifdef CONFIG_REED_SOLOMON_DEC16 350 /** 351 * decode_rs16 - Decode codeword (16bit data width) 352 * @rs: the rs control structure 353 * @data: data field of a given type 354 * @par: received parity data field 355 * @len: data length 356 * @s: syndrome data field (if NULL, syndrome is calculated) 357 * @no_eras: number of erasures 358 * @eras_pos: position of erasures, can be NULL 359 * @invmsk: invert data mask (will be xored on data, not on parity!) 360 * @corr: buffer to store correction bitmask on eras_pos 361 * 362 * Each field in the data array contains up to symbol size bits of valid data. 363 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 364 */ 365 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, 366 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 367 uint16_t *corr) 368 { 369 #include "decode_rs.c" 370 } 371 EXPORT_SYMBOL_GPL(decode_rs16); 372 #endif 373 374 MODULE_LICENSE("GPL"); 375 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 376 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 377 378