1 /* 2 * lib/reed_solomon/reed_solomon.c 3 * 4 * Overview: 5 * Generic Reed Solomon encoder / decoder library 6 * 7 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 8 * 9 * Reed Solomon code lifted from reed solomon library written by Phil Karn 10 * Copyright 2002 Phil Karn, KA9Q 11 * 12 * $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $ 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 * 18 * Description: 19 * 20 * The generic Reed Solomon library provides runtime configurable 21 * encoding / decoding of RS codes. 22 * Each user must call init_rs to get a pointer to a rs_control 23 * structure for the given rs parameters. This structure is either 24 * generated or a already available matching control structure is used. 25 * If a structure is generated then the polynomial arrays for 26 * fast encoding / decoding are built. This can take some time so 27 * make sure not to call this function from a time critical path. 28 * Usually a module / driver should initialize the necessary 29 * rs_control structure on module / driver init and release it 30 * on exit. 31 * The encoding puts the calculated syndrome into a given syndrome 32 * buffer. 33 * The decoding is a two step process. The first step calculates 34 * the syndrome over the received (data + syndrome) and calls the 35 * second stage, which does the decoding / error correction itself. 36 * Many hw encoders provide a syndrome calculation over the received 37 * data + syndrome and can call the second stage directly. 38 * 39 */ 40 41 #include <linux/errno.h> 42 #include <linux/kernel.h> 43 #include <linux/init.h> 44 #include <linux/module.h> 45 #include <linux/rslib.h> 46 #include <linux/slab.h> 47 #include <linux/mutex.h> 48 #include <asm/semaphore.h> 49 50 /* This list holds all currently allocated rs control structures */ 51 static LIST_HEAD (rslist); 52 /* Protection for the list */ 53 static DEFINE_MUTEX(rslistlock); 54 55 /** 56 * rs_init - Initialize a Reed-Solomon codec 57 * @symsize: symbol size, bits (1-8) 58 * @gfpoly: Field generator polynomial coefficients 59 * @gffunc: Field generator function 60 * @fcr: first root of RS code generator polynomial, index form 61 * @prim: primitive element to generate polynomial roots 62 * @nroots: RS code generator polynomial degree (number of roots) 63 * 64 * Allocate a control structure and the polynom arrays for faster 65 * en/decoding. Fill the arrays according to the given parameters. 66 */ 67 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int), 68 int fcr, int prim, int nroots) 69 { 70 struct rs_control *rs; 71 int i, j, sr, root, iprim; 72 73 /* Allocate the control structure */ 74 rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL); 75 if (rs == NULL) 76 return NULL; 77 78 INIT_LIST_HEAD(&rs->list); 79 80 rs->mm = symsize; 81 rs->nn = (1 << symsize) - 1; 82 rs->fcr = fcr; 83 rs->prim = prim; 84 rs->nroots = nroots; 85 rs->gfpoly = gfpoly; 86 rs->gffunc = gffunc; 87 88 /* Allocate the arrays */ 89 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); 90 if (rs->alpha_to == NULL) 91 goto errrs; 92 93 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL); 94 if (rs->index_of == NULL) 95 goto erralp; 96 97 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL); 98 if(rs->genpoly == NULL) 99 goto erridx; 100 101 /* Generate Galois field lookup tables */ 102 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 103 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 104 if (gfpoly) { 105 sr = 1; 106 for (i = 0; i < rs->nn; i++) { 107 rs->index_of[sr] = i; 108 rs->alpha_to[i] = sr; 109 sr <<= 1; 110 if (sr & (1 << symsize)) 111 sr ^= gfpoly; 112 sr &= rs->nn; 113 } 114 } else { 115 sr = gffunc(0); 116 for (i = 0; i < rs->nn; i++) { 117 rs->index_of[sr] = i; 118 rs->alpha_to[i] = sr; 119 sr = gffunc(sr); 120 } 121 } 122 /* If it's not primitive, exit */ 123 if(sr != rs->alpha_to[0]) 124 goto errpol; 125 126 /* Find prim-th root of 1, used in decoding */ 127 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 128 /* prim-th root of 1, index form */ 129 rs->iprim = iprim / prim; 130 131 /* Form RS code generator polynomial from its roots */ 132 rs->genpoly[0] = 1; 133 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 134 rs->genpoly[i + 1] = 1; 135 /* Multiply rs->genpoly[] by @**(root + x) */ 136 for (j = i; j > 0; j--) { 137 if (rs->genpoly[j] != 0) { 138 rs->genpoly[j] = rs->genpoly[j -1] ^ 139 rs->alpha_to[rs_modnn(rs, 140 rs->index_of[rs->genpoly[j]] + root)]; 141 } else 142 rs->genpoly[j] = rs->genpoly[j - 1]; 143 } 144 /* rs->genpoly[0] can never be zero */ 145 rs->genpoly[0] = 146 rs->alpha_to[rs_modnn(rs, 147 rs->index_of[rs->genpoly[0]] + root)]; 148 } 149 /* convert rs->genpoly[] to index form for quicker encoding */ 150 for (i = 0; i <= nroots; i++) 151 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 152 return rs; 153 154 /* Error exit */ 155 errpol: 156 kfree(rs->genpoly); 157 erridx: 158 kfree(rs->index_of); 159 erralp: 160 kfree(rs->alpha_to); 161 errrs: 162 kfree(rs); 163 return NULL; 164 } 165 166 167 /** 168 * free_rs - Free the rs control structure, if it is no longer used 169 * @rs: the control structure which is not longer used by the 170 * caller 171 */ 172 void free_rs(struct rs_control *rs) 173 { 174 mutex_lock(&rslistlock); 175 rs->users--; 176 if(!rs->users) { 177 list_del(&rs->list); 178 kfree(rs->alpha_to); 179 kfree(rs->index_of); 180 kfree(rs->genpoly); 181 kfree(rs); 182 } 183 mutex_unlock(&rslistlock); 184 } 185 186 /** 187 * init_rs_internal - Find a matching or allocate a new rs control structure 188 * @symsize: the symbol size (number of bits) 189 * @gfpoly: the extended Galois field generator polynomial coefficients, 190 * with the 0th coefficient in the low order bit. The polynomial 191 * must be primitive; 192 * @gffunc: pointer to function to generate the next field element, 193 * or the multiplicative identity element if given 0. Used 194 * instead of gfpoly if gfpoly is 0 195 * @fcr: the first consecutive root of the rs code generator polynomial 196 * in index form 197 * @prim: primitive element to generate polynomial roots 198 * @nroots: RS code generator polynomial degree (number of roots) 199 */ 200 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 201 int (*gffunc)(int), int fcr, 202 int prim, int nroots) 203 { 204 struct list_head *tmp; 205 struct rs_control *rs; 206 207 /* Sanity checks */ 208 if (symsize < 1) 209 return NULL; 210 if (fcr < 0 || fcr >= (1<<symsize)) 211 return NULL; 212 if (prim <= 0 || prim >= (1<<symsize)) 213 return NULL; 214 if (nroots < 0 || nroots >= (1<<symsize)) 215 return NULL; 216 217 mutex_lock(&rslistlock); 218 219 /* Walk through the list and look for a matching entry */ 220 list_for_each(tmp, &rslist) { 221 rs = list_entry(tmp, struct rs_control, list); 222 if (symsize != rs->mm) 223 continue; 224 if (gfpoly != rs->gfpoly) 225 continue; 226 if (gffunc != rs->gffunc) 227 continue; 228 if (fcr != rs->fcr) 229 continue; 230 if (prim != rs->prim) 231 continue; 232 if (nroots != rs->nroots) 233 continue; 234 /* We have a matching one already */ 235 rs->users++; 236 goto out; 237 } 238 239 /* Create a new one */ 240 rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots); 241 if (rs) { 242 rs->users = 1; 243 list_add(&rs->list, &rslist); 244 } 245 out: 246 mutex_unlock(&rslistlock); 247 return rs; 248 } 249 250 /** 251 * init_rs - Find a matching or allocate a new rs control structure 252 * @symsize: the symbol size (number of bits) 253 * @gfpoly: the extended Galois field generator polynomial coefficients, 254 * with the 0th coefficient in the low order bit. The polynomial 255 * must be primitive; 256 * @fcr: the first consecutive root of the rs code generator polynomial 257 * in index form 258 * @prim: primitive element to generate polynomial roots 259 * @nroots: RS code generator polynomial degree (number of roots) 260 */ 261 struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim, 262 int nroots) 263 { 264 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots); 265 } 266 267 /** 268 * init_rs_non_canonical - Find a matching or allocate a new rs control 269 * structure, for fields with non-canonical 270 * representation 271 * @symsize: the symbol size (number of bits) 272 * @gffunc: pointer to function to generate the next field element, 273 * or the multiplicative identity element if given 0. Used 274 * instead of gfpoly if gfpoly is 0 275 * @fcr: the first consecutive root of the rs code generator polynomial 276 * in index form 277 * @prim: primitive element to generate polynomial roots 278 * @nroots: RS code generator polynomial degree (number of roots) 279 */ 280 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 281 int fcr, int prim, int nroots) 282 { 283 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots); 284 } 285 286 #ifdef CONFIG_REED_SOLOMON_ENC8 287 /** 288 * encode_rs8 - Calculate the parity for data values (8bit data width) 289 * @rs: the rs control structure 290 * @data: data field of a given type 291 * @len: data length 292 * @par: parity data, must be initialized by caller (usually all 0) 293 * @invmsk: invert data mask (will be xored on data) 294 * 295 * The parity uses a uint16_t data type to enable 296 * symbol size > 8. The calling code must take care of encoding of the 297 * syndrome result for storage itself. 298 */ 299 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par, 300 uint16_t invmsk) 301 { 302 #include "encode_rs.c" 303 } 304 EXPORT_SYMBOL_GPL(encode_rs8); 305 #endif 306 307 #ifdef CONFIG_REED_SOLOMON_DEC8 308 /** 309 * decode_rs8 - Decode codeword (8bit data width) 310 * @rs: the rs control structure 311 * @data: data field of a given type 312 * @par: received parity data field 313 * @len: data length 314 * @s: syndrome data field (if NULL, syndrome is calculated) 315 * @no_eras: number of erasures 316 * @eras_pos: position of erasures, can be NULL 317 * @invmsk: invert data mask (will be xored on data, not on parity!) 318 * @corr: buffer to store correction bitmask on eras_pos 319 * 320 * The syndrome and parity uses a uint16_t data type to enable 321 * symbol size > 8. The calling code must take care of decoding of the 322 * syndrome result and the received parity before calling this code. 323 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 324 */ 325 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len, 326 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 327 uint16_t *corr) 328 { 329 #include "decode_rs.c" 330 } 331 EXPORT_SYMBOL_GPL(decode_rs8); 332 #endif 333 334 #ifdef CONFIG_REED_SOLOMON_ENC16 335 /** 336 * encode_rs16 - Calculate the parity for data values (16bit data width) 337 * @rs: the rs control structure 338 * @data: data field of a given type 339 * @len: data length 340 * @par: parity data, must be initialized by caller (usually all 0) 341 * @invmsk: invert data mask (will be xored on data, not on parity!) 342 * 343 * Each field in the data array contains up to symbol size bits of valid data. 344 */ 345 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par, 346 uint16_t invmsk) 347 { 348 #include "encode_rs.c" 349 } 350 EXPORT_SYMBOL_GPL(encode_rs16); 351 #endif 352 353 #ifdef CONFIG_REED_SOLOMON_DEC16 354 /** 355 * decode_rs16 - Decode codeword (16bit data width) 356 * @rs: the rs control structure 357 * @data: data field of a given type 358 * @par: received parity data field 359 * @len: data length 360 * @s: syndrome data field (if NULL, syndrome is calculated) 361 * @no_eras: number of erasures 362 * @eras_pos: position of erasures, can be NULL 363 * @invmsk: invert data mask (will be xored on data, not on parity!) 364 * @corr: buffer to store correction bitmask on eras_pos 365 * 366 * Each field in the data array contains up to symbol size bits of valid data. 367 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 368 */ 369 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len, 370 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 371 uint16_t *corr) 372 { 373 #include "decode_rs.c" 374 } 375 EXPORT_SYMBOL_GPL(decode_rs16); 376 #endif 377 378 EXPORT_SYMBOL_GPL(init_rs); 379 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 380 EXPORT_SYMBOL_GPL(free_rs); 381 382 MODULE_LICENSE("GPL"); 383 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 384 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 385 386