1 /*
2  * Generic Reed Solomon encoder / decoder library
3  *
4  * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
5  *
6  * Reed Solomon code lifted from reed solomon library written by Phil Karn
7  * Copyright 2002 Phil Karn, KA9Q
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * Description:
14  *
15  * The generic Reed Solomon library provides runtime configurable
16  * encoding / decoding of RS codes.
17  * Each user must call init_rs to get a pointer to a rs_control
18  * structure for the given rs parameters. This structure is either
19  * generated or a already available matching control structure is used.
20  * If a structure is generated then the polynomial arrays for
21  * fast encoding / decoding are built. This can take some time so
22  * make sure not to call this function from a time critical path.
23  * Usually a module / driver should initialize the necessary
24  * rs_control structure on module / driver init and release it
25  * on exit.
26  * The encoding puts the calculated syndrome into a given syndrome
27  * buffer.
28  * The decoding is a two step process. The first step calculates
29  * the syndrome over the received (data + syndrome) and calls the
30  * second stage, which does the decoding / error correction itself.
31  * Many hw encoders provide a syndrome calculation over the received
32  * data + syndrome and can call the second stage directly.
33  */
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/rslib.h>
39 #include <linux/slab.h>
40 #include <linux/mutex.h>
41 
42 /* This list holds all currently allocated rs control structures */
43 static LIST_HEAD (rslist);
44 /* Protection for the list */
45 static DEFINE_MUTEX(rslistlock);
46 
47 /**
48  * rs_init - Initialize a Reed-Solomon codec
49  * @symsize:	symbol size, bits (1-8)
50  * @gfpoly:	Field generator polynomial coefficients
51  * @gffunc:	Field generator function
52  * @fcr:	first root of RS code generator polynomial, index form
53  * @prim:	primitive element to generate polynomial roots
54  * @nroots:	RS code generator polynomial degree (number of roots)
55  * @gfp:	GFP_ flags for allocations
56  *
57  * Allocate a control structure and the polynom arrays for faster
58  * en/decoding. Fill the arrays according to the given parameters.
59  */
60 static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
61 				  int fcr, int prim, int nroots, gfp_t gfp)
62 {
63 	struct rs_control *rs;
64 	int i, j, sr, root, iprim;
65 
66 	/* Allocate the control structure */
67 	rs = kmalloc(sizeof(*rs), gfp);
68 	if (!rs)
69 		return NULL;
70 
71 	INIT_LIST_HEAD(&rs->list);
72 
73 	rs->mm = symsize;
74 	rs->nn = (1 << symsize) - 1;
75 	rs->fcr = fcr;
76 	rs->prim = prim;
77 	rs->nroots = nroots;
78 	rs->gfpoly = gfpoly;
79 	rs->gffunc = gffunc;
80 
81 	/* Allocate the arrays */
82 	rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
83 	if (rs->alpha_to == NULL)
84 		goto errrs;
85 
86 	rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
87 	if (rs->index_of == NULL)
88 		goto erralp;
89 
90 	rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp);
91 	if(rs->genpoly == NULL)
92 		goto erridx;
93 
94 	/* Generate Galois field lookup tables */
95 	rs->index_of[0] = rs->nn;	/* log(zero) = -inf */
96 	rs->alpha_to[rs->nn] = 0;	/* alpha**-inf = 0 */
97 	if (gfpoly) {
98 		sr = 1;
99 		for (i = 0; i < rs->nn; i++) {
100 			rs->index_of[sr] = i;
101 			rs->alpha_to[i] = sr;
102 			sr <<= 1;
103 			if (sr & (1 << symsize))
104 				sr ^= gfpoly;
105 			sr &= rs->nn;
106 		}
107 	} else {
108 		sr = gffunc(0);
109 		for (i = 0; i < rs->nn; i++) {
110 			rs->index_of[sr] = i;
111 			rs->alpha_to[i] = sr;
112 			sr = gffunc(sr);
113 		}
114 	}
115 	/* If it's not primitive, exit */
116 	if(sr != rs->alpha_to[0])
117 		goto errpol;
118 
119 	/* Find prim-th root of 1, used in decoding */
120 	for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
121 	/* prim-th root of 1, index form */
122 	rs->iprim = iprim / prim;
123 
124 	/* Form RS code generator polynomial from its roots */
125 	rs->genpoly[0] = 1;
126 	for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) {
127 		rs->genpoly[i + 1] = 1;
128 		/* Multiply rs->genpoly[] by  @**(root + x) */
129 		for (j = i; j > 0; j--) {
130 			if (rs->genpoly[j] != 0) {
131 				rs->genpoly[j] = rs->genpoly[j -1] ^
132 					rs->alpha_to[rs_modnn(rs,
133 					rs->index_of[rs->genpoly[j]] + root)];
134 			} else
135 				rs->genpoly[j] = rs->genpoly[j - 1];
136 		}
137 		/* rs->genpoly[0] can never be zero */
138 		rs->genpoly[0] =
139 			rs->alpha_to[rs_modnn(rs,
140 				rs->index_of[rs->genpoly[0]] + root)];
141 	}
142 	/* convert rs->genpoly[] to index form for quicker encoding */
143 	for (i = 0; i <= nroots; i++)
144 		rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
145 	return rs;
146 
147 	/* Error exit */
148 errpol:
149 	kfree(rs->genpoly);
150 erridx:
151 	kfree(rs->index_of);
152 erralp:
153 	kfree(rs->alpha_to);
154 errrs:
155 	kfree(rs);
156 	return NULL;
157 }
158 
159 
160 /**
161  *  free_rs - Free the rs control structure, if it is no longer used
162  *  @rs:	the control structure which is not longer used by the
163  *		caller
164  */
165 void free_rs(struct rs_control *rs)
166 {
167 	mutex_lock(&rslistlock);
168 	rs->users--;
169 	if(!rs->users) {
170 		list_del(&rs->list);
171 		kfree(rs->alpha_to);
172 		kfree(rs->index_of);
173 		kfree(rs->genpoly);
174 		kfree(rs);
175 	}
176 	mutex_unlock(&rslistlock);
177 }
178 EXPORT_SYMBOL_GPL(free_rs);
179 
180 /**
181  * init_rs_internal - Find a matching or allocate a new rs control structure
182  *  @symsize:	the symbol size (number of bits)
183  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
184  *		with the 0th coefficient in the low order bit. The polynomial
185  *		must be primitive;
186  *  @gffunc:	pointer to function to generate the next field element,
187  *		or the multiplicative identity element if given 0.  Used
188  *		instead of gfpoly if gfpoly is 0
189  *  @fcr:	the first consecutive root of the rs code generator polynomial
190  *		in index form
191  *  @prim:	primitive element to generate polynomial roots
192  *  @nroots:	RS code generator polynomial degree (number of roots)
193  *  @gfp:	GFP_ flags for allocations
194  */
195 static struct rs_control *init_rs_internal(int symsize, int gfpoly,
196 					   int (*gffunc)(int), int fcr,
197 					   int prim, int nroots, gfp_t gfp)
198 {
199 	struct list_head *tmp;
200 	struct rs_control *rs;
201 
202 	/* Sanity checks */
203 	if (symsize < 1)
204 		return NULL;
205 	if (fcr < 0 || fcr >= (1<<symsize))
206 		return NULL;
207 	if (prim <= 0 || prim >= (1<<symsize))
208 		return NULL;
209 	if (nroots < 0 || nroots >= (1<<symsize))
210 		return NULL;
211 
212 	mutex_lock(&rslistlock);
213 
214 	/* Walk through the list and look for a matching entry */
215 	list_for_each(tmp, &rslist) {
216 		rs = list_entry(tmp, struct rs_control, list);
217 		if (symsize != rs->mm)
218 			continue;
219 		if (gfpoly != rs->gfpoly)
220 			continue;
221 		if (gffunc != rs->gffunc)
222 			continue;
223 		if (fcr != rs->fcr)
224 			continue;
225 		if (prim != rs->prim)
226 			continue;
227 		if (nroots != rs->nroots)
228 			continue;
229 		/* We have a matching one already */
230 		rs->users++;
231 		goto out;
232 	}
233 
234 	/* Create a new one */
235 	rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
236 	if (rs) {
237 		rs->users = 1;
238 		list_add(&rs->list, &rslist);
239 	}
240 out:
241 	mutex_unlock(&rslistlock);
242 	return rs;
243 }
244 
245 /**
246  * init_rs_gfp - Find a matching or allocate a new rs control structure
247  *  @symsize:	the symbol size (number of bits)
248  *  @gfpoly:	the extended Galois field generator polynomial coefficients,
249  *		with the 0th coefficient in the low order bit. The polynomial
250  *		must be primitive;
251  *  @fcr:	the first consecutive root of the rs code generator polynomial
252  *		in index form
253  *  @prim:	primitive element to generate polynomial roots
254  *  @nroots:	RS code generator polynomial degree (number of roots)
255  *  @gfp:	GFP_ flags for allocations
256  */
257 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
258 			       int nroots, gfp_t gfp)
259 {
260 	return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
261 }
262 EXPORT_SYMBOL_GPL(init_rs_gfp);
263 
264 /**
265  * init_rs_non_canonical - Find a matching or allocate a new rs control
266  *                         structure, for fields with non-canonical
267  *                         representation
268  *  @symsize:	the symbol size (number of bits)
269  *  @gffunc:	pointer to function to generate the next field element,
270  *		or the multiplicative identity element if given 0.  Used
271  *		instead of gfpoly if gfpoly is 0
272  *  @fcr:	the first consecutive root of the rs code generator polynomial
273  *		in index form
274  *  @prim:	primitive element to generate polynomial roots
275  *  @nroots:	RS code generator polynomial degree (number of roots)
276  */
277 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
278 					 int fcr, int prim, int nroots)
279 {
280 	return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
281 				GFP_KERNEL);
282 }
283 EXPORT_SYMBOL_GPL(init_rs_non_canonical);
284 
285 #ifdef CONFIG_REED_SOLOMON_ENC8
286 /**
287  *  encode_rs8 - Calculate the parity for data values (8bit data width)
288  *  @rs:	the rs control structure
289  *  @data:	data field of a given type
290  *  @len:	data length
291  *  @par:	parity data, must be initialized by caller (usually all 0)
292  *  @invmsk:	invert data mask (will be xored on data)
293  *
294  *  The parity uses a uint16_t data type to enable
295  *  symbol size > 8. The calling code must take care of encoding of the
296  *  syndrome result for storage itself.
297  */
298 int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
299 	       uint16_t invmsk)
300 {
301 #include "encode_rs.c"
302 }
303 EXPORT_SYMBOL_GPL(encode_rs8);
304 #endif
305 
306 #ifdef CONFIG_REED_SOLOMON_DEC8
307 /**
308  *  decode_rs8 - Decode codeword (8bit data width)
309  *  @rs:	the rs control structure
310  *  @data:	data field of a given type
311  *  @par:	received parity data field
312  *  @len:	data length
313  *  @s:		syndrome data field (if NULL, syndrome is calculated)
314  *  @no_eras:	number of erasures
315  *  @eras_pos:	position of erasures, can be NULL
316  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
317  *  @corr:	buffer to store correction bitmask on eras_pos
318  *
319  *  The syndrome and parity uses a uint16_t data type to enable
320  *  symbol size > 8. The calling code must take care of decoding of the
321  *  syndrome result and the received parity before calling this code.
322  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
323  */
324 int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
325 	       uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
326 	       uint16_t *corr)
327 {
328 #include "decode_rs.c"
329 }
330 EXPORT_SYMBOL_GPL(decode_rs8);
331 #endif
332 
333 #ifdef CONFIG_REED_SOLOMON_ENC16
334 /**
335  *  encode_rs16 - Calculate the parity for data values (16bit data width)
336  *  @rs:	the rs control structure
337  *  @data:	data field of a given type
338  *  @len:	data length
339  *  @par:	parity data, must be initialized by caller (usually all 0)
340  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
341  *
342  *  Each field in the data array contains up to symbol size bits of valid data.
343  */
344 int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
345 	uint16_t invmsk)
346 {
347 #include "encode_rs.c"
348 }
349 EXPORT_SYMBOL_GPL(encode_rs16);
350 #endif
351 
352 #ifdef CONFIG_REED_SOLOMON_DEC16
353 /**
354  *  decode_rs16 - Decode codeword (16bit data width)
355  *  @rs:	the rs control structure
356  *  @data:	data field of a given type
357  *  @par:	received parity data field
358  *  @len:	data length
359  *  @s:		syndrome data field (if NULL, syndrome is calculated)
360  *  @no_eras:	number of erasures
361  *  @eras_pos:	position of erasures, can be NULL
362  *  @invmsk:	invert data mask (will be xored on data, not on parity!)
363  *  @corr:	buffer to store correction bitmask on eras_pos
364  *
365  *  Each field in the data array contains up to symbol size bits of valid data.
366  *  Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
367  */
368 int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
369 		uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
370 		uint16_t *corr)
371 {
372 #include "decode_rs.c"
373 }
374 EXPORT_SYMBOL_GPL(decode_rs16);
375 #endif
376 
377 MODULE_LICENSE("GPL");
378 MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
379 MODULE_AUTHOR("Phil Karn, Thomas Gleixner");
380 
381