1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Generic Reed Solomon encoder / decoder library 4 * 5 * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) 6 * 7 * Reed Solomon code lifted from reed solomon library written by Phil Karn 8 * Copyright 2002 Phil Karn, KA9Q 9 * 10 * Description: 11 * 12 * The generic Reed Solomon library provides runtime configurable 13 * encoding / decoding of RS codes. 14 * 15 * Each user must call init_rs to get a pointer to a rs_control structure 16 * for the given rs parameters. The control struct is unique per instance. 17 * It points to a codec which can be shared by multiple control structures. 18 * If a codec is newly allocated then the polynomial arrays for fast 19 * encoding / decoding are built. This can take some time so make sure not 20 * to call this function from a time critical path. Usually a module / 21 * driver should initialize the necessary rs_control structure on module / 22 * driver init and release it on exit. 23 * 24 * The encoding puts the calculated syndrome into a given syndrome buffer. 25 * 26 * The decoding is a two step process. The first step calculates the 27 * syndrome over the received (data + syndrome) and calls the second stage, 28 * which does the decoding / error correction itself. Many hw encoders 29 * provide a syndrome calculation over the received data + syndrome and can 30 * call the second stage directly. 31 */ 32 #include <linux/errno.h> 33 #include <linux/kernel.h> 34 #include <linux/init.h> 35 #include <linux/module.h> 36 #include <linux/rslib.h> 37 #include <linux/slab.h> 38 #include <linux/mutex.h> 39 40 /* This list holds all currently allocated rs codec structures */ 41 static LIST_HEAD(codec_list); 42 /* Protection for the list */ 43 static DEFINE_MUTEX(rslistlock); 44 45 /** 46 * codec_init - Initialize a Reed-Solomon codec 47 * @symsize: symbol size, bits (1-8) 48 * @gfpoly: Field generator polynomial coefficients 49 * @gffunc: Field generator function 50 * @fcr: first root of RS code generator polynomial, index form 51 * @prim: primitive element to generate polynomial roots 52 * @nroots: RS code generator polynomial degree (number of roots) 53 * @gfp: GFP_ flags for allocations 54 * 55 * Allocate a codec structure and the polynom arrays for faster 56 * en/decoding. Fill the arrays according to the given parameters. 57 */ 58 static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), 59 int fcr, int prim, int nroots, gfp_t gfp) 60 { 61 int i, j, sr, root, iprim; 62 struct rs_codec *rs; 63 64 rs = kzalloc(sizeof(*rs), gfp); 65 if (!rs) 66 return NULL; 67 68 INIT_LIST_HEAD(&rs->list); 69 70 rs->mm = symsize; 71 rs->nn = (1 << symsize) - 1; 72 rs->fcr = fcr; 73 rs->prim = prim; 74 rs->nroots = nroots; 75 rs->gfpoly = gfpoly; 76 rs->gffunc = gffunc; 77 78 /* Allocate the arrays */ 79 rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 80 if (rs->alpha_to == NULL) 81 goto err; 82 83 rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp); 84 if (rs->index_of == NULL) 85 goto err; 86 87 rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp); 88 if(rs->genpoly == NULL) 89 goto err; 90 91 /* Generate Galois field lookup tables */ 92 rs->index_of[0] = rs->nn; /* log(zero) = -inf */ 93 rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ 94 if (gfpoly) { 95 sr = 1; 96 for (i = 0; i < rs->nn; i++) { 97 rs->index_of[sr] = i; 98 rs->alpha_to[i] = sr; 99 sr <<= 1; 100 if (sr & (1 << symsize)) 101 sr ^= gfpoly; 102 sr &= rs->nn; 103 } 104 } else { 105 sr = gffunc(0); 106 for (i = 0; i < rs->nn; i++) { 107 rs->index_of[sr] = i; 108 rs->alpha_to[i] = sr; 109 sr = gffunc(sr); 110 } 111 } 112 /* If it's not primitive, exit */ 113 if(sr != rs->alpha_to[0]) 114 goto err; 115 116 /* Find prim-th root of 1, used in decoding */ 117 for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); 118 /* prim-th root of 1, index form */ 119 rs->iprim = iprim / prim; 120 121 /* Form RS code generator polynomial from its roots */ 122 rs->genpoly[0] = 1; 123 for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { 124 rs->genpoly[i + 1] = 1; 125 /* Multiply rs->genpoly[] by @**(root + x) */ 126 for (j = i; j > 0; j--) { 127 if (rs->genpoly[j] != 0) { 128 rs->genpoly[j] = rs->genpoly[j -1] ^ 129 rs->alpha_to[rs_modnn(rs, 130 rs->index_of[rs->genpoly[j]] + root)]; 131 } else 132 rs->genpoly[j] = rs->genpoly[j - 1]; 133 } 134 /* rs->genpoly[0] can never be zero */ 135 rs->genpoly[0] = 136 rs->alpha_to[rs_modnn(rs, 137 rs->index_of[rs->genpoly[0]] + root)]; 138 } 139 /* convert rs->genpoly[] to index form for quicker encoding */ 140 for (i = 0; i <= nroots; i++) 141 rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; 142 143 rs->users = 1; 144 list_add(&rs->list, &codec_list); 145 return rs; 146 147 err: 148 kfree(rs->genpoly); 149 kfree(rs->index_of); 150 kfree(rs->alpha_to); 151 kfree(rs); 152 return NULL; 153 } 154 155 156 /** 157 * free_rs - Free the rs control structure 158 * @rs: The control structure which is not longer used by the 159 * caller 160 * 161 * Free the control structure. If @rs is the last user of the associated 162 * codec, free the codec as well. 163 */ 164 void free_rs(struct rs_control *rs) 165 { 166 struct rs_codec *cd; 167 168 if (!rs) 169 return; 170 171 cd = rs->codec; 172 mutex_lock(&rslistlock); 173 cd->users--; 174 if(!cd->users) { 175 list_del(&cd->list); 176 kfree(cd->alpha_to); 177 kfree(cd->index_of); 178 kfree(cd->genpoly); 179 kfree(cd); 180 } 181 mutex_unlock(&rslistlock); 182 kfree(rs); 183 } 184 EXPORT_SYMBOL_GPL(free_rs); 185 186 /** 187 * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one 188 * @symsize: the symbol size (number of bits) 189 * @gfpoly: the extended Galois field generator polynomial coefficients, 190 * with the 0th coefficient in the low order bit. The polynomial 191 * must be primitive; 192 * @gffunc: pointer to function to generate the next field element, 193 * or the multiplicative identity element if given 0. Used 194 * instead of gfpoly if gfpoly is 0 195 * @fcr: the first consecutive root of the rs code generator polynomial 196 * in index form 197 * @prim: primitive element to generate polynomial roots 198 * @nroots: RS code generator polynomial degree (number of roots) 199 * @gfp: GFP_ flags for allocations 200 */ 201 static struct rs_control *init_rs_internal(int symsize, int gfpoly, 202 int (*gffunc)(int), int fcr, 203 int prim, int nroots, gfp_t gfp) 204 { 205 struct list_head *tmp; 206 struct rs_control *rs; 207 208 /* Sanity checks */ 209 if (symsize < 1) 210 return NULL; 211 if (fcr < 0 || fcr >= (1<<symsize)) 212 return NULL; 213 if (prim <= 0 || prim >= (1<<symsize)) 214 return NULL; 215 if (nroots < 0 || nroots >= (1<<symsize)) 216 return NULL; 217 218 rs = kzalloc(sizeof(*rs), GFP_KERNEL); 219 if (!rs) 220 return NULL; 221 222 mutex_lock(&rslistlock); 223 224 /* Walk through the list and look for a matching entry */ 225 list_for_each(tmp, &codec_list) { 226 struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); 227 228 if (symsize != cd->mm) 229 continue; 230 if (gfpoly != cd->gfpoly) 231 continue; 232 if (gffunc != cd->gffunc) 233 continue; 234 if (fcr != cd->fcr) 235 continue; 236 if (prim != cd->prim) 237 continue; 238 if (nroots != cd->nroots) 239 continue; 240 /* We have a matching one already */ 241 cd->users++; 242 rs->codec = cd; 243 goto out; 244 } 245 246 /* Create a new one */ 247 rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); 248 if (!rs->codec) { 249 kfree(rs); 250 rs = NULL; 251 } 252 out: 253 mutex_unlock(&rslistlock); 254 return rs; 255 } 256 257 /** 258 * init_rs_gfp - Create a RS control struct and initialize it 259 * @symsize: the symbol size (number of bits) 260 * @gfpoly: the extended Galois field generator polynomial coefficients, 261 * with the 0th coefficient in the low order bit. The polynomial 262 * must be primitive; 263 * @fcr: the first consecutive root of the rs code generator polynomial 264 * in index form 265 * @prim: primitive element to generate polynomial roots 266 * @nroots: RS code generator polynomial degree (number of roots) 267 * @gfp: GFP_ flags for allocations 268 */ 269 struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, 270 int nroots, gfp_t gfp) 271 { 272 return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); 273 } 274 EXPORT_SYMBOL_GPL(init_rs_gfp); 275 276 /** 277 * init_rs_non_canonical - Allocate rs control struct for fields with 278 * non-canonical representation 279 * @symsize: the symbol size (number of bits) 280 * @gffunc: pointer to function to generate the next field element, 281 * or the multiplicative identity element if given 0. Used 282 * instead of gfpoly if gfpoly is 0 283 * @fcr: the first consecutive root of the rs code generator polynomial 284 * in index form 285 * @prim: primitive element to generate polynomial roots 286 * @nroots: RS code generator polynomial degree (number of roots) 287 */ 288 struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), 289 int fcr, int prim, int nroots) 290 { 291 return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, 292 GFP_KERNEL); 293 } 294 EXPORT_SYMBOL_GPL(init_rs_non_canonical); 295 296 #ifdef CONFIG_REED_SOLOMON_ENC8 297 /** 298 * encode_rs8 - Calculate the parity for data values (8bit data width) 299 * @rsc: the rs control structure 300 * @data: data field of a given type 301 * @len: data length 302 * @par: parity data, must be initialized by caller (usually all 0) 303 * @invmsk: invert data mask (will be xored on data) 304 * 305 * The parity uses a uint16_t data type to enable 306 * symbol size > 8. The calling code must take care of encoding of the 307 * syndrome result for storage itself. 308 */ 309 int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, 310 uint16_t invmsk) 311 { 312 #include "encode_rs.c" 313 } 314 EXPORT_SYMBOL_GPL(encode_rs8); 315 #endif 316 317 #ifdef CONFIG_REED_SOLOMON_DEC8 318 /** 319 * decode_rs8 - Decode codeword (8bit data width) 320 * @rsc: the rs control structure 321 * @data: data field of a given type 322 * @par: received parity data field 323 * @len: data length 324 * @s: syndrome data field (if NULL, syndrome is calculated) 325 * @no_eras: number of erasures 326 * @eras_pos: position of erasures, can be NULL 327 * @invmsk: invert data mask (will be xored on data, not on parity!) 328 * @corr: buffer to store correction bitmask on eras_pos 329 * 330 * The syndrome and parity uses a uint16_t data type to enable 331 * symbol size > 8. The calling code must take care of decoding of the 332 * syndrome result and the received parity before calling this code. 333 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 334 */ 335 int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, 336 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 337 uint16_t *corr) 338 { 339 #include "decode_rs.c" 340 } 341 EXPORT_SYMBOL_GPL(decode_rs8); 342 #endif 343 344 #ifdef CONFIG_REED_SOLOMON_ENC16 345 /** 346 * encode_rs16 - Calculate the parity for data values (16bit data width) 347 * @rsc: the rs control structure 348 * @data: data field of a given type 349 * @len: data length 350 * @par: parity data, must be initialized by caller (usually all 0) 351 * @invmsk: invert data mask (will be xored on data, not on parity!) 352 * 353 * Each field in the data array contains up to symbol size bits of valid data. 354 */ 355 int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, 356 uint16_t invmsk) 357 { 358 #include "encode_rs.c" 359 } 360 EXPORT_SYMBOL_GPL(encode_rs16); 361 #endif 362 363 #ifdef CONFIG_REED_SOLOMON_DEC16 364 /** 365 * decode_rs16 - Decode codeword (16bit data width) 366 * @rsc: the rs control structure 367 * @data: data field of a given type 368 * @par: received parity data field 369 * @len: data length 370 * @s: syndrome data field (if NULL, syndrome is calculated) 371 * @no_eras: number of erasures 372 * @eras_pos: position of erasures, can be NULL 373 * @invmsk: invert data mask (will be xored on data, not on parity!) 374 * @corr: buffer to store correction bitmask on eras_pos 375 * 376 * Each field in the data array contains up to symbol size bits of valid data. 377 * Returns the number of corrected bits or -EBADMSG for uncorrectable errors. 378 */ 379 int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, 380 uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, 381 uint16_t *corr) 382 { 383 #include "decode_rs.c" 384 } 385 EXPORT_SYMBOL_GPL(decode_rs16); 386 #endif 387 388 MODULE_LICENSE("GPL"); 389 MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); 390 MODULE_AUTHOR("Phil Karn, Thomas Gleixner"); 391 392