xref: /openbmc/linux/lib/reed_solomon/decode_rs.c (revision 3413e189)
1 /*
2  * Generic Reed Solomon encoder / decoder library
3  *
4  * Copyright 2002, Phil Karn, KA9Q
5  * May be used under the terms of the GNU General Public License (GPL)
6  *
7  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
8  *
9  * Generic data width independent code which is included by the wrappers.
10  */
11 {
12 	int deg_lambda, el, deg_omega;
13 	int i, j, r, k, pad;
14 	int nn = rs->nn;
15 	int nroots = rs->nroots;
16 	int fcr = rs->fcr;
17 	int prim = rs->prim;
18 	int iprim = rs->iprim;
19 	uint16_t *alpha_to = rs->alpha_to;
20 	uint16_t *index_of = rs->index_of;
21 	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
22 	/* Err+Eras Locator poly and syndrome poly The maximum value
23 	 * of nroots is 8. So the necessary stack size will be about
24 	 * 220 bytes max.
25 	 */
26 	uint16_t lambda[nroots + 1], syn[nroots];
27 	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
28 	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
29 	int count = 0;
30 	uint16_t msk = (uint16_t) rs->nn;
31 
32 	/* Check length parameter for validity */
33 	pad = nn - nroots - len;
34 	BUG_ON(pad < 0 || pad >= nn);
35 
36 	/* Does the caller provide the syndrome ? */
37 	if (s != NULL)
38 		goto decode;
39 
40 	/* form the syndromes; i.e., evaluate data(x) at roots of
41 	 * g(x) */
42 	for (i = 0; i < nroots; i++)
43 		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
44 
45 	for (j = 1; j < len; j++) {
46 		for (i = 0; i < nroots; i++) {
47 			if (syn[i] == 0) {
48 				syn[i] = (((uint16_t) data[j]) ^
49 					  invmsk) & msk;
50 			} else {
51 				syn[i] = ((((uint16_t) data[j]) ^
52 					   invmsk) & msk) ^
53 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
54 						       (fcr + i) * prim)];
55 			}
56 		}
57 	}
58 
59 	for (j = 0; j < nroots; j++) {
60 		for (i = 0; i < nroots; i++) {
61 			if (syn[i] == 0) {
62 				syn[i] = ((uint16_t) par[j]) & msk;
63 			} else {
64 				syn[i] = (((uint16_t) par[j]) & msk) ^
65 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
66 						       (fcr+i)*prim)];
67 			}
68 		}
69 	}
70 	s = syn;
71 
72 	/* Convert syndromes to index form, checking for nonzero condition */
73 	syn_error = 0;
74 	for (i = 0; i < nroots; i++) {
75 		syn_error |= s[i];
76 		s[i] = index_of[s[i]];
77 	}
78 
79 	if (!syn_error) {
80 		/* if syndrome is zero, data[] is a codeword and there are no
81 		 * errors to correct. So return data[] unmodified
82 		 */
83 		count = 0;
84 		goto finish;
85 	}
86 
87  decode:
88 	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
89 	lambda[0] = 1;
90 
91 	if (no_eras > 0) {
92 		/* Init lambda to be the erasure locator polynomial */
93 		lambda[1] = alpha_to[rs_modnn(rs,
94 					      prim * (nn - 1 - eras_pos[0]))];
95 		for (i = 1; i < no_eras; i++) {
96 			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
97 			for (j = i + 1; j > 0; j--) {
98 				tmp = index_of[lambda[j - 1]];
99 				if (tmp != nn) {
100 					lambda[j] ^=
101 						alpha_to[rs_modnn(rs, u + tmp)];
102 				}
103 			}
104 		}
105 	}
106 
107 	for (i = 0; i < nroots + 1; i++)
108 		b[i] = index_of[lambda[i]];
109 
110 	/*
111 	 * Begin Berlekamp-Massey algorithm to determine error+erasure
112 	 * locator polynomial
113 	 */
114 	r = no_eras;
115 	el = no_eras;
116 	while (++r <= nroots) {	/* r is the step number */
117 		/* Compute discrepancy at the r-th step in poly-form */
118 		discr_r = 0;
119 		for (i = 0; i < r; i++) {
120 			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
121 				discr_r ^=
122 					alpha_to[rs_modnn(rs,
123 							  index_of[lambda[i]] +
124 							  s[r - i - 1])];
125 			}
126 		}
127 		discr_r = index_of[discr_r];	/* Index form */
128 		if (discr_r == nn) {
129 			/* 2 lines below: B(x) <-- x*B(x) */
130 			memmove (&b[1], b, nroots * sizeof (b[0]));
131 			b[0] = nn;
132 		} else {
133 			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
134 			t[0] = lambda[0];
135 			for (i = 0; i < nroots; i++) {
136 				if (b[i] != nn) {
137 					t[i + 1] = lambda[i + 1] ^
138 						alpha_to[rs_modnn(rs, discr_r +
139 								  b[i])];
140 				} else
141 					t[i + 1] = lambda[i + 1];
142 			}
143 			if (2 * el <= r + no_eras - 1) {
144 				el = r + no_eras - el;
145 				/*
146 				 * 2 lines below: B(x) <-- inv(discr_r) *
147 				 * lambda(x)
148 				 */
149 				for (i = 0; i <= nroots; i++) {
150 					b[i] = (lambda[i] == 0) ? nn :
151 						rs_modnn(rs, index_of[lambda[i]]
152 							 - discr_r + nn);
153 				}
154 			} else {
155 				/* 2 lines below: B(x) <-- x*B(x) */
156 				memmove(&b[1], b, nroots * sizeof(b[0]));
157 				b[0] = nn;
158 			}
159 			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
160 		}
161 	}
162 
163 	/* Convert lambda to index form and compute deg(lambda(x)) */
164 	deg_lambda = 0;
165 	for (i = 0; i < nroots + 1; i++) {
166 		lambda[i] = index_of[lambda[i]];
167 		if (lambda[i] != nn)
168 			deg_lambda = i;
169 	}
170 	/* Find roots of error+erasure locator polynomial by Chien search */
171 	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
172 	count = 0;		/* Number of roots of lambda(x) */
173 	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
174 		q = 1;		/* lambda[0] is always 0 */
175 		for (j = deg_lambda; j > 0; j--) {
176 			if (reg[j] != nn) {
177 				reg[j] = rs_modnn(rs, reg[j] + j);
178 				q ^= alpha_to[reg[j]];
179 			}
180 		}
181 		if (q != 0)
182 			continue;	/* Not a root */
183 		/* store root (index-form) and error location number */
184 		root[count] = i;
185 		loc[count] = k;
186 		/* If we've already found max possible roots,
187 		 * abort the search to save time
188 		 */
189 		if (++count == deg_lambda)
190 			break;
191 	}
192 	if (deg_lambda != count) {
193 		/*
194 		 * deg(lambda) unequal to number of roots => uncorrectable
195 		 * error detected
196 		 */
197 		count = -EBADMSG;
198 		goto finish;
199 	}
200 	/*
201 	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
202 	 * x**nroots). in index form. Also find deg(omega).
203 	 */
204 	deg_omega = deg_lambda - 1;
205 	for (i = 0; i <= deg_omega; i++) {
206 		tmp = 0;
207 		for (j = i; j >= 0; j--) {
208 			if ((s[i - j] != nn) && (lambda[j] != nn))
209 				tmp ^=
210 				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
211 		}
212 		omega[i] = index_of[tmp];
213 	}
214 
215 	/*
216 	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
217 	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
218 	 */
219 	for (j = count - 1; j >= 0; j--) {
220 		num1 = 0;
221 		for (i = deg_omega; i >= 0; i--) {
222 			if (omega[i] != nn)
223 				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
224 							i * root[j])];
225 		}
226 		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
227 		den = 0;
228 
229 		/* lambda[i+1] for i even is the formal derivative
230 		 * lambda_pr of lambda[i] */
231 		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
232 			if (lambda[i + 1] != nn) {
233 				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
234 						       i * root[j])];
235 			}
236 		}
237 		/* Apply error to data */
238 		if (num1 != 0 && loc[j] >= pad) {
239 			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
240 						       index_of[num2] +
241 						       nn - index_of[den])];
242 			/* Store the error correction pattern, if a
243 			 * correction buffer is available */
244 			if (corr) {
245 				corr[j] = cor;
246 			} else {
247 				/* If a data buffer is given and the
248 				 * error is inside the message,
249 				 * correct it */
250 				if (data && (loc[j] < (nn - nroots)))
251 					data[loc[j] - pad] ^= cor;
252 			}
253 		}
254 	}
255 
256 finish:
257 	if (eras_pos != NULL) {
258 		for (i = 0; i < count; i++)
259 			eras_pos[i] = loc[i] - pad;
260 	}
261 	return count;
262 
263 }
264