xref: /openbmc/linux/lib/reed_solomon/decode_rs.c (revision 21633981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic Reed Solomon encoder / decoder library
4  *
5  * Copyright 2002, Phil Karn, KA9Q
6  * May be used under the terms of the GNU General Public License (GPL)
7  *
8  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
9  *
10  * Generic data width independent code which is included by the wrappers.
11  */
12 {
13 	struct rs_codec *rs = rsc->codec;
14 	int deg_lambda, el, deg_omega;
15 	int i, j, r, k, pad;
16 	int nn = rs->nn;
17 	int nroots = rs->nroots;
18 	int fcr = rs->fcr;
19 	int prim = rs->prim;
20 	int iprim = rs->iprim;
21 	uint16_t *alpha_to = rs->alpha_to;
22 	uint16_t *index_of = rs->index_of;
23 	uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
24 	/* Err+Eras Locator poly and syndrome poly The maximum value
25 	 * of nroots is 8. So the necessary stack size will be about
26 	 * 220 bytes max.
27 	 */
28 	uint16_t lambda[nroots + 1], syn[nroots];
29 	uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
30 	uint16_t root[nroots], reg[nroots + 1], loc[nroots];
31 	int count = 0;
32 	uint16_t msk = (uint16_t) rs->nn;
33 
34 	/* Check length parameter for validity */
35 	pad = nn - nroots - len;
36 	BUG_ON(pad < 0 || pad >= nn);
37 
38 	/* Does the caller provide the syndrome ? */
39 	if (s != NULL)
40 		goto decode;
41 
42 	/* form the syndromes; i.e., evaluate data(x) at roots of
43 	 * g(x) */
44 	for (i = 0; i < nroots; i++)
45 		syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
46 
47 	for (j = 1; j < len; j++) {
48 		for (i = 0; i < nroots; i++) {
49 			if (syn[i] == 0) {
50 				syn[i] = (((uint16_t) data[j]) ^
51 					  invmsk) & msk;
52 			} else {
53 				syn[i] = ((((uint16_t) data[j]) ^
54 					   invmsk) & msk) ^
55 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
56 						       (fcr + i) * prim)];
57 			}
58 		}
59 	}
60 
61 	for (j = 0; j < nroots; j++) {
62 		for (i = 0; i < nroots; i++) {
63 			if (syn[i] == 0) {
64 				syn[i] = ((uint16_t) par[j]) & msk;
65 			} else {
66 				syn[i] = (((uint16_t) par[j]) & msk) ^
67 					alpha_to[rs_modnn(rs, index_of[syn[i]] +
68 						       (fcr+i)*prim)];
69 			}
70 		}
71 	}
72 	s = syn;
73 
74 	/* Convert syndromes to index form, checking for nonzero condition */
75 	syn_error = 0;
76 	for (i = 0; i < nroots; i++) {
77 		syn_error |= s[i];
78 		s[i] = index_of[s[i]];
79 	}
80 
81 	if (!syn_error) {
82 		/* if syndrome is zero, data[] is a codeword and there are no
83 		 * errors to correct. So return data[] unmodified
84 		 */
85 		count = 0;
86 		goto finish;
87 	}
88 
89  decode:
90 	memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
91 	lambda[0] = 1;
92 
93 	if (no_eras > 0) {
94 		/* Init lambda to be the erasure locator polynomial */
95 		lambda[1] = alpha_to[rs_modnn(rs,
96 					      prim * (nn - 1 - eras_pos[0]))];
97 		for (i = 1; i < no_eras; i++) {
98 			u = rs_modnn(rs, prim * (nn - 1 - eras_pos[i]));
99 			for (j = i + 1; j > 0; j--) {
100 				tmp = index_of[lambda[j - 1]];
101 				if (tmp != nn) {
102 					lambda[j] ^=
103 						alpha_to[rs_modnn(rs, u + tmp)];
104 				}
105 			}
106 		}
107 	}
108 
109 	for (i = 0; i < nroots + 1; i++)
110 		b[i] = index_of[lambda[i]];
111 
112 	/*
113 	 * Begin Berlekamp-Massey algorithm to determine error+erasure
114 	 * locator polynomial
115 	 */
116 	r = no_eras;
117 	el = no_eras;
118 	while (++r <= nroots) {	/* r is the step number */
119 		/* Compute discrepancy at the r-th step in poly-form */
120 		discr_r = 0;
121 		for (i = 0; i < r; i++) {
122 			if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
123 				discr_r ^=
124 					alpha_to[rs_modnn(rs,
125 							  index_of[lambda[i]] +
126 							  s[r - i - 1])];
127 			}
128 		}
129 		discr_r = index_of[discr_r];	/* Index form */
130 		if (discr_r == nn) {
131 			/* 2 lines below: B(x) <-- x*B(x) */
132 			memmove (&b[1], b, nroots * sizeof (b[0]));
133 			b[0] = nn;
134 		} else {
135 			/* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
136 			t[0] = lambda[0];
137 			for (i = 0; i < nroots; i++) {
138 				if (b[i] != nn) {
139 					t[i + 1] = lambda[i + 1] ^
140 						alpha_to[rs_modnn(rs, discr_r +
141 								  b[i])];
142 				} else
143 					t[i + 1] = lambda[i + 1];
144 			}
145 			if (2 * el <= r + no_eras - 1) {
146 				el = r + no_eras - el;
147 				/*
148 				 * 2 lines below: B(x) <-- inv(discr_r) *
149 				 * lambda(x)
150 				 */
151 				for (i = 0; i <= nroots; i++) {
152 					b[i] = (lambda[i] == 0) ? nn :
153 						rs_modnn(rs, index_of[lambda[i]]
154 							 - discr_r + nn);
155 				}
156 			} else {
157 				/* 2 lines below: B(x) <-- x*B(x) */
158 				memmove(&b[1], b, nroots * sizeof(b[0]));
159 				b[0] = nn;
160 			}
161 			memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
162 		}
163 	}
164 
165 	/* Convert lambda to index form and compute deg(lambda(x)) */
166 	deg_lambda = 0;
167 	for (i = 0; i < nroots + 1; i++) {
168 		lambda[i] = index_of[lambda[i]];
169 		if (lambda[i] != nn)
170 			deg_lambda = i;
171 	}
172 	/* Find roots of error+erasure locator polynomial by Chien search */
173 	memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
174 	count = 0;		/* Number of roots of lambda(x) */
175 	for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
176 		q = 1;		/* lambda[0] is always 0 */
177 		for (j = deg_lambda; j > 0; j--) {
178 			if (reg[j] != nn) {
179 				reg[j] = rs_modnn(rs, reg[j] + j);
180 				q ^= alpha_to[reg[j]];
181 			}
182 		}
183 		if (q != 0)
184 			continue;	/* Not a root */
185 		/* store root (index-form) and error location number */
186 		root[count] = i;
187 		loc[count] = k;
188 		/* If we've already found max possible roots,
189 		 * abort the search to save time
190 		 */
191 		if (++count == deg_lambda)
192 			break;
193 	}
194 	if (deg_lambda != count) {
195 		/*
196 		 * deg(lambda) unequal to number of roots => uncorrectable
197 		 * error detected
198 		 */
199 		count = -EBADMSG;
200 		goto finish;
201 	}
202 	/*
203 	 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
204 	 * x**nroots). in index form. Also find deg(omega).
205 	 */
206 	deg_omega = deg_lambda - 1;
207 	for (i = 0; i <= deg_omega; i++) {
208 		tmp = 0;
209 		for (j = i; j >= 0; j--) {
210 			if ((s[i - j] != nn) && (lambda[j] != nn))
211 				tmp ^=
212 				    alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
213 		}
214 		omega[i] = index_of[tmp];
215 	}
216 
217 	/*
218 	 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
219 	 * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
220 	 */
221 	for (j = count - 1; j >= 0; j--) {
222 		num1 = 0;
223 		for (i = deg_omega; i >= 0; i--) {
224 			if (omega[i] != nn)
225 				num1 ^= alpha_to[rs_modnn(rs, omega[i] +
226 							i * root[j])];
227 		}
228 		num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
229 		den = 0;
230 
231 		/* lambda[i+1] for i even is the formal derivative
232 		 * lambda_pr of lambda[i] */
233 		for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
234 			if (lambda[i + 1] != nn) {
235 				den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
236 						       i * root[j])];
237 			}
238 		}
239 		/* Apply error to data */
240 		if (num1 != 0 && loc[j] >= pad) {
241 			uint16_t cor = alpha_to[rs_modnn(rs,index_of[num1] +
242 						       index_of[num2] +
243 						       nn - index_of[den])];
244 			/* Store the error correction pattern, if a
245 			 * correction buffer is available */
246 			if (corr) {
247 				corr[j] = cor;
248 			} else {
249 				/* If a data buffer is given and the
250 				 * error is inside the message,
251 				 * correct it */
252 				if (data && (loc[j] < (nn - nroots)))
253 					data[loc[j] - pad] ^= cor;
254 			}
255 		}
256 	}
257 
258 finish:
259 	if (eras_pos != NULL) {
260 		for (i = 0; i < count; i++)
261 			eras_pos[i] = loc[i] - pad;
262 	}
263 	return count;
264 
265 }
266