xref: /openbmc/linux/lib/rbtree.c (revision e40573a4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   Red Black Trees
4   (C) 1999  Andrea Arcangeli <andrea@suse.de>
5   (C) 2002  David Woodhouse <dwmw2@infradead.org>
6   (C) 2012  Michel Lespinasse <walken@google.com>
7 
8 
9   linux/lib/rbtree.c
10 */
11 
12 #include <linux/rbtree_augmented.h>
13 #include <linux/export.h>
14 
15 /*
16  * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
17  *
18  *  1) A node is either red or black
19  *  2) The root is black
20  *  3) All leaves (NULL) are black
21  *  4) Both children of every red node are black
22  *  5) Every simple path from root to leaves contains the same number
23  *     of black nodes.
24  *
25  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
26  *  consecutive red nodes in a path and every red node is therefore followed by
27  *  a black. So if B is the number of black nodes on every simple path (as per
28  *  5), then the longest possible path due to 4 is 2B.
29  *
30  *  We shall indicate color with case, where black nodes are uppercase and red
31  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
32  *  parentheses and have some accompanying text comment.
33  */
34 
35 /*
36  * Notes on lockless lookups:
37  *
38  * All stores to the tree structure (rb_left and rb_right) must be done using
39  * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
40  * tree structure as seen in program order.
41  *
42  * These two requirements will allow lockless iteration of the tree -- not
43  * correct iteration mind you, tree rotations are not atomic so a lookup might
44  * miss entire subtrees.
45  *
46  * But they do guarantee that any such traversal will only see valid elements
47  * and that it will indeed complete -- does not get stuck in a loop.
48  *
49  * It also guarantees that if the lookup returns an element it is the 'correct'
50  * one. But not returning an element does _NOT_ mean it's not present.
51  *
52  * NOTE:
53  *
54  * Stores to __rb_parent_color are not important for simple lookups so those
55  * are left undone as of now. Nor did I check for loops involving parent
56  * pointers.
57  */
58 
59 static inline void rb_set_black(struct rb_node *rb)
60 {
61 	rb->__rb_parent_color |= RB_BLACK;
62 }
63 
64 static inline struct rb_node *rb_red_parent(struct rb_node *red)
65 {
66 	return (struct rb_node *)red->__rb_parent_color;
67 }
68 
69 /*
70  * Helper function for rotations:
71  * - old's parent and color get assigned to new
72  * - old gets assigned new as a parent and 'color' as a color.
73  */
74 static inline void
75 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76 			struct rb_root *root, int color)
77 {
78 	struct rb_node *parent = rb_parent(old);
79 	new->__rb_parent_color = old->__rb_parent_color;
80 	rb_set_parent_color(old, new, color);
81 	__rb_change_child(old, new, parent, root);
82 }
83 
84 static __always_inline void
85 __rb_insert(struct rb_node *node, struct rb_root *root,
86 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
87 {
88 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
89 
90 	while (true) {
91 		/*
92 		 * Loop invariant: node is red.
93 		 */
94 		if (unlikely(!parent)) {
95 			/*
96 			 * The inserted node is root. Either this is the
97 			 * first node, or we recursed at Case 1 below and
98 			 * are no longer violating 4).
99 			 */
100 			rb_set_parent_color(node, NULL, RB_BLACK);
101 			break;
102 		}
103 
104 		/*
105 		 * If there is a black parent, we are done.
106 		 * Otherwise, take some corrective action as,
107 		 * per 4), we don't want a red root or two
108 		 * consecutive red nodes.
109 		 */
110 		if(rb_is_black(parent))
111 			break;
112 
113 		gparent = rb_red_parent(parent);
114 
115 		tmp = gparent->rb_right;
116 		if (parent != tmp) {	/* parent == gparent->rb_left */
117 			if (tmp && rb_is_red(tmp)) {
118 				/*
119 				 * Case 1 - node's uncle is red (color flips).
120 				 *
121 				 *       G            g
122 				 *      / \          / \
123 				 *     p   u  -->   P   U
124 				 *    /            /
125 				 *   n            n
126 				 *
127 				 * However, since g's parent might be red, and
128 				 * 4) does not allow this, we need to recurse
129 				 * at g.
130 				 */
131 				rb_set_parent_color(tmp, gparent, RB_BLACK);
132 				rb_set_parent_color(parent, gparent, RB_BLACK);
133 				node = gparent;
134 				parent = rb_parent(node);
135 				rb_set_parent_color(node, parent, RB_RED);
136 				continue;
137 			}
138 
139 			tmp = parent->rb_right;
140 			if (node == tmp) {
141 				/*
142 				 * Case 2 - node's uncle is black and node is
143 				 * the parent's right child (left rotate at parent).
144 				 *
145 				 *      G             G
146 				 *     / \           / \
147 				 *    p   U  -->    n   U
148 				 *     \           /
149 				 *      n         p
150 				 *
151 				 * This still leaves us in violation of 4), the
152 				 * continuation into Case 3 will fix that.
153 				 */
154 				tmp = node->rb_left;
155 				WRITE_ONCE(parent->rb_right, tmp);
156 				WRITE_ONCE(node->rb_left, parent);
157 				if (tmp)
158 					rb_set_parent_color(tmp, parent,
159 							    RB_BLACK);
160 				rb_set_parent_color(parent, node, RB_RED);
161 				augment_rotate(parent, node);
162 				parent = node;
163 				tmp = node->rb_right;
164 			}
165 
166 			/*
167 			 * Case 3 - node's uncle is black and node is
168 			 * the parent's left child (right rotate at gparent).
169 			 *
170 			 *        G           P
171 			 *       / \         / \
172 			 *      p   U  -->  n   g
173 			 *     /                 \
174 			 *    n                   U
175 			 */
176 			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
177 			WRITE_ONCE(parent->rb_right, gparent);
178 			if (tmp)
179 				rb_set_parent_color(tmp, gparent, RB_BLACK);
180 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
181 			augment_rotate(gparent, parent);
182 			break;
183 		} else {
184 			tmp = gparent->rb_left;
185 			if (tmp && rb_is_red(tmp)) {
186 				/* Case 1 - color flips */
187 				rb_set_parent_color(tmp, gparent, RB_BLACK);
188 				rb_set_parent_color(parent, gparent, RB_BLACK);
189 				node = gparent;
190 				parent = rb_parent(node);
191 				rb_set_parent_color(node, parent, RB_RED);
192 				continue;
193 			}
194 
195 			tmp = parent->rb_left;
196 			if (node == tmp) {
197 				/* Case 2 - right rotate at parent */
198 				tmp = node->rb_right;
199 				WRITE_ONCE(parent->rb_left, tmp);
200 				WRITE_ONCE(node->rb_right, parent);
201 				if (tmp)
202 					rb_set_parent_color(tmp, parent,
203 							    RB_BLACK);
204 				rb_set_parent_color(parent, node, RB_RED);
205 				augment_rotate(parent, node);
206 				parent = node;
207 				tmp = node->rb_left;
208 			}
209 
210 			/* Case 3 - left rotate at gparent */
211 			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
212 			WRITE_ONCE(parent->rb_left, gparent);
213 			if (tmp)
214 				rb_set_parent_color(tmp, gparent, RB_BLACK);
215 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
216 			augment_rotate(gparent, parent);
217 			break;
218 		}
219 	}
220 }
221 
222 /*
223  * Inline version for rb_erase() use - we want to be able to inline
224  * and eliminate the dummy_rotate callback there
225  */
226 static __always_inline void
227 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
228 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
229 {
230 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
231 
232 	while (true) {
233 		/*
234 		 * Loop invariants:
235 		 * - node is black (or NULL on first iteration)
236 		 * - node is not the root (parent is not NULL)
237 		 * - All leaf paths going through parent and node have a
238 		 *   black node count that is 1 lower than other leaf paths.
239 		 */
240 		sibling = parent->rb_right;
241 		if (node != sibling) {	/* node == parent->rb_left */
242 			if (rb_is_red(sibling)) {
243 				/*
244 				 * Case 1 - left rotate at parent
245 				 *
246 				 *     P               S
247 				 *    / \             / \
248 				 *   N   s    -->    p   Sr
249 				 *      / \         / \
250 				 *     Sl  Sr      N   Sl
251 				 */
252 				tmp1 = sibling->rb_left;
253 				WRITE_ONCE(parent->rb_right, tmp1);
254 				WRITE_ONCE(sibling->rb_left, parent);
255 				rb_set_parent_color(tmp1, parent, RB_BLACK);
256 				__rb_rotate_set_parents(parent, sibling, root,
257 							RB_RED);
258 				augment_rotate(parent, sibling);
259 				sibling = tmp1;
260 			}
261 			tmp1 = sibling->rb_right;
262 			if (!tmp1 || rb_is_black(tmp1)) {
263 				tmp2 = sibling->rb_left;
264 				if (!tmp2 || rb_is_black(tmp2)) {
265 					/*
266 					 * Case 2 - sibling color flip
267 					 * (p could be either color here)
268 					 *
269 					 *    (p)           (p)
270 					 *    / \           / \
271 					 *   N   S    -->  N   s
272 					 *      / \           / \
273 					 *     Sl  Sr        Sl  Sr
274 					 *
275 					 * This leaves us violating 5) which
276 					 * can be fixed by flipping p to black
277 					 * if it was red, or by recursing at p.
278 					 * p is red when coming from Case 1.
279 					 */
280 					rb_set_parent_color(sibling, parent,
281 							    RB_RED);
282 					if (rb_is_red(parent))
283 						rb_set_black(parent);
284 					else {
285 						node = parent;
286 						parent = rb_parent(node);
287 						if (parent)
288 							continue;
289 					}
290 					break;
291 				}
292 				/*
293 				 * Case 3 - right rotate at sibling
294 				 * (p could be either color here)
295 				 *
296 				 *   (p)           (p)
297 				 *   / \           / \
298 				 *  N   S    -->  N   sl
299 				 *     / \             \
300 				 *    sl  Sr            S
301 				 *                       \
302 				 *                        Sr
303 				 *
304 				 * Note: p might be red, and then both
305 				 * p and sl are red after rotation(which
306 				 * breaks property 4). This is fixed in
307 				 * Case 4 (in __rb_rotate_set_parents()
308 				 *         which set sl the color of p
309 				 *         and set p RB_BLACK)
310 				 *
311 				 *   (p)            (sl)
312 				 *   / \            /  \
313 				 *  N   sl   -->   P    S
314 				 *       \        /      \
315 				 *        S      N        Sr
316 				 *         \
317 				 *          Sr
318 				 */
319 				tmp1 = tmp2->rb_right;
320 				WRITE_ONCE(sibling->rb_left, tmp1);
321 				WRITE_ONCE(tmp2->rb_right, sibling);
322 				WRITE_ONCE(parent->rb_right, tmp2);
323 				if (tmp1)
324 					rb_set_parent_color(tmp1, sibling,
325 							    RB_BLACK);
326 				augment_rotate(sibling, tmp2);
327 				tmp1 = sibling;
328 				sibling = tmp2;
329 			}
330 			/*
331 			 * Case 4 - left rotate at parent + color flips
332 			 * (p and sl could be either color here.
333 			 *  After rotation, p becomes black, s acquires
334 			 *  p's color, and sl keeps its color)
335 			 *
336 			 *      (p)             (s)
337 			 *      / \             / \
338 			 *     N   S     -->   P   Sr
339 			 *        / \         / \
340 			 *      (sl) sr      N  (sl)
341 			 */
342 			tmp2 = sibling->rb_left;
343 			WRITE_ONCE(parent->rb_right, tmp2);
344 			WRITE_ONCE(sibling->rb_left, parent);
345 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
346 			if (tmp2)
347 				rb_set_parent(tmp2, parent);
348 			__rb_rotate_set_parents(parent, sibling, root,
349 						RB_BLACK);
350 			augment_rotate(parent, sibling);
351 			break;
352 		} else {
353 			sibling = parent->rb_left;
354 			if (rb_is_red(sibling)) {
355 				/* Case 1 - right rotate at parent */
356 				tmp1 = sibling->rb_right;
357 				WRITE_ONCE(parent->rb_left, tmp1);
358 				WRITE_ONCE(sibling->rb_right, parent);
359 				rb_set_parent_color(tmp1, parent, RB_BLACK);
360 				__rb_rotate_set_parents(parent, sibling, root,
361 							RB_RED);
362 				augment_rotate(parent, sibling);
363 				sibling = tmp1;
364 			}
365 			tmp1 = sibling->rb_left;
366 			if (!tmp1 || rb_is_black(tmp1)) {
367 				tmp2 = sibling->rb_right;
368 				if (!tmp2 || rb_is_black(tmp2)) {
369 					/* Case 2 - sibling color flip */
370 					rb_set_parent_color(sibling, parent,
371 							    RB_RED);
372 					if (rb_is_red(parent))
373 						rb_set_black(parent);
374 					else {
375 						node = parent;
376 						parent = rb_parent(node);
377 						if (parent)
378 							continue;
379 					}
380 					break;
381 				}
382 				/* Case 3 - left rotate at sibling */
383 				tmp1 = tmp2->rb_left;
384 				WRITE_ONCE(sibling->rb_right, tmp1);
385 				WRITE_ONCE(tmp2->rb_left, sibling);
386 				WRITE_ONCE(parent->rb_left, tmp2);
387 				if (tmp1)
388 					rb_set_parent_color(tmp1, sibling,
389 							    RB_BLACK);
390 				augment_rotate(sibling, tmp2);
391 				tmp1 = sibling;
392 				sibling = tmp2;
393 			}
394 			/* Case 4 - right rotate at parent + color flips */
395 			tmp2 = sibling->rb_right;
396 			WRITE_ONCE(parent->rb_left, tmp2);
397 			WRITE_ONCE(sibling->rb_right, parent);
398 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
399 			if (tmp2)
400 				rb_set_parent(tmp2, parent);
401 			__rb_rotate_set_parents(parent, sibling, root,
402 						RB_BLACK);
403 			augment_rotate(parent, sibling);
404 			break;
405 		}
406 	}
407 }
408 
409 /* Non-inline version for rb_erase_augmented() use */
410 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
411 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
412 {
413 	____rb_erase_color(parent, root, augment_rotate);
414 }
415 EXPORT_SYMBOL(__rb_erase_color);
416 
417 /*
418  * Non-augmented rbtree manipulation functions.
419  *
420  * We use dummy augmented callbacks here, and have the compiler optimize them
421  * out of the rb_insert_color() and rb_erase() function definitions.
422  */
423 
424 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
425 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
426 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
427 
428 static const struct rb_augment_callbacks dummy_callbacks = {
429 	.propagate = dummy_propagate,
430 	.copy = dummy_copy,
431 	.rotate = dummy_rotate
432 };
433 
434 void rb_insert_color(struct rb_node *node, struct rb_root *root)
435 {
436 	__rb_insert(node, root, dummy_rotate);
437 }
438 EXPORT_SYMBOL(rb_insert_color);
439 
440 void rb_erase(struct rb_node *node, struct rb_root *root)
441 {
442 	struct rb_node *rebalance;
443 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
444 	if (rebalance)
445 		____rb_erase_color(rebalance, root, dummy_rotate);
446 }
447 EXPORT_SYMBOL(rb_erase);
448 
449 /*
450  * Augmented rbtree manipulation functions.
451  *
452  * This instantiates the same __always_inline functions as in the non-augmented
453  * case, but this time with user-defined callbacks.
454  */
455 
456 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
457 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
458 {
459 	__rb_insert(node, root, augment_rotate);
460 }
461 EXPORT_SYMBOL(__rb_insert_augmented);
462 
463 /*
464  * This function returns the first node (in sort order) of the tree.
465  */
466 struct rb_node *rb_first(const struct rb_root *root)
467 {
468 	struct rb_node	*n;
469 
470 	n = root->rb_node;
471 	if (!n)
472 		return NULL;
473 	while (n->rb_left)
474 		n = n->rb_left;
475 	return n;
476 }
477 EXPORT_SYMBOL(rb_first);
478 
479 struct rb_node *rb_last(const struct rb_root *root)
480 {
481 	struct rb_node	*n;
482 
483 	n = root->rb_node;
484 	if (!n)
485 		return NULL;
486 	while (n->rb_right)
487 		n = n->rb_right;
488 	return n;
489 }
490 EXPORT_SYMBOL(rb_last);
491 
492 struct rb_node *rb_next(const struct rb_node *node)
493 {
494 	struct rb_node *parent;
495 
496 	if (RB_EMPTY_NODE(node))
497 		return NULL;
498 
499 	/*
500 	 * If we have a right-hand child, go down and then left as far
501 	 * as we can.
502 	 */
503 	if (node->rb_right) {
504 		node = node->rb_right;
505 		while (node->rb_left)
506 			node = node->rb_left;
507 		return (struct rb_node *)node;
508 	}
509 
510 	/*
511 	 * No right-hand children. Everything down and left is smaller than us,
512 	 * so any 'next' node must be in the general direction of our parent.
513 	 * Go up the tree; any time the ancestor is a right-hand child of its
514 	 * parent, keep going up. First time it's a left-hand child of its
515 	 * parent, said parent is our 'next' node.
516 	 */
517 	while ((parent = rb_parent(node)) && node == parent->rb_right)
518 		node = parent;
519 
520 	return parent;
521 }
522 EXPORT_SYMBOL(rb_next);
523 
524 struct rb_node *rb_prev(const struct rb_node *node)
525 {
526 	struct rb_node *parent;
527 
528 	if (RB_EMPTY_NODE(node))
529 		return NULL;
530 
531 	/*
532 	 * If we have a left-hand child, go down and then right as far
533 	 * as we can.
534 	 */
535 	if (node->rb_left) {
536 		node = node->rb_left;
537 		while (node->rb_right)
538 			node = node->rb_right;
539 		return (struct rb_node *)node;
540 	}
541 
542 	/*
543 	 * No left-hand children. Go up till we find an ancestor which
544 	 * is a right-hand child of its parent.
545 	 */
546 	while ((parent = rb_parent(node)) && node == parent->rb_left)
547 		node = parent;
548 
549 	return parent;
550 }
551 EXPORT_SYMBOL(rb_prev);
552 
553 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
554 		     struct rb_root *root)
555 {
556 	struct rb_node *parent = rb_parent(victim);
557 
558 	/* Copy the pointers/colour from the victim to the replacement */
559 	*new = *victim;
560 
561 	/* Set the surrounding nodes to point to the replacement */
562 	if (victim->rb_left)
563 		rb_set_parent(victim->rb_left, new);
564 	if (victim->rb_right)
565 		rb_set_parent(victim->rb_right, new);
566 	__rb_change_child(victim, new, parent, root);
567 }
568 EXPORT_SYMBOL(rb_replace_node);
569 
570 void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
571 			 struct rb_root *root)
572 {
573 	struct rb_node *parent = rb_parent(victim);
574 
575 	/* Copy the pointers/colour from the victim to the replacement */
576 	*new = *victim;
577 
578 	/* Set the surrounding nodes to point to the replacement */
579 	if (victim->rb_left)
580 		rb_set_parent(victim->rb_left, new);
581 	if (victim->rb_right)
582 		rb_set_parent(victim->rb_right, new);
583 
584 	/* Set the parent's pointer to the new node last after an RCU barrier
585 	 * so that the pointers onwards are seen to be set correctly when doing
586 	 * an RCU walk over the tree.
587 	 */
588 	__rb_change_child_rcu(victim, new, parent, root);
589 }
590 EXPORT_SYMBOL(rb_replace_node_rcu);
591 
592 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
593 {
594 	for (;;) {
595 		if (node->rb_left)
596 			node = node->rb_left;
597 		else if (node->rb_right)
598 			node = node->rb_right;
599 		else
600 			return (struct rb_node *)node;
601 	}
602 }
603 
604 struct rb_node *rb_next_postorder(const struct rb_node *node)
605 {
606 	const struct rb_node *parent;
607 	if (!node)
608 		return NULL;
609 	parent = rb_parent(node);
610 
611 	/* If we're sitting on node, we've already seen our children */
612 	if (parent && node == parent->rb_left && parent->rb_right) {
613 		/* If we are the parent's left node, go to the parent's right
614 		 * node then all the way down to the left */
615 		return rb_left_deepest_node(parent->rb_right);
616 	} else
617 		/* Otherwise we are the parent's right node, and the parent
618 		 * should be next */
619 		return (struct rb_node *)parent;
620 }
621 EXPORT_SYMBOL(rb_next_postorder);
622 
623 struct rb_node *rb_first_postorder(const struct rb_root *root)
624 {
625 	if (!root->rb_node)
626 		return NULL;
627 
628 	return rb_left_deepest_node(root->rb_node);
629 }
630 EXPORT_SYMBOL(rb_first_postorder);
631