xref: /openbmc/linux/lib/rbtree.c (revision c819e2cf)
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6 
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11 
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16 
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 
21   linux/lib/rbtree.c
22 */
23 
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26 
27 /*
28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29  *
30  *  1) A node is either red or black
31  *  2) The root is black
32  *  3) All leaves (NULL) are black
33  *  4) Both children of every red node are black
34  *  5) Every simple path from root to leaves contains the same number
35  *     of black nodes.
36  *
37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  *  consecutive red nodes in a path and every red node is therefore followed by
39  *  a black. So if B is the number of black nodes on every simple path (as per
40  *  5), then the longest possible path due to 4 is 2B.
41  *
42  *  We shall indicate color with case, where black nodes are uppercase and red
43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  *  parentheses and have some accompanying text comment.
45  */
46 
47 static inline void rb_set_black(struct rb_node *rb)
48 {
49 	rb->__rb_parent_color |= RB_BLACK;
50 }
51 
52 static inline struct rb_node *rb_red_parent(struct rb_node *red)
53 {
54 	return (struct rb_node *)red->__rb_parent_color;
55 }
56 
57 /*
58  * Helper function for rotations:
59  * - old's parent and color get assigned to new
60  * - old gets assigned new as a parent and 'color' as a color.
61  */
62 static inline void
63 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
64 			struct rb_root *root, int color)
65 {
66 	struct rb_node *parent = rb_parent(old);
67 	new->__rb_parent_color = old->__rb_parent_color;
68 	rb_set_parent_color(old, new, color);
69 	__rb_change_child(old, new, parent, root);
70 }
71 
72 static __always_inline void
73 __rb_insert(struct rb_node *node, struct rb_root *root,
74 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
75 {
76 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
77 
78 	while (true) {
79 		/*
80 		 * Loop invariant: node is red
81 		 *
82 		 * If there is a black parent, we are done.
83 		 * Otherwise, take some corrective action as we don't
84 		 * want a red root or two consecutive red nodes.
85 		 */
86 		if (!parent) {
87 			rb_set_parent_color(node, NULL, RB_BLACK);
88 			break;
89 		} else if (rb_is_black(parent))
90 			break;
91 
92 		gparent = rb_red_parent(parent);
93 
94 		tmp = gparent->rb_right;
95 		if (parent != tmp) {	/* parent == gparent->rb_left */
96 			if (tmp && rb_is_red(tmp)) {
97 				/*
98 				 * Case 1 - color flips
99 				 *
100 				 *       G            g
101 				 *      / \          / \
102 				 *     p   u  -->   P   U
103 				 *    /            /
104 				 *   n            n
105 				 *
106 				 * However, since g's parent might be red, and
107 				 * 4) does not allow this, we need to recurse
108 				 * at g.
109 				 */
110 				rb_set_parent_color(tmp, gparent, RB_BLACK);
111 				rb_set_parent_color(parent, gparent, RB_BLACK);
112 				node = gparent;
113 				parent = rb_parent(node);
114 				rb_set_parent_color(node, parent, RB_RED);
115 				continue;
116 			}
117 
118 			tmp = parent->rb_right;
119 			if (node == tmp) {
120 				/*
121 				 * Case 2 - left rotate at parent
122 				 *
123 				 *      G             G
124 				 *     / \           / \
125 				 *    p   U  -->    n   U
126 				 *     \           /
127 				 *      n         p
128 				 *
129 				 * This still leaves us in violation of 4), the
130 				 * continuation into Case 3 will fix that.
131 				 */
132 				parent->rb_right = tmp = node->rb_left;
133 				node->rb_left = parent;
134 				if (tmp)
135 					rb_set_parent_color(tmp, parent,
136 							    RB_BLACK);
137 				rb_set_parent_color(parent, node, RB_RED);
138 				augment_rotate(parent, node);
139 				parent = node;
140 				tmp = node->rb_right;
141 			}
142 
143 			/*
144 			 * Case 3 - right rotate at gparent
145 			 *
146 			 *        G           P
147 			 *       / \         / \
148 			 *      p   U  -->  n   g
149 			 *     /                 \
150 			 *    n                   U
151 			 */
152 			gparent->rb_left = tmp;  /* == parent->rb_right */
153 			parent->rb_right = gparent;
154 			if (tmp)
155 				rb_set_parent_color(tmp, gparent, RB_BLACK);
156 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
157 			augment_rotate(gparent, parent);
158 			break;
159 		} else {
160 			tmp = gparent->rb_left;
161 			if (tmp && rb_is_red(tmp)) {
162 				/* Case 1 - color flips */
163 				rb_set_parent_color(tmp, gparent, RB_BLACK);
164 				rb_set_parent_color(parent, gparent, RB_BLACK);
165 				node = gparent;
166 				parent = rb_parent(node);
167 				rb_set_parent_color(node, parent, RB_RED);
168 				continue;
169 			}
170 
171 			tmp = parent->rb_left;
172 			if (node == tmp) {
173 				/* Case 2 - right rotate at parent */
174 				parent->rb_left = tmp = node->rb_right;
175 				node->rb_right = parent;
176 				if (tmp)
177 					rb_set_parent_color(tmp, parent,
178 							    RB_BLACK);
179 				rb_set_parent_color(parent, node, RB_RED);
180 				augment_rotate(parent, node);
181 				parent = node;
182 				tmp = node->rb_left;
183 			}
184 
185 			/* Case 3 - left rotate at gparent */
186 			gparent->rb_right = tmp;  /* == parent->rb_left */
187 			parent->rb_left = gparent;
188 			if (tmp)
189 				rb_set_parent_color(tmp, gparent, RB_BLACK);
190 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
191 			augment_rotate(gparent, parent);
192 			break;
193 		}
194 	}
195 }
196 
197 /*
198  * Inline version for rb_erase() use - we want to be able to inline
199  * and eliminate the dummy_rotate callback there
200  */
201 static __always_inline void
202 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
203 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
204 {
205 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
206 
207 	while (true) {
208 		/*
209 		 * Loop invariants:
210 		 * - node is black (or NULL on first iteration)
211 		 * - node is not the root (parent is not NULL)
212 		 * - All leaf paths going through parent and node have a
213 		 *   black node count that is 1 lower than other leaf paths.
214 		 */
215 		sibling = parent->rb_right;
216 		if (node != sibling) {	/* node == parent->rb_left */
217 			if (rb_is_red(sibling)) {
218 				/*
219 				 * Case 1 - left rotate at parent
220 				 *
221 				 *     P               S
222 				 *    / \             / \
223 				 *   N   s    -->    p   Sr
224 				 *      / \         / \
225 				 *     Sl  Sr      N   Sl
226 				 */
227 				parent->rb_right = tmp1 = sibling->rb_left;
228 				sibling->rb_left = parent;
229 				rb_set_parent_color(tmp1, parent, RB_BLACK);
230 				__rb_rotate_set_parents(parent, sibling, root,
231 							RB_RED);
232 				augment_rotate(parent, sibling);
233 				sibling = tmp1;
234 			}
235 			tmp1 = sibling->rb_right;
236 			if (!tmp1 || rb_is_black(tmp1)) {
237 				tmp2 = sibling->rb_left;
238 				if (!tmp2 || rb_is_black(tmp2)) {
239 					/*
240 					 * Case 2 - sibling color flip
241 					 * (p could be either color here)
242 					 *
243 					 *    (p)           (p)
244 					 *    / \           / \
245 					 *   N   S    -->  N   s
246 					 *      / \           / \
247 					 *     Sl  Sr        Sl  Sr
248 					 *
249 					 * This leaves us violating 5) which
250 					 * can be fixed by flipping p to black
251 					 * if it was red, or by recursing at p.
252 					 * p is red when coming from Case 1.
253 					 */
254 					rb_set_parent_color(sibling, parent,
255 							    RB_RED);
256 					if (rb_is_red(parent))
257 						rb_set_black(parent);
258 					else {
259 						node = parent;
260 						parent = rb_parent(node);
261 						if (parent)
262 							continue;
263 					}
264 					break;
265 				}
266 				/*
267 				 * Case 3 - right rotate at sibling
268 				 * (p could be either color here)
269 				 *
270 				 *   (p)           (p)
271 				 *   / \           / \
272 				 *  N   S    -->  N   Sl
273 				 *     / \             \
274 				 *    sl  Sr            s
275 				 *                       \
276 				 *                        Sr
277 				 */
278 				sibling->rb_left = tmp1 = tmp2->rb_right;
279 				tmp2->rb_right = sibling;
280 				parent->rb_right = tmp2;
281 				if (tmp1)
282 					rb_set_parent_color(tmp1, sibling,
283 							    RB_BLACK);
284 				augment_rotate(sibling, tmp2);
285 				tmp1 = sibling;
286 				sibling = tmp2;
287 			}
288 			/*
289 			 * Case 4 - left rotate at parent + color flips
290 			 * (p and sl could be either color here.
291 			 *  After rotation, p becomes black, s acquires
292 			 *  p's color, and sl keeps its color)
293 			 *
294 			 *      (p)             (s)
295 			 *      / \             / \
296 			 *     N   S     -->   P   Sr
297 			 *        / \         / \
298 			 *      (sl) sr      N  (sl)
299 			 */
300 			parent->rb_right = tmp2 = sibling->rb_left;
301 			sibling->rb_left = parent;
302 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
303 			if (tmp2)
304 				rb_set_parent(tmp2, parent);
305 			__rb_rotate_set_parents(parent, sibling, root,
306 						RB_BLACK);
307 			augment_rotate(parent, sibling);
308 			break;
309 		} else {
310 			sibling = parent->rb_left;
311 			if (rb_is_red(sibling)) {
312 				/* Case 1 - right rotate at parent */
313 				parent->rb_left = tmp1 = sibling->rb_right;
314 				sibling->rb_right = parent;
315 				rb_set_parent_color(tmp1, parent, RB_BLACK);
316 				__rb_rotate_set_parents(parent, sibling, root,
317 							RB_RED);
318 				augment_rotate(parent, sibling);
319 				sibling = tmp1;
320 			}
321 			tmp1 = sibling->rb_left;
322 			if (!tmp1 || rb_is_black(tmp1)) {
323 				tmp2 = sibling->rb_right;
324 				if (!tmp2 || rb_is_black(tmp2)) {
325 					/* Case 2 - sibling color flip */
326 					rb_set_parent_color(sibling, parent,
327 							    RB_RED);
328 					if (rb_is_red(parent))
329 						rb_set_black(parent);
330 					else {
331 						node = parent;
332 						parent = rb_parent(node);
333 						if (parent)
334 							continue;
335 					}
336 					break;
337 				}
338 				/* Case 3 - right rotate at sibling */
339 				sibling->rb_right = tmp1 = tmp2->rb_left;
340 				tmp2->rb_left = sibling;
341 				parent->rb_left = tmp2;
342 				if (tmp1)
343 					rb_set_parent_color(tmp1, sibling,
344 							    RB_BLACK);
345 				augment_rotate(sibling, tmp2);
346 				tmp1 = sibling;
347 				sibling = tmp2;
348 			}
349 			/* Case 4 - left rotate at parent + color flips */
350 			parent->rb_left = tmp2 = sibling->rb_right;
351 			sibling->rb_right = parent;
352 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
353 			if (tmp2)
354 				rb_set_parent(tmp2, parent);
355 			__rb_rotate_set_parents(parent, sibling, root,
356 						RB_BLACK);
357 			augment_rotate(parent, sibling);
358 			break;
359 		}
360 	}
361 }
362 
363 /* Non-inline version for rb_erase_augmented() use */
364 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
365 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
366 {
367 	____rb_erase_color(parent, root, augment_rotate);
368 }
369 EXPORT_SYMBOL(__rb_erase_color);
370 
371 /*
372  * Non-augmented rbtree manipulation functions.
373  *
374  * We use dummy augmented callbacks here, and have the compiler optimize them
375  * out of the rb_insert_color() and rb_erase() function definitions.
376  */
377 
378 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
379 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
380 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
381 
382 static const struct rb_augment_callbacks dummy_callbacks = {
383 	dummy_propagate, dummy_copy, dummy_rotate
384 };
385 
386 void rb_insert_color(struct rb_node *node, struct rb_root *root)
387 {
388 	__rb_insert(node, root, dummy_rotate);
389 }
390 EXPORT_SYMBOL(rb_insert_color);
391 
392 void rb_erase(struct rb_node *node, struct rb_root *root)
393 {
394 	struct rb_node *rebalance;
395 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
396 	if (rebalance)
397 		____rb_erase_color(rebalance, root, dummy_rotate);
398 }
399 EXPORT_SYMBOL(rb_erase);
400 
401 /*
402  * Augmented rbtree manipulation functions.
403  *
404  * This instantiates the same __always_inline functions as in the non-augmented
405  * case, but this time with user-defined callbacks.
406  */
407 
408 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
409 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
410 {
411 	__rb_insert(node, root, augment_rotate);
412 }
413 EXPORT_SYMBOL(__rb_insert_augmented);
414 
415 /*
416  * This function returns the first node (in sort order) of the tree.
417  */
418 struct rb_node *rb_first(const struct rb_root *root)
419 {
420 	struct rb_node	*n;
421 
422 	n = root->rb_node;
423 	if (!n)
424 		return NULL;
425 	while (n->rb_left)
426 		n = n->rb_left;
427 	return n;
428 }
429 EXPORT_SYMBOL(rb_first);
430 
431 struct rb_node *rb_last(const struct rb_root *root)
432 {
433 	struct rb_node	*n;
434 
435 	n = root->rb_node;
436 	if (!n)
437 		return NULL;
438 	while (n->rb_right)
439 		n = n->rb_right;
440 	return n;
441 }
442 EXPORT_SYMBOL(rb_last);
443 
444 struct rb_node *rb_next(const struct rb_node *node)
445 {
446 	struct rb_node *parent;
447 
448 	if (RB_EMPTY_NODE(node))
449 		return NULL;
450 
451 	/*
452 	 * If we have a right-hand child, go down and then left as far
453 	 * as we can.
454 	 */
455 	if (node->rb_right) {
456 		node = node->rb_right;
457 		while (node->rb_left)
458 			node=node->rb_left;
459 		return (struct rb_node *)node;
460 	}
461 
462 	/*
463 	 * No right-hand children. Everything down and left is smaller than us,
464 	 * so any 'next' node must be in the general direction of our parent.
465 	 * Go up the tree; any time the ancestor is a right-hand child of its
466 	 * parent, keep going up. First time it's a left-hand child of its
467 	 * parent, said parent is our 'next' node.
468 	 */
469 	while ((parent = rb_parent(node)) && node == parent->rb_right)
470 		node = parent;
471 
472 	return parent;
473 }
474 EXPORT_SYMBOL(rb_next);
475 
476 struct rb_node *rb_prev(const struct rb_node *node)
477 {
478 	struct rb_node *parent;
479 
480 	if (RB_EMPTY_NODE(node))
481 		return NULL;
482 
483 	/*
484 	 * If we have a left-hand child, go down and then right as far
485 	 * as we can.
486 	 */
487 	if (node->rb_left) {
488 		node = node->rb_left;
489 		while (node->rb_right)
490 			node=node->rb_right;
491 		return (struct rb_node *)node;
492 	}
493 
494 	/*
495 	 * No left-hand children. Go up till we find an ancestor which
496 	 * is a right-hand child of its parent.
497 	 */
498 	while ((parent = rb_parent(node)) && node == parent->rb_left)
499 		node = parent;
500 
501 	return parent;
502 }
503 EXPORT_SYMBOL(rb_prev);
504 
505 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
506 		     struct rb_root *root)
507 {
508 	struct rb_node *parent = rb_parent(victim);
509 
510 	/* Set the surrounding nodes to point to the replacement */
511 	__rb_change_child(victim, new, parent, root);
512 	if (victim->rb_left)
513 		rb_set_parent(victim->rb_left, new);
514 	if (victim->rb_right)
515 		rb_set_parent(victim->rb_right, new);
516 
517 	/* Copy the pointers/colour from the victim to the replacement */
518 	*new = *victim;
519 }
520 EXPORT_SYMBOL(rb_replace_node);
521 
522 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
523 {
524 	for (;;) {
525 		if (node->rb_left)
526 			node = node->rb_left;
527 		else if (node->rb_right)
528 			node = node->rb_right;
529 		else
530 			return (struct rb_node *)node;
531 	}
532 }
533 
534 struct rb_node *rb_next_postorder(const struct rb_node *node)
535 {
536 	const struct rb_node *parent;
537 	if (!node)
538 		return NULL;
539 	parent = rb_parent(node);
540 
541 	/* If we're sitting on node, we've already seen our children */
542 	if (parent && node == parent->rb_left && parent->rb_right) {
543 		/* If we are the parent's left node, go to the parent's right
544 		 * node then all the way down to the left */
545 		return rb_left_deepest_node(parent->rb_right);
546 	} else
547 		/* Otherwise we are the parent's right node, and the parent
548 		 * should be next */
549 		return (struct rb_node *)parent;
550 }
551 EXPORT_SYMBOL(rb_next_postorder);
552 
553 struct rb_node *rb_first_postorder(const struct rb_root *root)
554 {
555 	if (!root->rb_node)
556 		return NULL;
557 
558 	return rb_left_deepest_node(root->rb_node);
559 }
560 EXPORT_SYMBOL(rb_first_postorder);
561