xref: /openbmc/linux/lib/rbtree.c (revision 9ee0034b8f49aaaa7e7c2da8db1038915db99c19)
1  /*
2    Red Black Trees
3    (C) 1999  Andrea Arcangeli <andrea@suse.de>
4    (C) 2002  David Woodhouse <dwmw2@infradead.org>
5    (C) 2012  Michel Lespinasse <walken@google.com>
6  
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2 of the License, or
10    (at your option) any later version.
11  
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16  
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  
21    linux/lib/rbtree.c
22  */
23  
24  #include <linux/rbtree_augmented.h>
25  #include <linux/export.h>
26  
27  /*
28   * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29   *
30   *  1) A node is either red or black
31   *  2) The root is black
32   *  3) All leaves (NULL) are black
33   *  4) Both children of every red node are black
34   *  5) Every simple path from root to leaves contains the same number
35   *     of black nodes.
36   *
37   *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38   *  consecutive red nodes in a path and every red node is therefore followed by
39   *  a black. So if B is the number of black nodes on every simple path (as per
40   *  5), then the longest possible path due to 4 is 2B.
41   *
42   *  We shall indicate color with case, where black nodes are uppercase and red
43   *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44   *  parentheses and have some accompanying text comment.
45   */
46  
47  /*
48   * Notes on lockless lookups:
49   *
50   * All stores to the tree structure (rb_left and rb_right) must be done using
51   * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52   * tree structure as seen in program order.
53   *
54   * These two requirements will allow lockless iteration of the tree -- not
55   * correct iteration mind you, tree rotations are not atomic so a lookup might
56   * miss entire subtrees.
57   *
58   * But they do guarantee that any such traversal will only see valid elements
59   * and that it will indeed complete -- does not get stuck in a loop.
60   *
61   * It also guarantees that if the lookup returns an element it is the 'correct'
62   * one. But not returning an element does _NOT_ mean it's not present.
63   *
64   * NOTE:
65   *
66   * Stores to __rb_parent_color are not important for simple lookups so those
67   * are left undone as of now. Nor did I check for loops involving parent
68   * pointers.
69   */
70  
71  static inline void rb_set_black(struct rb_node *rb)
72  {
73  	rb->__rb_parent_color |= RB_BLACK;
74  }
75  
76  static inline struct rb_node *rb_red_parent(struct rb_node *red)
77  {
78  	return (struct rb_node *)red->__rb_parent_color;
79  }
80  
81  /*
82   * Helper function for rotations:
83   * - old's parent and color get assigned to new
84   * - old gets assigned new as a parent and 'color' as a color.
85   */
86  static inline void
87  __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88  			struct rb_root *root, int color)
89  {
90  	struct rb_node *parent = rb_parent(old);
91  	new->__rb_parent_color = old->__rb_parent_color;
92  	rb_set_parent_color(old, new, color);
93  	__rb_change_child(old, new, parent, root);
94  }
95  
96  static __always_inline void
97  __rb_insert(struct rb_node *node, struct rb_root *root,
98  	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
99  {
100  	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101  
102  	while (true) {
103  		/*
104  		 * Loop invariant: node is red
105  		 *
106  		 * If there is a black parent, we are done.
107  		 * Otherwise, take some corrective action as we don't
108  		 * want a red root or two consecutive red nodes.
109  		 */
110  		if (!parent) {
111  			rb_set_parent_color(node, NULL, RB_BLACK);
112  			break;
113  		} else if (rb_is_black(parent))
114  			break;
115  
116  		gparent = rb_red_parent(parent);
117  
118  		tmp = gparent->rb_right;
119  		if (parent != tmp) {	/* parent == gparent->rb_left */
120  			if (tmp && rb_is_red(tmp)) {
121  				/*
122  				 * Case 1 - color flips
123  				 *
124  				 *       G            g
125  				 *      / \          / \
126  				 *     p   u  -->   P   U
127  				 *    /            /
128  				 *   n            n
129  				 *
130  				 * However, since g's parent might be red, and
131  				 * 4) does not allow this, we need to recurse
132  				 * at g.
133  				 */
134  				rb_set_parent_color(tmp, gparent, RB_BLACK);
135  				rb_set_parent_color(parent, gparent, RB_BLACK);
136  				node = gparent;
137  				parent = rb_parent(node);
138  				rb_set_parent_color(node, parent, RB_RED);
139  				continue;
140  			}
141  
142  			tmp = parent->rb_right;
143  			if (node == tmp) {
144  				/*
145  				 * Case 2 - left rotate at parent
146  				 *
147  				 *      G             G
148  				 *     / \           / \
149  				 *    p   U  -->    n   U
150  				 *     \           /
151  				 *      n         p
152  				 *
153  				 * This still leaves us in violation of 4), the
154  				 * continuation into Case 3 will fix that.
155  				 */
156  				tmp = node->rb_left;
157  				WRITE_ONCE(parent->rb_right, tmp);
158  				WRITE_ONCE(node->rb_left, parent);
159  				if (tmp)
160  					rb_set_parent_color(tmp, parent,
161  							    RB_BLACK);
162  				rb_set_parent_color(parent, node, RB_RED);
163  				augment_rotate(parent, node);
164  				parent = node;
165  				tmp = node->rb_right;
166  			}
167  
168  			/*
169  			 * Case 3 - right rotate at gparent
170  			 *
171  			 *        G           P
172  			 *       / \         / \
173  			 *      p   U  -->  n   g
174  			 *     /                 \
175  			 *    n                   U
176  			 */
177  			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178  			WRITE_ONCE(parent->rb_right, gparent);
179  			if (tmp)
180  				rb_set_parent_color(tmp, gparent, RB_BLACK);
181  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182  			augment_rotate(gparent, parent);
183  			break;
184  		} else {
185  			tmp = gparent->rb_left;
186  			if (tmp && rb_is_red(tmp)) {
187  				/* Case 1 - color flips */
188  				rb_set_parent_color(tmp, gparent, RB_BLACK);
189  				rb_set_parent_color(parent, gparent, RB_BLACK);
190  				node = gparent;
191  				parent = rb_parent(node);
192  				rb_set_parent_color(node, parent, RB_RED);
193  				continue;
194  			}
195  
196  			tmp = parent->rb_left;
197  			if (node == tmp) {
198  				/* Case 2 - right rotate at parent */
199  				tmp = node->rb_right;
200  				WRITE_ONCE(parent->rb_left, tmp);
201  				WRITE_ONCE(node->rb_right, parent);
202  				if (tmp)
203  					rb_set_parent_color(tmp, parent,
204  							    RB_BLACK);
205  				rb_set_parent_color(parent, node, RB_RED);
206  				augment_rotate(parent, node);
207  				parent = node;
208  				tmp = node->rb_left;
209  			}
210  
211  			/* Case 3 - left rotate at gparent */
212  			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213  			WRITE_ONCE(parent->rb_left, gparent);
214  			if (tmp)
215  				rb_set_parent_color(tmp, gparent, RB_BLACK);
216  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217  			augment_rotate(gparent, parent);
218  			break;
219  		}
220  	}
221  }
222  
223  /*
224   * Inline version for rb_erase() use - we want to be able to inline
225   * and eliminate the dummy_rotate callback there
226   */
227  static __always_inline void
228  ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230  {
231  	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232  
233  	while (true) {
234  		/*
235  		 * Loop invariants:
236  		 * - node is black (or NULL on first iteration)
237  		 * - node is not the root (parent is not NULL)
238  		 * - All leaf paths going through parent and node have a
239  		 *   black node count that is 1 lower than other leaf paths.
240  		 */
241  		sibling = parent->rb_right;
242  		if (node != sibling) {	/* node == parent->rb_left */
243  			if (rb_is_red(sibling)) {
244  				/*
245  				 * Case 1 - left rotate at parent
246  				 *
247  				 *     P               S
248  				 *    / \             / \
249  				 *   N   s    -->    p   Sr
250  				 *      / \         / \
251  				 *     Sl  Sr      N   Sl
252  				 */
253  				tmp1 = sibling->rb_left;
254  				WRITE_ONCE(parent->rb_right, tmp1);
255  				WRITE_ONCE(sibling->rb_left, parent);
256  				rb_set_parent_color(tmp1, parent, RB_BLACK);
257  				__rb_rotate_set_parents(parent, sibling, root,
258  							RB_RED);
259  				augment_rotate(parent, sibling);
260  				sibling = tmp1;
261  			}
262  			tmp1 = sibling->rb_right;
263  			if (!tmp1 || rb_is_black(tmp1)) {
264  				tmp2 = sibling->rb_left;
265  				if (!tmp2 || rb_is_black(tmp2)) {
266  					/*
267  					 * Case 2 - sibling color flip
268  					 * (p could be either color here)
269  					 *
270  					 *    (p)           (p)
271  					 *    / \           / \
272  					 *   N   S    -->  N   s
273  					 *      / \           / \
274  					 *     Sl  Sr        Sl  Sr
275  					 *
276  					 * This leaves us violating 5) which
277  					 * can be fixed by flipping p to black
278  					 * if it was red, or by recursing at p.
279  					 * p is red when coming from Case 1.
280  					 */
281  					rb_set_parent_color(sibling, parent,
282  							    RB_RED);
283  					if (rb_is_red(parent))
284  						rb_set_black(parent);
285  					else {
286  						node = parent;
287  						parent = rb_parent(node);
288  						if (parent)
289  							continue;
290  					}
291  					break;
292  				}
293  				/*
294  				 * Case 3 - right rotate at sibling
295  				 * (p could be either color here)
296  				 *
297  				 *   (p)           (p)
298  				 *   / \           / \
299  				 *  N   S    -->  N   Sl
300  				 *     / \             \
301  				 *    sl  Sr            s
302  				 *                       \
303  				 *                        Sr
304  				 */
305  				tmp1 = tmp2->rb_right;
306  				WRITE_ONCE(sibling->rb_left, tmp1);
307  				WRITE_ONCE(tmp2->rb_right, sibling);
308  				WRITE_ONCE(parent->rb_right, tmp2);
309  				if (tmp1)
310  					rb_set_parent_color(tmp1, sibling,
311  							    RB_BLACK);
312  				augment_rotate(sibling, tmp2);
313  				tmp1 = sibling;
314  				sibling = tmp2;
315  			}
316  			/*
317  			 * Case 4 - left rotate at parent + color flips
318  			 * (p and sl could be either color here.
319  			 *  After rotation, p becomes black, s acquires
320  			 *  p's color, and sl keeps its color)
321  			 *
322  			 *      (p)             (s)
323  			 *      / \             / \
324  			 *     N   S     -->   P   Sr
325  			 *        / \         / \
326  			 *      (sl) sr      N  (sl)
327  			 */
328  			tmp2 = sibling->rb_left;
329  			WRITE_ONCE(parent->rb_right, tmp2);
330  			WRITE_ONCE(sibling->rb_left, parent);
331  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
332  			if (tmp2)
333  				rb_set_parent(tmp2, parent);
334  			__rb_rotate_set_parents(parent, sibling, root,
335  						RB_BLACK);
336  			augment_rotate(parent, sibling);
337  			break;
338  		} else {
339  			sibling = parent->rb_left;
340  			if (rb_is_red(sibling)) {
341  				/* Case 1 - right rotate at parent */
342  				tmp1 = sibling->rb_right;
343  				WRITE_ONCE(parent->rb_left, tmp1);
344  				WRITE_ONCE(sibling->rb_right, parent);
345  				rb_set_parent_color(tmp1, parent, RB_BLACK);
346  				__rb_rotate_set_parents(parent, sibling, root,
347  							RB_RED);
348  				augment_rotate(parent, sibling);
349  				sibling = tmp1;
350  			}
351  			tmp1 = sibling->rb_left;
352  			if (!tmp1 || rb_is_black(tmp1)) {
353  				tmp2 = sibling->rb_right;
354  				if (!tmp2 || rb_is_black(tmp2)) {
355  					/* Case 2 - sibling color flip */
356  					rb_set_parent_color(sibling, parent,
357  							    RB_RED);
358  					if (rb_is_red(parent))
359  						rb_set_black(parent);
360  					else {
361  						node = parent;
362  						parent = rb_parent(node);
363  						if (parent)
364  							continue;
365  					}
366  					break;
367  				}
368  				/* Case 3 - right rotate at sibling */
369  				tmp1 = tmp2->rb_left;
370  				WRITE_ONCE(sibling->rb_right, tmp1);
371  				WRITE_ONCE(tmp2->rb_left, sibling);
372  				WRITE_ONCE(parent->rb_left, tmp2);
373  				if (tmp1)
374  					rb_set_parent_color(tmp1, sibling,
375  							    RB_BLACK);
376  				augment_rotate(sibling, tmp2);
377  				tmp1 = sibling;
378  				sibling = tmp2;
379  			}
380  			/* Case 4 - left rotate at parent + color flips */
381  			tmp2 = sibling->rb_right;
382  			WRITE_ONCE(parent->rb_left, tmp2);
383  			WRITE_ONCE(sibling->rb_right, parent);
384  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
385  			if (tmp2)
386  				rb_set_parent(tmp2, parent);
387  			__rb_rotate_set_parents(parent, sibling, root,
388  						RB_BLACK);
389  			augment_rotate(parent, sibling);
390  			break;
391  		}
392  	}
393  }
394  
395  /* Non-inline version for rb_erase_augmented() use */
396  void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
397  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
398  {
399  	____rb_erase_color(parent, root, augment_rotate);
400  }
401  EXPORT_SYMBOL(__rb_erase_color);
402  
403  /*
404   * Non-augmented rbtree manipulation functions.
405   *
406   * We use dummy augmented callbacks here, and have the compiler optimize them
407   * out of the rb_insert_color() and rb_erase() function definitions.
408   */
409  
410  static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
411  static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
412  static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
413  
414  static const struct rb_augment_callbacks dummy_callbacks = {
415  	dummy_propagate, dummy_copy, dummy_rotate
416  };
417  
418  void rb_insert_color(struct rb_node *node, struct rb_root *root)
419  {
420  	__rb_insert(node, root, dummy_rotate);
421  }
422  EXPORT_SYMBOL(rb_insert_color);
423  
424  void rb_erase(struct rb_node *node, struct rb_root *root)
425  {
426  	struct rb_node *rebalance;
427  	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
428  	if (rebalance)
429  		____rb_erase_color(rebalance, root, dummy_rotate);
430  }
431  EXPORT_SYMBOL(rb_erase);
432  
433  /*
434   * Augmented rbtree manipulation functions.
435   *
436   * This instantiates the same __always_inline functions as in the non-augmented
437   * case, but this time with user-defined callbacks.
438   */
439  
440  void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
441  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
442  {
443  	__rb_insert(node, root, augment_rotate);
444  }
445  EXPORT_SYMBOL(__rb_insert_augmented);
446  
447  /*
448   * This function returns the first node (in sort order) of the tree.
449   */
450  struct rb_node *rb_first(const struct rb_root *root)
451  {
452  	struct rb_node	*n;
453  
454  	n = root->rb_node;
455  	if (!n)
456  		return NULL;
457  	while (n->rb_left)
458  		n = n->rb_left;
459  	return n;
460  }
461  EXPORT_SYMBOL(rb_first);
462  
463  struct rb_node *rb_last(const struct rb_root *root)
464  {
465  	struct rb_node	*n;
466  
467  	n = root->rb_node;
468  	if (!n)
469  		return NULL;
470  	while (n->rb_right)
471  		n = n->rb_right;
472  	return n;
473  }
474  EXPORT_SYMBOL(rb_last);
475  
476  struct rb_node *rb_next(const struct rb_node *node)
477  {
478  	struct rb_node *parent;
479  
480  	if (RB_EMPTY_NODE(node))
481  		return NULL;
482  
483  	/*
484  	 * If we have a right-hand child, go down and then left as far
485  	 * as we can.
486  	 */
487  	if (node->rb_right) {
488  		node = node->rb_right;
489  		while (node->rb_left)
490  			node=node->rb_left;
491  		return (struct rb_node *)node;
492  	}
493  
494  	/*
495  	 * No right-hand children. Everything down and left is smaller than us,
496  	 * so any 'next' node must be in the general direction of our parent.
497  	 * Go up the tree; any time the ancestor is a right-hand child of its
498  	 * parent, keep going up. First time it's a left-hand child of its
499  	 * parent, said parent is our 'next' node.
500  	 */
501  	while ((parent = rb_parent(node)) && node == parent->rb_right)
502  		node = parent;
503  
504  	return parent;
505  }
506  EXPORT_SYMBOL(rb_next);
507  
508  struct rb_node *rb_prev(const struct rb_node *node)
509  {
510  	struct rb_node *parent;
511  
512  	if (RB_EMPTY_NODE(node))
513  		return NULL;
514  
515  	/*
516  	 * If we have a left-hand child, go down and then right as far
517  	 * as we can.
518  	 */
519  	if (node->rb_left) {
520  		node = node->rb_left;
521  		while (node->rb_right)
522  			node=node->rb_right;
523  		return (struct rb_node *)node;
524  	}
525  
526  	/*
527  	 * No left-hand children. Go up till we find an ancestor which
528  	 * is a right-hand child of its parent.
529  	 */
530  	while ((parent = rb_parent(node)) && node == parent->rb_left)
531  		node = parent;
532  
533  	return parent;
534  }
535  EXPORT_SYMBOL(rb_prev);
536  
537  void rb_replace_node(struct rb_node *victim, struct rb_node *new,
538  		     struct rb_root *root)
539  {
540  	struct rb_node *parent = rb_parent(victim);
541  
542  	/* Copy the pointers/colour from the victim to the replacement */
543  	*new = *victim;
544  
545  	/* Set the surrounding nodes to point to the replacement */
546  	if (victim->rb_left)
547  		rb_set_parent(victim->rb_left, new);
548  	if (victim->rb_right)
549  		rb_set_parent(victim->rb_right, new);
550  	__rb_change_child(victim, new, parent, root);
551  }
552  EXPORT_SYMBOL(rb_replace_node);
553  
554  void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
555  			 struct rb_root *root)
556  {
557  	struct rb_node *parent = rb_parent(victim);
558  
559  	/* Copy the pointers/colour from the victim to the replacement */
560  	*new = *victim;
561  
562  	/* Set the surrounding nodes to point to the replacement */
563  	if (victim->rb_left)
564  		rb_set_parent(victim->rb_left, new);
565  	if (victim->rb_right)
566  		rb_set_parent(victim->rb_right, new);
567  
568  	/* Set the parent's pointer to the new node last after an RCU barrier
569  	 * so that the pointers onwards are seen to be set correctly when doing
570  	 * an RCU walk over the tree.
571  	 */
572  	__rb_change_child_rcu(victim, new, parent, root);
573  }
574  EXPORT_SYMBOL(rb_replace_node_rcu);
575  
576  static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
577  {
578  	for (;;) {
579  		if (node->rb_left)
580  			node = node->rb_left;
581  		else if (node->rb_right)
582  			node = node->rb_right;
583  		else
584  			return (struct rb_node *)node;
585  	}
586  }
587  
588  struct rb_node *rb_next_postorder(const struct rb_node *node)
589  {
590  	const struct rb_node *parent;
591  	if (!node)
592  		return NULL;
593  	parent = rb_parent(node);
594  
595  	/* If we're sitting on node, we've already seen our children */
596  	if (parent && node == parent->rb_left && parent->rb_right) {
597  		/* If we are the parent's left node, go to the parent's right
598  		 * node then all the way down to the left */
599  		return rb_left_deepest_node(parent->rb_right);
600  	} else
601  		/* Otherwise we are the parent's right node, and the parent
602  		 * should be next */
603  		return (struct rb_node *)parent;
604  }
605  EXPORT_SYMBOL(rb_next_postorder);
606  
607  struct rb_node *rb_first_postorder(const struct rb_root *root)
608  {
609  	if (!root->rb_node)
610  		return NULL;
611  
612  	return rb_left_deepest_node(root->rb_node);
613  }
614  EXPORT_SYMBOL(rb_first_postorder);
615