xref: /openbmc/linux/lib/rbtree.c (revision 28949b84b2cb2473507ec2fed06728f995dd7942)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3    Red Black Trees
4    (C) 1999  Andrea Arcangeli <andrea@suse.de>
5    (C) 2002  David Woodhouse <dwmw2@infradead.org>
6    (C) 2012  Michel Lespinasse <walken@google.com>
7  
8  
9    linux/lib/rbtree.c
10  */
11  
12  #include <linux/rbtree_augmented.h>
13  #include <linux/export.h>
14  
15  /*
16   * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
17   *
18   *  1) A node is either red or black
19   *  2) The root is black
20   *  3) All leaves (NULL) are black
21   *  4) Both children of every red node are black
22   *  5) Every simple path from root to leaves contains the same number
23   *     of black nodes.
24   *
25   *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
26   *  consecutive red nodes in a path and every red node is therefore followed by
27   *  a black. So if B is the number of black nodes on every simple path (as per
28   *  5), then the longest possible path due to 4 is 2B.
29   *
30   *  We shall indicate color with case, where black nodes are uppercase and red
31   *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
32   *  parentheses and have some accompanying text comment.
33   */
34  
35  /*
36   * Notes on lockless lookups:
37   *
38   * All stores to the tree structure (rb_left and rb_right) must be done using
39   * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
40   * tree structure as seen in program order.
41   *
42   * These two requirements will allow lockless iteration of the tree -- not
43   * correct iteration mind you, tree rotations are not atomic so a lookup might
44   * miss entire subtrees.
45   *
46   * But they do guarantee that any such traversal will only see valid elements
47   * and that it will indeed complete -- does not get stuck in a loop.
48   *
49   * It also guarantees that if the lookup returns an element it is the 'correct'
50   * one. But not returning an element does _NOT_ mean it's not present.
51   *
52   * NOTE:
53   *
54   * Stores to __rb_parent_color are not important for simple lookups so those
55   * are left undone as of now. Nor did I check for loops involving parent
56   * pointers.
57   */
58  
59  static inline void rb_set_black(struct rb_node *rb)
60  {
61  	rb->__rb_parent_color |= RB_BLACK;
62  }
63  
64  static inline struct rb_node *rb_red_parent(struct rb_node *red)
65  {
66  	return (struct rb_node *)red->__rb_parent_color;
67  }
68  
69  /*
70   * Helper function for rotations:
71   * - old's parent and color get assigned to new
72   * - old gets assigned new as a parent and 'color' as a color.
73   */
74  static inline void
75  __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
76  			struct rb_root *root, int color)
77  {
78  	struct rb_node *parent = rb_parent(old);
79  	new->__rb_parent_color = old->__rb_parent_color;
80  	rb_set_parent_color(old, new, color);
81  	__rb_change_child(old, new, parent, root);
82  }
83  
84  static __always_inline void
85  __rb_insert(struct rb_node *node, struct rb_root *root,
86  	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
87  {
88  	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
89  
90  	while (true) {
91  		/*
92  		 * Loop invariant: node is red.
93  		 */
94  		if (unlikely(!parent)) {
95  			/*
96  			 * The inserted node is root. Either this is the
97  			 * first node, or we recursed at Case 1 below and
98  			 * are no longer violating 4).
99  			 */
100  			rb_set_parent_color(node, NULL, RB_BLACK);
101  			break;
102  		}
103  
104  		/*
105  		 * If there is a black parent, we are done.
106  		 * Otherwise, take some corrective action as,
107  		 * per 4), we don't want a red root or two
108  		 * consecutive red nodes.
109  		 */
110  		if(rb_is_black(parent))
111  			break;
112  
113  		gparent = rb_red_parent(parent);
114  
115  		tmp = gparent->rb_right;
116  		if (parent != tmp) {	/* parent == gparent->rb_left */
117  			if (tmp && rb_is_red(tmp)) {
118  				/*
119  				 * Case 1 - node's uncle is red (color flips).
120  				 *
121  				 *       G            g
122  				 *      / \          / \
123  				 *     p   u  -->   P   U
124  				 *    /            /
125  				 *   n            n
126  				 *
127  				 * However, since g's parent might be red, and
128  				 * 4) does not allow this, we need to recurse
129  				 * at g.
130  				 */
131  				rb_set_parent_color(tmp, gparent, RB_BLACK);
132  				rb_set_parent_color(parent, gparent, RB_BLACK);
133  				node = gparent;
134  				parent = rb_parent(node);
135  				rb_set_parent_color(node, parent, RB_RED);
136  				continue;
137  			}
138  
139  			tmp = parent->rb_right;
140  			if (node == tmp) {
141  				/*
142  				 * Case 2 - node's uncle is black and node is
143  				 * the parent's right child (left rotate at parent).
144  				 *
145  				 *      G             G
146  				 *     / \           / \
147  				 *    p   U  -->    n   U
148  				 *     \           /
149  				 *      n         p
150  				 *
151  				 * This still leaves us in violation of 4), the
152  				 * continuation into Case 3 will fix that.
153  				 */
154  				tmp = node->rb_left;
155  				WRITE_ONCE(parent->rb_right, tmp);
156  				WRITE_ONCE(node->rb_left, parent);
157  				if (tmp)
158  					rb_set_parent_color(tmp, parent,
159  							    RB_BLACK);
160  				rb_set_parent_color(parent, node, RB_RED);
161  				augment_rotate(parent, node);
162  				parent = node;
163  				tmp = node->rb_right;
164  			}
165  
166  			/*
167  			 * Case 3 - node's uncle is black and node is
168  			 * the parent's left child (right rotate at gparent).
169  			 *
170  			 *        G           P
171  			 *       / \         / \
172  			 *      p   U  -->  n   g
173  			 *     /                 \
174  			 *    n                   U
175  			 */
176  			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
177  			WRITE_ONCE(parent->rb_right, gparent);
178  			if (tmp)
179  				rb_set_parent_color(tmp, gparent, RB_BLACK);
180  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
181  			augment_rotate(gparent, parent);
182  			break;
183  		} else {
184  			tmp = gparent->rb_left;
185  			if (tmp && rb_is_red(tmp)) {
186  				/* Case 1 - color flips */
187  				rb_set_parent_color(tmp, gparent, RB_BLACK);
188  				rb_set_parent_color(parent, gparent, RB_BLACK);
189  				node = gparent;
190  				parent = rb_parent(node);
191  				rb_set_parent_color(node, parent, RB_RED);
192  				continue;
193  			}
194  
195  			tmp = parent->rb_left;
196  			if (node == tmp) {
197  				/* Case 2 - right rotate at parent */
198  				tmp = node->rb_right;
199  				WRITE_ONCE(parent->rb_left, tmp);
200  				WRITE_ONCE(node->rb_right, parent);
201  				if (tmp)
202  					rb_set_parent_color(tmp, parent,
203  							    RB_BLACK);
204  				rb_set_parent_color(parent, node, RB_RED);
205  				augment_rotate(parent, node);
206  				parent = node;
207  				tmp = node->rb_left;
208  			}
209  
210  			/* Case 3 - left rotate at gparent */
211  			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
212  			WRITE_ONCE(parent->rb_left, gparent);
213  			if (tmp)
214  				rb_set_parent_color(tmp, gparent, RB_BLACK);
215  			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
216  			augment_rotate(gparent, parent);
217  			break;
218  		}
219  	}
220  }
221  
222  /*
223   * Inline version for rb_erase() use - we want to be able to inline
224   * and eliminate the dummy_rotate callback there
225   */
226  static __always_inline void
227  ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
228  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
229  {
230  	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
231  
232  	while (true) {
233  		/*
234  		 * Loop invariants:
235  		 * - node is black (or NULL on first iteration)
236  		 * - node is not the root (parent is not NULL)
237  		 * - All leaf paths going through parent and node have a
238  		 *   black node count that is 1 lower than other leaf paths.
239  		 */
240  		sibling = parent->rb_right;
241  		if (node != sibling) {	/* node == parent->rb_left */
242  			if (rb_is_red(sibling)) {
243  				/*
244  				 * Case 1 - left rotate at parent
245  				 *
246  				 *     P               S
247  				 *    / \             / \
248  				 *   N   s    -->    p   Sr
249  				 *      / \         / \
250  				 *     Sl  Sr      N   Sl
251  				 */
252  				tmp1 = sibling->rb_left;
253  				WRITE_ONCE(parent->rb_right, tmp1);
254  				WRITE_ONCE(sibling->rb_left, parent);
255  				rb_set_parent_color(tmp1, parent, RB_BLACK);
256  				__rb_rotate_set_parents(parent, sibling, root,
257  							RB_RED);
258  				augment_rotate(parent, sibling);
259  				sibling = tmp1;
260  			}
261  			tmp1 = sibling->rb_right;
262  			if (!tmp1 || rb_is_black(tmp1)) {
263  				tmp2 = sibling->rb_left;
264  				if (!tmp2 || rb_is_black(tmp2)) {
265  					/*
266  					 * Case 2 - sibling color flip
267  					 * (p could be either color here)
268  					 *
269  					 *    (p)           (p)
270  					 *    / \           / \
271  					 *   N   S    -->  N   s
272  					 *      / \           / \
273  					 *     Sl  Sr        Sl  Sr
274  					 *
275  					 * This leaves us violating 5) which
276  					 * can be fixed by flipping p to black
277  					 * if it was red, or by recursing at p.
278  					 * p is red when coming from Case 1.
279  					 */
280  					rb_set_parent_color(sibling, parent,
281  							    RB_RED);
282  					if (rb_is_red(parent))
283  						rb_set_black(parent);
284  					else {
285  						node = parent;
286  						parent = rb_parent(node);
287  						if (parent)
288  							continue;
289  					}
290  					break;
291  				}
292  				/*
293  				 * Case 3 - right rotate at sibling
294  				 * (p could be either color here)
295  				 *
296  				 *   (p)           (p)
297  				 *   / \           / \
298  				 *  N   S    -->  N   sl
299  				 *     / \             \
300  				 *    sl  Sr            S
301  				 *                       \
302  				 *                        Sr
303  				 *
304  				 * Note: p might be red, and then both
305  				 * p and sl are red after rotation(which
306  				 * breaks property 4). This is fixed in
307  				 * Case 4 (in __rb_rotate_set_parents()
308  				 *         which set sl the color of p
309  				 *         and set p RB_BLACK)
310  				 *
311  				 *   (p)            (sl)
312  				 *   / \            /  \
313  				 *  N   sl   -->   P    S
314  				 *       \        /      \
315  				 *        S      N        Sr
316  				 *         \
317  				 *          Sr
318  				 */
319  				tmp1 = tmp2->rb_right;
320  				WRITE_ONCE(sibling->rb_left, tmp1);
321  				WRITE_ONCE(tmp2->rb_right, sibling);
322  				WRITE_ONCE(parent->rb_right, tmp2);
323  				if (tmp1)
324  					rb_set_parent_color(tmp1, sibling,
325  							    RB_BLACK);
326  				augment_rotate(sibling, tmp2);
327  				tmp1 = sibling;
328  				sibling = tmp2;
329  			}
330  			/*
331  			 * Case 4 - left rotate at parent + color flips
332  			 * (p and sl could be either color here.
333  			 *  After rotation, p becomes black, s acquires
334  			 *  p's color, and sl keeps its color)
335  			 *
336  			 *      (p)             (s)
337  			 *      / \             / \
338  			 *     N   S     -->   P   Sr
339  			 *        / \         / \
340  			 *      (sl) sr      N  (sl)
341  			 */
342  			tmp2 = sibling->rb_left;
343  			WRITE_ONCE(parent->rb_right, tmp2);
344  			WRITE_ONCE(sibling->rb_left, parent);
345  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
346  			if (tmp2)
347  				rb_set_parent(tmp2, parent);
348  			__rb_rotate_set_parents(parent, sibling, root,
349  						RB_BLACK);
350  			augment_rotate(parent, sibling);
351  			break;
352  		} else {
353  			sibling = parent->rb_left;
354  			if (rb_is_red(sibling)) {
355  				/* Case 1 - right rotate at parent */
356  				tmp1 = sibling->rb_right;
357  				WRITE_ONCE(parent->rb_left, tmp1);
358  				WRITE_ONCE(sibling->rb_right, parent);
359  				rb_set_parent_color(tmp1, parent, RB_BLACK);
360  				__rb_rotate_set_parents(parent, sibling, root,
361  							RB_RED);
362  				augment_rotate(parent, sibling);
363  				sibling = tmp1;
364  			}
365  			tmp1 = sibling->rb_left;
366  			if (!tmp1 || rb_is_black(tmp1)) {
367  				tmp2 = sibling->rb_right;
368  				if (!tmp2 || rb_is_black(tmp2)) {
369  					/* Case 2 - sibling color flip */
370  					rb_set_parent_color(sibling, parent,
371  							    RB_RED);
372  					if (rb_is_red(parent))
373  						rb_set_black(parent);
374  					else {
375  						node = parent;
376  						parent = rb_parent(node);
377  						if (parent)
378  							continue;
379  					}
380  					break;
381  				}
382  				/* Case 3 - left rotate at sibling */
383  				tmp1 = tmp2->rb_left;
384  				WRITE_ONCE(sibling->rb_right, tmp1);
385  				WRITE_ONCE(tmp2->rb_left, sibling);
386  				WRITE_ONCE(parent->rb_left, tmp2);
387  				if (tmp1)
388  					rb_set_parent_color(tmp1, sibling,
389  							    RB_BLACK);
390  				augment_rotate(sibling, tmp2);
391  				tmp1 = sibling;
392  				sibling = tmp2;
393  			}
394  			/* Case 4 - right rotate at parent + color flips */
395  			tmp2 = sibling->rb_right;
396  			WRITE_ONCE(parent->rb_left, tmp2);
397  			WRITE_ONCE(sibling->rb_right, parent);
398  			rb_set_parent_color(tmp1, sibling, RB_BLACK);
399  			if (tmp2)
400  				rb_set_parent(tmp2, parent);
401  			__rb_rotate_set_parents(parent, sibling, root,
402  						RB_BLACK);
403  			augment_rotate(parent, sibling);
404  			break;
405  		}
406  	}
407  }
408  
409  /* Non-inline version for rb_erase_augmented() use */
410  void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
411  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
412  {
413  	____rb_erase_color(parent, root, augment_rotate);
414  }
415  EXPORT_SYMBOL(__rb_erase_color);
416  
417  /*
418   * Non-augmented rbtree manipulation functions.
419   *
420   * We use dummy augmented callbacks here, and have the compiler optimize them
421   * out of the rb_insert_color() and rb_erase() function definitions.
422   */
423  
424  static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
425  static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
426  static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
427  
428  static const struct rb_augment_callbacks dummy_callbacks = {
429  	.propagate = dummy_propagate,
430  	.copy = dummy_copy,
431  	.rotate = dummy_rotate
432  };
433  
434  void rb_insert_color(struct rb_node *node, struct rb_root *root)
435  {
436  	__rb_insert(node, root, dummy_rotate);
437  }
438  EXPORT_SYMBOL(rb_insert_color);
439  
440  void rb_erase(struct rb_node *node, struct rb_root *root)
441  {
442  	struct rb_node *rebalance;
443  	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
444  	if (rebalance)
445  		____rb_erase_color(rebalance, root, dummy_rotate);
446  }
447  EXPORT_SYMBOL(rb_erase);
448  
449  /*
450   * Augmented rbtree manipulation functions.
451   *
452   * This instantiates the same __always_inline functions as in the non-augmented
453   * case, but this time with user-defined callbacks.
454   */
455  
456  void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
457  	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
458  {
459  	__rb_insert(node, root, augment_rotate);
460  }
461  EXPORT_SYMBOL(__rb_insert_augmented);
462  
463  /*
464   * This function returns the first node (in sort order) of the tree.
465   */
466  struct rb_node *rb_first(const struct rb_root *root)
467  {
468  	struct rb_node	*n;
469  
470  	n = root->rb_node;
471  	if (!n)
472  		return NULL;
473  	while (n->rb_left)
474  		n = n->rb_left;
475  	return n;
476  }
477  EXPORT_SYMBOL(rb_first);
478  
479  struct rb_node *rb_last(const struct rb_root *root)
480  {
481  	struct rb_node	*n;
482  
483  	n = root->rb_node;
484  	if (!n)
485  		return NULL;
486  	while (n->rb_right)
487  		n = n->rb_right;
488  	return n;
489  }
490  EXPORT_SYMBOL(rb_last);
491  
492  struct rb_node *rb_next(const struct rb_node *node)
493  {
494  	struct rb_node *parent;
495  
496  	if (RB_EMPTY_NODE(node))
497  		return NULL;
498  
499  	/*
500  	 * If we have a right-hand child, go down and then left as far
501  	 * as we can.
502  	 */
503  	if (node->rb_right) {
504  		node = node->rb_right;
505  		while (node->rb_left)
506  			node = node->rb_left;
507  		return (struct rb_node *)node;
508  	}
509  
510  	/*
511  	 * No right-hand children. Everything down and left is smaller than us,
512  	 * so any 'next' node must be in the general direction of our parent.
513  	 * Go up the tree; any time the ancestor is a right-hand child of its
514  	 * parent, keep going up. First time it's a left-hand child of its
515  	 * parent, said parent is our 'next' node.
516  	 */
517  	while ((parent = rb_parent(node)) && node == parent->rb_right)
518  		node = parent;
519  
520  	return parent;
521  }
522  EXPORT_SYMBOL(rb_next);
523  
524  struct rb_node *rb_prev(const struct rb_node *node)
525  {
526  	struct rb_node *parent;
527  
528  	if (RB_EMPTY_NODE(node))
529  		return NULL;
530  
531  	/*
532  	 * If we have a left-hand child, go down and then right as far
533  	 * as we can.
534  	 */
535  	if (node->rb_left) {
536  		node = node->rb_left;
537  		while (node->rb_right)
538  			node = node->rb_right;
539  		return (struct rb_node *)node;
540  	}
541  
542  	/*
543  	 * No left-hand children. Go up till we find an ancestor which
544  	 * is a right-hand child of its parent.
545  	 */
546  	while ((parent = rb_parent(node)) && node == parent->rb_left)
547  		node = parent;
548  
549  	return parent;
550  }
551  EXPORT_SYMBOL(rb_prev);
552  
553  void rb_replace_node(struct rb_node *victim, struct rb_node *new,
554  		     struct rb_root *root)
555  {
556  	struct rb_node *parent = rb_parent(victim);
557  
558  	/* Copy the pointers/colour from the victim to the replacement */
559  	*new = *victim;
560  
561  	/* Set the surrounding nodes to point to the replacement */
562  	if (victim->rb_left)
563  		rb_set_parent(victim->rb_left, new);
564  	if (victim->rb_right)
565  		rb_set_parent(victim->rb_right, new);
566  	__rb_change_child(victim, new, parent, root);
567  }
568  EXPORT_SYMBOL(rb_replace_node);
569  
570  void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
571  			 struct rb_root *root)
572  {
573  	struct rb_node *parent = rb_parent(victim);
574  
575  	/* Copy the pointers/colour from the victim to the replacement */
576  	*new = *victim;
577  
578  	/* Set the surrounding nodes to point to the replacement */
579  	if (victim->rb_left)
580  		rb_set_parent(victim->rb_left, new);
581  	if (victim->rb_right)
582  		rb_set_parent(victim->rb_right, new);
583  
584  	/* Set the parent's pointer to the new node last after an RCU barrier
585  	 * so that the pointers onwards are seen to be set correctly when doing
586  	 * an RCU walk over the tree.
587  	 */
588  	__rb_change_child_rcu(victim, new, parent, root);
589  }
590  EXPORT_SYMBOL(rb_replace_node_rcu);
591  
592  static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
593  {
594  	for (;;) {
595  		if (node->rb_left)
596  			node = node->rb_left;
597  		else if (node->rb_right)
598  			node = node->rb_right;
599  		else
600  			return (struct rb_node *)node;
601  	}
602  }
603  
604  struct rb_node *rb_next_postorder(const struct rb_node *node)
605  {
606  	const struct rb_node *parent;
607  	if (!node)
608  		return NULL;
609  	parent = rb_parent(node);
610  
611  	/* If we're sitting on node, we've already seen our children */
612  	if (parent && node == parent->rb_left && parent->rb_right) {
613  		/* If we are the parent's left node, go to the parent's right
614  		 * node then all the way down to the left */
615  		return rb_left_deepest_node(parent->rb_right);
616  	} else
617  		/* Otherwise we are the parent's right node, and the parent
618  		 * should be next */
619  		return (struct rb_node *)parent;
620  }
621  EXPORT_SYMBOL(rb_next_postorder);
622  
623  struct rb_node *rb_first_postorder(const struct rb_root *root)
624  {
625  	if (!root->rb_node)
626  		return NULL;
627  
628  	return rb_left_deepest_node(root->rb_node);
629  }
630  EXPORT_SYMBOL(rb_first_postorder);
631