xref: /openbmc/linux/lib/rbtree.c (revision 239480ab)
1 /*
2   Red Black Trees
3   (C) 1999  Andrea Arcangeli <andrea@suse.de>
4   (C) 2002  David Woodhouse <dwmw2@infradead.org>
5   (C) 2012  Michel Lespinasse <walken@google.com>
6 
7   This program is free software; you can redistribute it and/or modify
8   it under the terms of the GNU General Public License as published by
9   the Free Software Foundation; either version 2 of the License, or
10   (at your option) any later version.
11 
12   This program is distributed in the hope that it will be useful,
13   but WITHOUT ANY WARRANTY; without even the implied warranty of
14   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15   GNU General Public License for more details.
16 
17   You should have received a copy of the GNU General Public License
18   along with this program; if not, write to the Free Software
19   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20 
21   linux/lib/rbtree.c
22 */
23 
24 #include <linux/rbtree_augmented.h>
25 #include <linux/export.h>
26 
27 /*
28  * red-black trees properties:  http://en.wikipedia.org/wiki/Rbtree
29  *
30  *  1) A node is either red or black
31  *  2) The root is black
32  *  3) All leaves (NULL) are black
33  *  4) Both children of every red node are black
34  *  5) Every simple path from root to leaves contains the same number
35  *     of black nodes.
36  *
37  *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38  *  consecutive red nodes in a path and every red node is therefore followed by
39  *  a black. So if B is the number of black nodes on every simple path (as per
40  *  5), then the longest possible path due to 4 is 2B.
41  *
42  *  We shall indicate color with case, where black nodes are uppercase and red
43  *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
44  *  parentheses and have some accompanying text comment.
45  */
46 
47 /*
48  * Notes on lockless lookups:
49  *
50  * All stores to the tree structure (rb_left and rb_right) must be done using
51  * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52  * tree structure as seen in program order.
53  *
54  * These two requirements will allow lockless iteration of the tree -- not
55  * correct iteration mind you, tree rotations are not atomic so a lookup might
56  * miss entire subtrees.
57  *
58  * But they do guarantee that any such traversal will only see valid elements
59  * and that it will indeed complete -- does not get stuck in a loop.
60  *
61  * It also guarantees that if the lookup returns an element it is the 'correct'
62  * one. But not returning an element does _NOT_ mean it's not present.
63  *
64  * NOTE:
65  *
66  * Stores to __rb_parent_color are not important for simple lookups so those
67  * are left undone as of now. Nor did I check for loops involving parent
68  * pointers.
69  */
70 
71 static inline void rb_set_black(struct rb_node *rb)
72 {
73 	rb->__rb_parent_color |= RB_BLACK;
74 }
75 
76 static inline struct rb_node *rb_red_parent(struct rb_node *red)
77 {
78 	return (struct rb_node *)red->__rb_parent_color;
79 }
80 
81 /*
82  * Helper function for rotations:
83  * - old's parent and color get assigned to new
84  * - old gets assigned new as a parent and 'color' as a color.
85  */
86 static inline void
87 __rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 			struct rb_root *root, int color)
89 {
90 	struct rb_node *parent = rb_parent(old);
91 	new->__rb_parent_color = old->__rb_parent_color;
92 	rb_set_parent_color(old, new, color);
93 	__rb_change_child(old, new, parent, root);
94 }
95 
96 static __always_inline void
97 __rb_insert(struct rb_node *node, struct rb_root *root,
98 	    void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
99 {
100 	struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
101 
102 	while (true) {
103 		/*
104 		 * Loop invariant: node is red
105 		 *
106 		 * If there is a black parent, we are done.
107 		 * Otherwise, take some corrective action as we don't
108 		 * want a red root or two consecutive red nodes.
109 		 */
110 		if (!parent) {
111 			rb_set_parent_color(node, NULL, RB_BLACK);
112 			break;
113 		} else if (rb_is_black(parent))
114 			break;
115 
116 		gparent = rb_red_parent(parent);
117 
118 		tmp = gparent->rb_right;
119 		if (parent != tmp) {	/* parent == gparent->rb_left */
120 			if (tmp && rb_is_red(tmp)) {
121 				/*
122 				 * Case 1 - color flips
123 				 *
124 				 *       G            g
125 				 *      / \          / \
126 				 *     p   u  -->   P   U
127 				 *    /            /
128 				 *   n            n
129 				 *
130 				 * However, since g's parent might be red, and
131 				 * 4) does not allow this, we need to recurse
132 				 * at g.
133 				 */
134 				rb_set_parent_color(tmp, gparent, RB_BLACK);
135 				rb_set_parent_color(parent, gparent, RB_BLACK);
136 				node = gparent;
137 				parent = rb_parent(node);
138 				rb_set_parent_color(node, parent, RB_RED);
139 				continue;
140 			}
141 
142 			tmp = parent->rb_right;
143 			if (node == tmp) {
144 				/*
145 				 * Case 2 - left rotate at parent
146 				 *
147 				 *      G             G
148 				 *     / \           / \
149 				 *    p   U  -->    n   U
150 				 *     \           /
151 				 *      n         p
152 				 *
153 				 * This still leaves us in violation of 4), the
154 				 * continuation into Case 3 will fix that.
155 				 */
156 				tmp = node->rb_left;
157 				WRITE_ONCE(parent->rb_right, tmp);
158 				WRITE_ONCE(node->rb_left, parent);
159 				if (tmp)
160 					rb_set_parent_color(tmp, parent,
161 							    RB_BLACK);
162 				rb_set_parent_color(parent, node, RB_RED);
163 				augment_rotate(parent, node);
164 				parent = node;
165 				tmp = node->rb_right;
166 			}
167 
168 			/*
169 			 * Case 3 - right rotate at gparent
170 			 *
171 			 *        G           P
172 			 *       / \         / \
173 			 *      p   U  -->  n   g
174 			 *     /                 \
175 			 *    n                   U
176 			 */
177 			WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
178 			WRITE_ONCE(parent->rb_right, gparent);
179 			if (tmp)
180 				rb_set_parent_color(tmp, gparent, RB_BLACK);
181 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
182 			augment_rotate(gparent, parent);
183 			break;
184 		} else {
185 			tmp = gparent->rb_left;
186 			if (tmp && rb_is_red(tmp)) {
187 				/* Case 1 - color flips */
188 				rb_set_parent_color(tmp, gparent, RB_BLACK);
189 				rb_set_parent_color(parent, gparent, RB_BLACK);
190 				node = gparent;
191 				parent = rb_parent(node);
192 				rb_set_parent_color(node, parent, RB_RED);
193 				continue;
194 			}
195 
196 			tmp = parent->rb_left;
197 			if (node == tmp) {
198 				/* Case 2 - right rotate at parent */
199 				tmp = node->rb_right;
200 				WRITE_ONCE(parent->rb_left, tmp);
201 				WRITE_ONCE(node->rb_right, parent);
202 				if (tmp)
203 					rb_set_parent_color(tmp, parent,
204 							    RB_BLACK);
205 				rb_set_parent_color(parent, node, RB_RED);
206 				augment_rotate(parent, node);
207 				parent = node;
208 				tmp = node->rb_left;
209 			}
210 
211 			/* Case 3 - left rotate at gparent */
212 			WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
213 			WRITE_ONCE(parent->rb_left, gparent);
214 			if (tmp)
215 				rb_set_parent_color(tmp, gparent, RB_BLACK);
216 			__rb_rotate_set_parents(gparent, parent, root, RB_RED);
217 			augment_rotate(gparent, parent);
218 			break;
219 		}
220 	}
221 }
222 
223 /*
224  * Inline version for rb_erase() use - we want to be able to inline
225  * and eliminate the dummy_rotate callback there
226  */
227 static __always_inline void
228 ____rb_erase_color(struct rb_node *parent, struct rb_root *root,
229 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
230 {
231 	struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
232 
233 	while (true) {
234 		/*
235 		 * Loop invariants:
236 		 * - node is black (or NULL on first iteration)
237 		 * - node is not the root (parent is not NULL)
238 		 * - All leaf paths going through parent and node have a
239 		 *   black node count that is 1 lower than other leaf paths.
240 		 */
241 		sibling = parent->rb_right;
242 		if (node != sibling) {	/* node == parent->rb_left */
243 			if (rb_is_red(sibling)) {
244 				/*
245 				 * Case 1 - left rotate at parent
246 				 *
247 				 *     P               S
248 				 *    / \             / \
249 				 *   N   s    -->    p   Sr
250 				 *      / \         / \
251 				 *     Sl  Sr      N   Sl
252 				 */
253 				tmp1 = sibling->rb_left;
254 				WRITE_ONCE(parent->rb_right, tmp1);
255 				WRITE_ONCE(sibling->rb_left, parent);
256 				rb_set_parent_color(tmp1, parent, RB_BLACK);
257 				__rb_rotate_set_parents(parent, sibling, root,
258 							RB_RED);
259 				augment_rotate(parent, sibling);
260 				sibling = tmp1;
261 			}
262 			tmp1 = sibling->rb_right;
263 			if (!tmp1 || rb_is_black(tmp1)) {
264 				tmp2 = sibling->rb_left;
265 				if (!tmp2 || rb_is_black(tmp2)) {
266 					/*
267 					 * Case 2 - sibling color flip
268 					 * (p could be either color here)
269 					 *
270 					 *    (p)           (p)
271 					 *    / \           / \
272 					 *   N   S    -->  N   s
273 					 *      / \           / \
274 					 *     Sl  Sr        Sl  Sr
275 					 *
276 					 * This leaves us violating 5) which
277 					 * can be fixed by flipping p to black
278 					 * if it was red, or by recursing at p.
279 					 * p is red when coming from Case 1.
280 					 */
281 					rb_set_parent_color(sibling, parent,
282 							    RB_RED);
283 					if (rb_is_red(parent))
284 						rb_set_black(parent);
285 					else {
286 						node = parent;
287 						parent = rb_parent(node);
288 						if (parent)
289 							continue;
290 					}
291 					break;
292 				}
293 				/*
294 				 * Case 3 - right rotate at sibling
295 				 * (p could be either color here)
296 				 *
297 				 *   (p)           (p)
298 				 *   / \           / \
299 				 *  N   S    -->  N   sl
300 				 *     / \             \
301 				 *    sl  Sr            S
302 				 *                       \
303 				 *                        Sr
304 				 *
305 				 * Note: p might be red, and then both
306 				 * p and sl are red after rotation(which
307 				 * breaks property 4). This is fixed in
308 				 * Case 4 (in __rb_rotate_set_parents()
309 				 *         which set sl the color of p
310 				 *         and set p RB_BLACK)
311 				 *
312 				 *   (p)            (sl)
313 				 *   / \            /  \
314 				 *  N   sl   -->   P    S
315 				 *       \        /      \
316 				 *        S      N        Sr
317 				 *         \
318 				 *          Sr
319 				 */
320 				tmp1 = tmp2->rb_right;
321 				WRITE_ONCE(sibling->rb_left, tmp1);
322 				WRITE_ONCE(tmp2->rb_right, sibling);
323 				WRITE_ONCE(parent->rb_right, tmp2);
324 				if (tmp1)
325 					rb_set_parent_color(tmp1, sibling,
326 							    RB_BLACK);
327 				augment_rotate(sibling, tmp2);
328 				tmp1 = sibling;
329 				sibling = tmp2;
330 			}
331 			/*
332 			 * Case 4 - left rotate at parent + color flips
333 			 * (p and sl could be either color here.
334 			 *  After rotation, p becomes black, s acquires
335 			 *  p's color, and sl keeps its color)
336 			 *
337 			 *      (p)             (s)
338 			 *      / \             / \
339 			 *     N   S     -->   P   Sr
340 			 *        / \         / \
341 			 *      (sl) sr      N  (sl)
342 			 */
343 			tmp2 = sibling->rb_left;
344 			WRITE_ONCE(parent->rb_right, tmp2);
345 			WRITE_ONCE(sibling->rb_left, parent);
346 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
347 			if (tmp2)
348 				rb_set_parent(tmp2, parent);
349 			__rb_rotate_set_parents(parent, sibling, root,
350 						RB_BLACK);
351 			augment_rotate(parent, sibling);
352 			break;
353 		} else {
354 			sibling = parent->rb_left;
355 			if (rb_is_red(sibling)) {
356 				/* Case 1 - right rotate at parent */
357 				tmp1 = sibling->rb_right;
358 				WRITE_ONCE(parent->rb_left, tmp1);
359 				WRITE_ONCE(sibling->rb_right, parent);
360 				rb_set_parent_color(tmp1, parent, RB_BLACK);
361 				__rb_rotate_set_parents(parent, sibling, root,
362 							RB_RED);
363 				augment_rotate(parent, sibling);
364 				sibling = tmp1;
365 			}
366 			tmp1 = sibling->rb_left;
367 			if (!tmp1 || rb_is_black(tmp1)) {
368 				tmp2 = sibling->rb_right;
369 				if (!tmp2 || rb_is_black(tmp2)) {
370 					/* Case 2 - sibling color flip */
371 					rb_set_parent_color(sibling, parent,
372 							    RB_RED);
373 					if (rb_is_red(parent))
374 						rb_set_black(parent);
375 					else {
376 						node = parent;
377 						parent = rb_parent(node);
378 						if (parent)
379 							continue;
380 					}
381 					break;
382 				}
383 				/* Case 3 - left rotate at sibling */
384 				tmp1 = tmp2->rb_left;
385 				WRITE_ONCE(sibling->rb_right, tmp1);
386 				WRITE_ONCE(tmp2->rb_left, sibling);
387 				WRITE_ONCE(parent->rb_left, tmp2);
388 				if (tmp1)
389 					rb_set_parent_color(tmp1, sibling,
390 							    RB_BLACK);
391 				augment_rotate(sibling, tmp2);
392 				tmp1 = sibling;
393 				sibling = tmp2;
394 			}
395 			/* Case 4 - right rotate at parent + color flips */
396 			tmp2 = sibling->rb_right;
397 			WRITE_ONCE(parent->rb_left, tmp2);
398 			WRITE_ONCE(sibling->rb_right, parent);
399 			rb_set_parent_color(tmp1, sibling, RB_BLACK);
400 			if (tmp2)
401 				rb_set_parent(tmp2, parent);
402 			__rb_rotate_set_parents(parent, sibling, root,
403 						RB_BLACK);
404 			augment_rotate(parent, sibling);
405 			break;
406 		}
407 	}
408 }
409 
410 /* Non-inline version for rb_erase_augmented() use */
411 void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
412 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
413 {
414 	____rb_erase_color(parent, root, augment_rotate);
415 }
416 EXPORT_SYMBOL(__rb_erase_color);
417 
418 /*
419  * Non-augmented rbtree manipulation functions.
420  *
421  * We use dummy augmented callbacks here, and have the compiler optimize them
422  * out of the rb_insert_color() and rb_erase() function definitions.
423  */
424 
425 static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
426 static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
427 static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
428 
429 static const struct rb_augment_callbacks dummy_callbacks = {
430 	.propagate = dummy_propagate,
431 	.copy = dummy_copy,
432 	.rotate = dummy_rotate
433 };
434 
435 void rb_insert_color(struct rb_node *node, struct rb_root *root)
436 {
437 	__rb_insert(node, root, dummy_rotate);
438 }
439 EXPORT_SYMBOL(rb_insert_color);
440 
441 void rb_erase(struct rb_node *node, struct rb_root *root)
442 {
443 	struct rb_node *rebalance;
444 	rebalance = __rb_erase_augmented(node, root, &dummy_callbacks);
445 	if (rebalance)
446 		____rb_erase_color(rebalance, root, dummy_rotate);
447 }
448 EXPORT_SYMBOL(rb_erase);
449 
450 /*
451  * Augmented rbtree manipulation functions.
452  *
453  * This instantiates the same __always_inline functions as in the non-augmented
454  * case, but this time with user-defined callbacks.
455  */
456 
457 void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
458 	void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
459 {
460 	__rb_insert(node, root, augment_rotate);
461 }
462 EXPORT_SYMBOL(__rb_insert_augmented);
463 
464 /*
465  * This function returns the first node (in sort order) of the tree.
466  */
467 struct rb_node *rb_first(const struct rb_root *root)
468 {
469 	struct rb_node	*n;
470 
471 	n = root->rb_node;
472 	if (!n)
473 		return NULL;
474 	while (n->rb_left)
475 		n = n->rb_left;
476 	return n;
477 }
478 EXPORT_SYMBOL(rb_first);
479 
480 struct rb_node *rb_last(const struct rb_root *root)
481 {
482 	struct rb_node	*n;
483 
484 	n = root->rb_node;
485 	if (!n)
486 		return NULL;
487 	while (n->rb_right)
488 		n = n->rb_right;
489 	return n;
490 }
491 EXPORT_SYMBOL(rb_last);
492 
493 struct rb_node *rb_next(const struct rb_node *node)
494 {
495 	struct rb_node *parent;
496 
497 	if (RB_EMPTY_NODE(node))
498 		return NULL;
499 
500 	/*
501 	 * If we have a right-hand child, go down and then left as far
502 	 * as we can.
503 	 */
504 	if (node->rb_right) {
505 		node = node->rb_right;
506 		while (node->rb_left)
507 			node=node->rb_left;
508 		return (struct rb_node *)node;
509 	}
510 
511 	/*
512 	 * No right-hand children. Everything down and left is smaller than us,
513 	 * so any 'next' node must be in the general direction of our parent.
514 	 * Go up the tree; any time the ancestor is a right-hand child of its
515 	 * parent, keep going up. First time it's a left-hand child of its
516 	 * parent, said parent is our 'next' node.
517 	 */
518 	while ((parent = rb_parent(node)) && node == parent->rb_right)
519 		node = parent;
520 
521 	return parent;
522 }
523 EXPORT_SYMBOL(rb_next);
524 
525 struct rb_node *rb_prev(const struct rb_node *node)
526 {
527 	struct rb_node *parent;
528 
529 	if (RB_EMPTY_NODE(node))
530 		return NULL;
531 
532 	/*
533 	 * If we have a left-hand child, go down and then right as far
534 	 * as we can.
535 	 */
536 	if (node->rb_left) {
537 		node = node->rb_left;
538 		while (node->rb_right)
539 			node=node->rb_right;
540 		return (struct rb_node *)node;
541 	}
542 
543 	/*
544 	 * No left-hand children. Go up till we find an ancestor which
545 	 * is a right-hand child of its parent.
546 	 */
547 	while ((parent = rb_parent(node)) && node == parent->rb_left)
548 		node = parent;
549 
550 	return parent;
551 }
552 EXPORT_SYMBOL(rb_prev);
553 
554 void rb_replace_node(struct rb_node *victim, struct rb_node *new,
555 		     struct rb_root *root)
556 {
557 	struct rb_node *parent = rb_parent(victim);
558 
559 	/* Copy the pointers/colour from the victim to the replacement */
560 	*new = *victim;
561 
562 	/* Set the surrounding nodes to point to the replacement */
563 	if (victim->rb_left)
564 		rb_set_parent(victim->rb_left, new);
565 	if (victim->rb_right)
566 		rb_set_parent(victim->rb_right, new);
567 	__rb_change_child(victim, new, parent, root);
568 }
569 EXPORT_SYMBOL(rb_replace_node);
570 
571 void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
572 			 struct rb_root *root)
573 {
574 	struct rb_node *parent = rb_parent(victim);
575 
576 	/* Copy the pointers/colour from the victim to the replacement */
577 	*new = *victim;
578 
579 	/* Set the surrounding nodes to point to the replacement */
580 	if (victim->rb_left)
581 		rb_set_parent(victim->rb_left, new);
582 	if (victim->rb_right)
583 		rb_set_parent(victim->rb_right, new);
584 
585 	/* Set the parent's pointer to the new node last after an RCU barrier
586 	 * so that the pointers onwards are seen to be set correctly when doing
587 	 * an RCU walk over the tree.
588 	 */
589 	__rb_change_child_rcu(victim, new, parent, root);
590 }
591 EXPORT_SYMBOL(rb_replace_node_rcu);
592 
593 static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
594 {
595 	for (;;) {
596 		if (node->rb_left)
597 			node = node->rb_left;
598 		else if (node->rb_right)
599 			node = node->rb_right;
600 		else
601 			return (struct rb_node *)node;
602 	}
603 }
604 
605 struct rb_node *rb_next_postorder(const struct rb_node *node)
606 {
607 	const struct rb_node *parent;
608 	if (!node)
609 		return NULL;
610 	parent = rb_parent(node);
611 
612 	/* If we're sitting on node, we've already seen our children */
613 	if (parent && node == parent->rb_left && parent->rb_right) {
614 		/* If we are the parent's left node, go to the parent's right
615 		 * node then all the way down to the left */
616 		return rb_left_deepest_node(parent->rb_right);
617 	} else
618 		/* Otherwise we are the parent's right node, and the parent
619 		 * should be next */
620 		return (struct rb_node *)parent;
621 }
622 EXPORT_SYMBOL(rb_next_postorder);
623 
624 struct rb_node *rb_first_postorder(const struct rb_root *root)
625 {
626 	if (!root->rb_node)
627 		return NULL;
628 
629 	return rb_left_deepest_node(root->rb_node);
630 }
631 EXPORT_SYMBOL(rb_first_postorder);
632