xref: /openbmc/linux/lib/random32.c (revision 8e9356c6)
1 /*
2   This is a maximally equidistributed combined Tausworthe generator
3   based on code from GNU Scientific Library 1.5 (30 Jun 2004)
4 
5   lfsr113 version:
6 
7    x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
8 
9    s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
10    s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
11    s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
12    s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
13 
14    The period of this generator is about 2^113 (see erratum paper).
15 
16    From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
17    Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
18    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
19    ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
20 
21    There is an erratum in the paper "Tables of Maximally
22    Equidistributed Combined LFSR Generators", Mathematics of
23    Computation, 68, 225 (1999), 261--269:
24    http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
25 
26         ... the k_j most significant bits of z_j must be non-
27         zero, for each j. (Note: this restriction also applies to the
28         computer code given in [4], but was mistakenly not mentioned in
29         that paper.)
30 
31    This affects the seeding procedure by imposing the requirement
32    s1 > 1, s2 > 7, s3 > 15, s4 > 127.
33 
34 */
35 
36 #include <linux/types.h>
37 #include <linux/percpu.h>
38 #include <linux/export.h>
39 #include <linux/jiffies.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 
43 #ifdef CONFIG_RANDOM32_SELFTEST
44 static void __init prandom_state_selftest(void);
45 #endif
46 
47 static DEFINE_PER_CPU(struct rnd_state, net_rand_state);
48 
49 /**
50  *	prandom_u32_state - seeded pseudo-random number generator.
51  *	@state: pointer to state structure holding seeded state.
52  *
53  *	This is used for pseudo-randomness with no outside seeding.
54  *	For more random results, use prandom_u32().
55  */
56 u32 prandom_u32_state(struct rnd_state *state)
57 {
58 #define TAUSWORTHE(s,a,b,c,d) ((s&c)<<d) ^ (((s <<a) ^ s)>>b)
59 
60 	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
61 	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
62 	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
63 	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
64 
65 	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
66 }
67 EXPORT_SYMBOL(prandom_u32_state);
68 
69 /**
70  *	prandom_u32 - pseudo random number generator
71  *
72  *	A 32 bit pseudo-random number is generated using a fast
73  *	algorithm suitable for simulation. This algorithm is NOT
74  *	considered safe for cryptographic use.
75  */
76 u32 prandom_u32(void)
77 {
78 	unsigned long r;
79 	struct rnd_state *state = &get_cpu_var(net_rand_state);
80 	r = prandom_u32_state(state);
81 	put_cpu_var(state);
82 	return r;
83 }
84 EXPORT_SYMBOL(prandom_u32);
85 
86 /*
87  *	prandom_bytes_state - get the requested number of pseudo-random bytes
88  *
89  *	@state: pointer to state structure holding seeded state.
90  *	@buf: where to copy the pseudo-random bytes to
91  *	@bytes: the requested number of bytes
92  *
93  *	This is used for pseudo-randomness with no outside seeding.
94  *	For more random results, use prandom_bytes().
95  */
96 void prandom_bytes_state(struct rnd_state *state, void *buf, int bytes)
97 {
98 	unsigned char *p = buf;
99 	int i;
100 
101 	for (i = 0; i < round_down(bytes, sizeof(u32)); i += sizeof(u32)) {
102 		u32 random = prandom_u32_state(state);
103 		int j;
104 
105 		for (j = 0; j < sizeof(u32); j++) {
106 			p[i + j] = random;
107 			random >>= BITS_PER_BYTE;
108 		}
109 	}
110 	if (i < bytes) {
111 		u32 random = prandom_u32_state(state);
112 
113 		for (; i < bytes; i++) {
114 			p[i] = random;
115 			random >>= BITS_PER_BYTE;
116 		}
117 	}
118 }
119 EXPORT_SYMBOL(prandom_bytes_state);
120 
121 /**
122  *	prandom_bytes - get the requested number of pseudo-random bytes
123  *	@buf: where to copy the pseudo-random bytes to
124  *	@bytes: the requested number of bytes
125  */
126 void prandom_bytes(void *buf, int bytes)
127 {
128 	struct rnd_state *state = &get_cpu_var(net_rand_state);
129 
130 	prandom_bytes_state(state, buf, bytes);
131 	put_cpu_var(state);
132 }
133 EXPORT_SYMBOL(prandom_bytes);
134 
135 static void prandom_warmup(struct rnd_state *state)
136 {
137 	/* Calling RNG ten times to satify recurrence condition */
138 	prandom_u32_state(state);
139 	prandom_u32_state(state);
140 	prandom_u32_state(state);
141 	prandom_u32_state(state);
142 	prandom_u32_state(state);
143 	prandom_u32_state(state);
144 	prandom_u32_state(state);
145 	prandom_u32_state(state);
146 	prandom_u32_state(state);
147 	prandom_u32_state(state);
148 }
149 
150 static void prandom_seed_very_weak(struct rnd_state *state, u32 seed)
151 {
152 	/* Note: This sort of seeding is ONLY used in test cases and
153 	 * during boot at the time from core_initcall until late_initcall
154 	 * as we don't have a stronger entropy source available yet.
155 	 * After late_initcall, we reseed entire state, we have to (!),
156 	 * otherwise an attacker just needs to search 32 bit space to
157 	 * probe for our internal 128 bit state if he knows a couple
158 	 * of prandom32 outputs!
159 	 */
160 #define LCG(x)	((x) * 69069U)	/* super-duper LCG */
161 	state->s1 = __seed(LCG(seed),        2U);
162 	state->s2 = __seed(LCG(state->s1),   8U);
163 	state->s3 = __seed(LCG(state->s2),  16U);
164 	state->s4 = __seed(LCG(state->s3), 128U);
165 }
166 
167 /**
168  *	prandom_seed - add entropy to pseudo random number generator
169  *	@seed: seed value
170  *
171  *	Add some additional seeding to the prandom pool.
172  */
173 void prandom_seed(u32 entropy)
174 {
175 	int i;
176 	/*
177 	 * No locking on the CPUs, but then somewhat random results are, well,
178 	 * expected.
179 	 */
180 	for_each_possible_cpu (i) {
181 		struct rnd_state *state = &per_cpu(net_rand_state, i);
182 
183 		state->s1 = __seed(state->s1 ^ entropy, 2U);
184 		prandom_warmup(state);
185 	}
186 }
187 EXPORT_SYMBOL(prandom_seed);
188 
189 /*
190  *	Generate some initially weak seeding values to allow
191  *	to start the prandom_u32() engine.
192  */
193 static int __init prandom_init(void)
194 {
195 	int i;
196 
197 #ifdef CONFIG_RANDOM32_SELFTEST
198 	prandom_state_selftest();
199 #endif
200 
201 	for_each_possible_cpu(i) {
202 		struct rnd_state *state = &per_cpu(net_rand_state,i);
203 
204 		prandom_seed_very_weak(state, (i + jiffies) ^ random_get_entropy());
205 		prandom_warmup(state);
206 	}
207 	return 0;
208 }
209 core_initcall(prandom_init);
210 
211 static void __prandom_timer(unsigned long dontcare);
212 static DEFINE_TIMER(seed_timer, __prandom_timer, 0, 0);
213 
214 static void __prandom_timer(unsigned long dontcare)
215 {
216 	u32 entropy;
217 	unsigned long expires;
218 
219 	get_random_bytes(&entropy, sizeof(entropy));
220 	prandom_seed(entropy);
221 
222 	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
223 	expires = 40 + (prandom_u32() % 40);
224 	seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC);
225 
226 	add_timer(&seed_timer);
227 }
228 
229 static void __init __prandom_start_seed_timer(void)
230 {
231 	set_timer_slack(&seed_timer, HZ);
232 	seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC);
233 	add_timer(&seed_timer);
234 }
235 
236 /*
237  *	Generate better values after random number generator
238  *	is fully initialized.
239  */
240 static void __prandom_reseed(bool late)
241 {
242 	int i;
243 	unsigned long flags;
244 	static bool latch = false;
245 	static DEFINE_SPINLOCK(lock);
246 
247 	/* only allow initial seeding (late == false) once */
248 	spin_lock_irqsave(&lock, flags);
249 	if (latch && !late)
250 		goto out;
251 	latch = true;
252 
253 	for_each_possible_cpu(i) {
254 		struct rnd_state *state = &per_cpu(net_rand_state,i);
255 		u32 seeds[4];
256 
257 		get_random_bytes(&seeds, sizeof(seeds));
258 		state->s1 = __seed(seeds[0],   2U);
259 		state->s2 = __seed(seeds[1],   8U);
260 		state->s3 = __seed(seeds[2],  16U);
261 		state->s4 = __seed(seeds[3], 128U);
262 
263 		prandom_warmup(state);
264 	}
265 out:
266 	spin_unlock_irqrestore(&lock, flags);
267 }
268 
269 void prandom_reseed_late(void)
270 {
271 	__prandom_reseed(true);
272 }
273 
274 static int __init prandom_reseed(void)
275 {
276 	__prandom_reseed(false);
277 	__prandom_start_seed_timer();
278 	return 0;
279 }
280 late_initcall(prandom_reseed);
281 
282 #ifdef CONFIG_RANDOM32_SELFTEST
283 static struct prandom_test1 {
284 	u32 seed;
285 	u32 result;
286 } test1[] = {
287 	{ 1U, 3484351685U },
288 	{ 2U, 2623130059U },
289 	{ 3U, 3125133893U },
290 	{ 4U,  984847254U },
291 };
292 
293 static struct prandom_test2 {
294 	u32 seed;
295 	u32 iteration;
296 	u32 result;
297 } test2[] = {
298 	/* Test cases against taus113 from GSL library. */
299 	{  931557656U, 959U, 2975593782U },
300 	{ 1339693295U, 876U, 3887776532U },
301 	{ 1545556285U, 961U, 1615538833U },
302 	{  601730776U, 723U, 1776162651U },
303 	{ 1027516047U, 687U,  511983079U },
304 	{  416526298U, 700U,  916156552U },
305 	{ 1395522032U, 652U, 2222063676U },
306 	{  366221443U, 617U, 2992857763U },
307 	{ 1539836965U, 714U, 3783265725U },
308 	{  556206671U, 994U,  799626459U },
309 	{  684907218U, 799U,  367789491U },
310 	{ 2121230701U, 931U, 2115467001U },
311 	{ 1668516451U, 644U, 3620590685U },
312 	{  768046066U, 883U, 2034077390U },
313 	{ 1989159136U, 833U, 1195767305U },
314 	{  536585145U, 996U, 3577259204U },
315 	{ 1008129373U, 642U, 1478080776U },
316 	{ 1740775604U, 939U, 1264980372U },
317 	{ 1967883163U, 508U,   10734624U },
318 	{ 1923019697U, 730U, 3821419629U },
319 	{  442079932U, 560U, 3440032343U },
320 	{ 1961302714U, 845U,  841962572U },
321 	{ 2030205964U, 962U, 1325144227U },
322 	{ 1160407529U, 507U,  240940858U },
323 	{  635482502U, 779U, 4200489746U },
324 	{ 1252788931U, 699U,  867195434U },
325 	{ 1961817131U, 719U,  668237657U },
326 	{ 1071468216U, 983U,  917876630U },
327 	{ 1281848367U, 932U, 1003100039U },
328 	{  582537119U, 780U, 1127273778U },
329 	{ 1973672777U, 853U, 1071368872U },
330 	{ 1896756996U, 762U, 1127851055U },
331 	{  847917054U, 500U, 1717499075U },
332 	{ 1240520510U, 951U, 2849576657U },
333 	{ 1685071682U, 567U, 1961810396U },
334 	{ 1516232129U, 557U,    3173877U },
335 	{ 1208118903U, 612U, 1613145022U },
336 	{ 1817269927U, 693U, 4279122573U },
337 	{ 1510091701U, 717U,  638191229U },
338 	{  365916850U, 807U,  600424314U },
339 	{  399324359U, 702U, 1803598116U },
340 	{ 1318480274U, 779U, 2074237022U },
341 	{  697758115U, 840U, 1483639402U },
342 	{ 1696507773U, 840U,  577415447U },
343 	{ 2081979121U, 981U, 3041486449U },
344 	{  955646687U, 742U, 3846494357U },
345 	{ 1250683506U, 749U,  836419859U },
346 	{  595003102U, 534U,  366794109U },
347 	{   47485338U, 558U, 3521120834U },
348 	{  619433479U, 610U, 3991783875U },
349 	{  704096520U, 518U, 4139493852U },
350 	{ 1712224984U, 606U, 2393312003U },
351 	{ 1318233152U, 922U, 3880361134U },
352 	{  855572992U, 761U, 1472974787U },
353 	{   64721421U, 703U,  683860550U },
354 	{  678931758U, 840U,  380616043U },
355 	{  692711973U, 778U, 1382361947U },
356 	{  677703619U, 530U, 2826914161U },
357 	{   92393223U, 586U, 1522128471U },
358 	{ 1222592920U, 743U, 3466726667U },
359 	{  358288986U, 695U, 1091956998U },
360 	{ 1935056945U, 958U,  514864477U },
361 	{  735675993U, 990U, 1294239989U },
362 	{ 1560089402U, 897U, 2238551287U },
363 	{   70616361U, 829U,   22483098U },
364 	{  368234700U, 731U, 2913875084U },
365 	{   20221190U, 879U, 1564152970U },
366 	{  539444654U, 682U, 1835141259U },
367 	{ 1314987297U, 840U, 1801114136U },
368 	{ 2019295544U, 645U, 3286438930U },
369 	{  469023838U, 716U, 1637918202U },
370 	{ 1843754496U, 653U, 2562092152U },
371 	{  400672036U, 809U, 4264212785U },
372 	{  404722249U, 965U, 2704116999U },
373 	{  600702209U, 758U,  584979986U },
374 	{  519953954U, 667U, 2574436237U },
375 	{ 1658071126U, 694U, 2214569490U },
376 	{  420480037U, 749U, 3430010866U },
377 	{  690103647U, 969U, 3700758083U },
378 	{ 1029424799U, 937U, 3787746841U },
379 	{ 2012608669U, 506U, 3362628973U },
380 	{ 1535432887U, 998U,   42610943U },
381 	{ 1330635533U, 857U, 3040806504U },
382 	{ 1223800550U, 539U, 3954229517U },
383 	{ 1322411537U, 680U, 3223250324U },
384 	{ 1877847898U, 945U, 2915147143U },
385 	{ 1646356099U, 874U,  965988280U },
386 	{  805687536U, 744U, 4032277920U },
387 	{ 1948093210U, 633U, 1346597684U },
388 	{  392609744U, 783U, 1636083295U },
389 	{  690241304U, 770U, 1201031298U },
390 	{ 1360302965U, 696U, 1665394461U },
391 	{ 1220090946U, 780U, 1316922812U },
392 	{  447092251U, 500U, 3438743375U },
393 	{ 1613868791U, 592U,  828546883U },
394 	{  523430951U, 548U, 2552392304U },
395 	{  726692899U, 810U, 1656872867U },
396 	{ 1364340021U, 836U, 3710513486U },
397 	{ 1986257729U, 931U,  935013962U },
398 	{  407983964U, 921U,  728767059U },
399 };
400 
401 static void __init prandom_state_selftest(void)
402 {
403 	int i, j, errors = 0, runs = 0;
404 	bool error = false;
405 
406 	for (i = 0; i < ARRAY_SIZE(test1); i++) {
407 		struct rnd_state state;
408 
409 		prandom_seed_very_weak(&state, test1[i].seed);
410 		prandom_warmup(&state);
411 
412 		if (test1[i].result != prandom_u32_state(&state))
413 			error = true;
414 	}
415 
416 	if (error)
417 		pr_warn("prandom: seed boundary self test failed\n");
418 	else
419 		pr_info("prandom: seed boundary self test passed\n");
420 
421 	for (i = 0; i < ARRAY_SIZE(test2); i++) {
422 		struct rnd_state state;
423 
424 		prandom_seed_very_weak(&state, test2[i].seed);
425 		prandom_warmup(&state);
426 
427 		for (j = 0; j < test2[i].iteration - 1; j++)
428 			prandom_u32_state(&state);
429 
430 		if (test2[i].result != prandom_u32_state(&state))
431 			errors++;
432 
433 		runs++;
434 		cond_resched();
435 	}
436 
437 	if (errors)
438 		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
439 	else
440 		pr_info("prandom: %d self tests passed\n", runs);
441 }
442 #endif
443