xref: /openbmc/linux/lib/raid6/test/test.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- linux-c -*- ------------------------------------------------------- *
3  *
4  *   Copyright 2002-2007 H. Peter Anvin - All Rights Reserved
5  *
6  * ----------------------------------------------------------------------- */
7 
8 /*
9  * raid6test.c
10  *
11  * Test RAID-6 recovery with various algorithms
12  */
13 
14 #include <stdlib.h>
15 #include <stdio.h>
16 #include <string.h>
17 #include <linux/raid/pq.h>
18 
19 #define NDISKS		16	/* Including P and Q */
20 
21 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
22 struct raid6_calls raid6_call;
23 
24 char *dataptrs[NDISKS];
25 char data[NDISKS][PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
26 char recovi[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
27 char recovj[PAGE_SIZE] __attribute__((aligned(PAGE_SIZE)));
28 
29 static void makedata(int start, int stop)
30 {
31 	int i, j;
32 
33 	for (i = start; i <= stop; i++) {
34 		for (j = 0; j < PAGE_SIZE; j++)
35 			data[i][j] = rand();
36 
37 		dataptrs[i] = data[i];
38 	}
39 }
40 
41 static char disk_type(int d)
42 {
43 	switch (d) {
44 	case NDISKS-2:
45 		return 'P';
46 	case NDISKS-1:
47 		return 'Q';
48 	default:
49 		return 'D';
50 	}
51 }
52 
53 static int test_disks(int i, int j)
54 {
55 	int erra, errb;
56 
57 	memset(recovi, 0xf0, PAGE_SIZE);
58 	memset(recovj, 0xba, PAGE_SIZE);
59 
60 	dataptrs[i] = recovi;
61 	dataptrs[j] = recovj;
62 
63 	raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs);
64 
65 	erra = memcmp(data[i], recovi, PAGE_SIZE);
66 	errb = memcmp(data[j], recovj, PAGE_SIZE);
67 
68 	if (i < NDISKS-2 && j == NDISKS-1) {
69 		/* We don't implement the DQ failure scenario, since it's
70 		   equivalent to a RAID-5 failure (XOR, then recompute Q) */
71 		erra = errb = 0;
72 	} else {
73 		printf("algo=%-8s  faila=%3d(%c)  failb=%3d(%c)  %s\n",
74 		       raid6_call.name,
75 		       i, disk_type(i),
76 		       j, disk_type(j),
77 		       (!erra && !errb) ? "OK" :
78 		       !erra ? "ERRB" :
79 		       !errb ? "ERRA" : "ERRAB");
80 	}
81 
82 	dataptrs[i] = data[i];
83 	dataptrs[j] = data[j];
84 
85 	return erra || errb;
86 }
87 
88 int main(int argc, char *argv[])
89 {
90 	const struct raid6_calls *const *algo;
91 	const struct raid6_recov_calls *const *ra;
92 	int i, j, p1, p2;
93 	int err = 0;
94 
95 	makedata(0, NDISKS-1);
96 
97 	for (ra = raid6_recov_algos; *ra; ra++) {
98 		if ((*ra)->valid  && !(*ra)->valid())
99 			continue;
100 
101 		raid6_2data_recov = (*ra)->data2;
102 		raid6_datap_recov = (*ra)->datap;
103 
104 		printf("using recovery %s\n", (*ra)->name);
105 
106 		for (algo = raid6_algos; *algo; algo++) {
107 			if ((*algo)->valid && !(*algo)->valid())
108 				continue;
109 
110 			raid6_call = **algo;
111 
112 			/* Nuke syndromes */
113 			memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE);
114 
115 			/* Generate assumed good syndrome */
116 			raid6_call.gen_syndrome(NDISKS, PAGE_SIZE,
117 						(void **)&dataptrs);
118 
119 			for (i = 0; i < NDISKS-1; i++)
120 				for (j = i+1; j < NDISKS; j++)
121 					err += test_disks(i, j);
122 
123 			if (!raid6_call.xor_syndrome)
124 				continue;
125 
126 			for (p1 = 0; p1 < NDISKS-2; p1++)
127 				for (p2 = p1; p2 < NDISKS-2; p2++) {
128 
129 					/* Simulate rmw run */
130 					raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE,
131 								(void **)&dataptrs);
132 					makedata(p1, p2);
133 					raid6_call.xor_syndrome(NDISKS, p1, p2, PAGE_SIZE,
134                                                                 (void **)&dataptrs);
135 
136 					for (i = 0; i < NDISKS-1; i++)
137 						for (j = i+1; j < NDISKS; j++)
138 							err += test_disks(i, j);
139 				}
140 
141 		}
142 		printf("\n");
143 	}
144 
145 	printf("\n");
146 	/* Pick the best algorithm test */
147 	raid6_select_algo();
148 
149 	if (err)
150 		printf("\n*** ERRORS FOUND ***\n");
151 
152 	return err;
153 }
154