xref: /openbmc/linux/lib/radix-tree.c (revision f3a8b664)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	unsigned nr;
67 	/* nodes->private_data points to next preallocated node */
68 	struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline void *node_to_entry(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76 
77 #define RADIX_TREE_RETRY	node_to_entry(NULL)
78 
79 #ifdef CONFIG_RADIX_TREE_MULTIORDER
80 /* Sibling slots point directly to another slot in the same node */
81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
82 {
83 	void **ptr = node;
84 	return (parent->slots <= ptr) &&
85 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
86 }
87 #else
88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
89 {
90 	return false;
91 }
92 #endif
93 
94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
95 						 void **slot)
96 {
97 	return slot - parent->slots;
98 }
99 
100 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
101 			struct radix_tree_node **nodep, unsigned long index)
102 {
103 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
104 	void **entry = rcu_dereference_raw(parent->slots[offset]);
105 
106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
107 	if (radix_tree_is_internal_node(entry)) {
108 		if (is_sibling_entry(parent, entry)) {
109 			void **sibentry = (void **) entry_to_node(entry);
110 			offset = get_slot_offset(parent, sibentry);
111 			entry = rcu_dereference_raw(*sibentry);
112 		}
113 	}
114 #endif
115 
116 	*nodep = (void *)entry;
117 	return offset;
118 }
119 
120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
121 {
122 	return root->gfp_mask & __GFP_BITS_MASK;
123 }
124 
125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
126 		int offset)
127 {
128 	__set_bit(offset, node->tags[tag]);
129 }
130 
131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
132 		int offset)
133 {
134 	__clear_bit(offset, node->tags[tag]);
135 }
136 
137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
138 		int offset)
139 {
140 	return test_bit(offset, node->tags[tag]);
141 }
142 
143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
144 {
145 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
146 }
147 
148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
149 {
150 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
151 }
152 
153 static inline void root_tag_clear_all(struct radix_tree_root *root)
154 {
155 	root->gfp_mask &= __GFP_BITS_MASK;
156 }
157 
158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
159 {
160 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
161 }
162 
163 static inline unsigned root_tags_get(struct radix_tree_root *root)
164 {
165 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
166 }
167 
168 /*
169  * Returns 1 if any slot in the node has this tag set.
170  * Otherwise returns 0.
171  */
172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
173 {
174 	unsigned idx;
175 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
176 		if (node->tags[tag][idx])
177 			return 1;
178 	}
179 	return 0;
180 }
181 
182 /**
183  * radix_tree_find_next_bit - find the next set bit in a memory region
184  *
185  * @addr: The address to base the search on
186  * @size: The bitmap size in bits
187  * @offset: The bitnumber to start searching at
188  *
189  * Unrollable variant of find_next_bit() for constant size arrays.
190  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
191  * Returns next bit offset, or size if nothing found.
192  */
193 static __always_inline unsigned long
194 radix_tree_find_next_bit(const unsigned long *addr,
195 			 unsigned long size, unsigned long offset)
196 {
197 	if (!__builtin_constant_p(size))
198 		return find_next_bit(addr, size, offset);
199 
200 	if (offset < size) {
201 		unsigned long tmp;
202 
203 		addr += offset / BITS_PER_LONG;
204 		tmp = *addr >> (offset % BITS_PER_LONG);
205 		if (tmp)
206 			return __ffs(tmp) + offset;
207 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
208 		while (offset < size) {
209 			tmp = *++addr;
210 			if (tmp)
211 				return __ffs(tmp) + offset;
212 			offset += BITS_PER_LONG;
213 		}
214 	}
215 	return size;
216 }
217 
218 #ifndef __KERNEL__
219 static void dump_node(struct radix_tree_node *node, unsigned long index)
220 {
221 	unsigned long i;
222 
223 	pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
224 		node, node->offset,
225 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
226 		node->shift, node->count, node->parent);
227 
228 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
229 		unsigned long first = index | (i << node->shift);
230 		unsigned long last = first | ((1UL << node->shift) - 1);
231 		void *entry = node->slots[i];
232 		if (!entry)
233 			continue;
234 		if (is_sibling_entry(node, entry)) {
235 			pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
236 					entry, i,
237 					*(void **)entry_to_node(entry),
238 					first, last);
239 		} else if (!radix_tree_is_internal_node(entry)) {
240 			pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
241 					entry, i, first, last);
242 		} else {
243 			dump_node(entry_to_node(entry), first);
244 		}
245 	}
246 }
247 
248 /* For debug */
249 static void radix_tree_dump(struct radix_tree_root *root)
250 {
251 	pr_debug("radix root: %p rnode %p tags %x\n",
252 			root, root->rnode,
253 			root->gfp_mask >> __GFP_BITS_SHIFT);
254 	if (!radix_tree_is_internal_node(root->rnode))
255 		return;
256 	dump_node(entry_to_node(root->rnode), 0);
257 }
258 #endif
259 
260 /*
261  * This assumes that the caller has performed appropriate preallocation, and
262  * that the caller has pinned this thread of control to the current CPU.
263  */
264 static struct radix_tree_node *
265 radix_tree_node_alloc(struct radix_tree_root *root)
266 {
267 	struct radix_tree_node *ret = NULL;
268 	gfp_t gfp_mask = root_gfp_mask(root);
269 
270 	/*
271 	 * Preload code isn't irq safe and it doesn't make sense to use
272 	 * preloading during an interrupt anyway as all the allocations have
273 	 * to be atomic. So just do normal allocation when in interrupt.
274 	 */
275 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
276 		struct radix_tree_preload *rtp;
277 
278 		/*
279 		 * Even if the caller has preloaded, try to allocate from the
280 		 * cache first for the new node to get accounted to the memory
281 		 * cgroup.
282 		 */
283 		ret = kmem_cache_alloc(radix_tree_node_cachep,
284 				       gfp_mask | __GFP_NOWARN);
285 		if (ret)
286 			goto out;
287 
288 		/*
289 		 * Provided the caller has preloaded here, we will always
290 		 * succeed in getting a node here (and never reach
291 		 * kmem_cache_alloc)
292 		 */
293 		rtp = this_cpu_ptr(&radix_tree_preloads);
294 		if (rtp->nr) {
295 			ret = rtp->nodes;
296 			rtp->nodes = ret->private_data;
297 			ret->private_data = NULL;
298 			rtp->nr--;
299 		}
300 		/*
301 		 * Update the allocation stack trace as this is more useful
302 		 * for debugging.
303 		 */
304 		kmemleak_update_trace(ret);
305 		goto out;
306 	}
307 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
308 out:
309 	BUG_ON(radix_tree_is_internal_node(ret));
310 	return ret;
311 }
312 
313 static void radix_tree_node_rcu_free(struct rcu_head *head)
314 {
315 	struct radix_tree_node *node =
316 			container_of(head, struct radix_tree_node, rcu_head);
317 	int i;
318 
319 	/*
320 	 * must only free zeroed nodes into the slab. radix_tree_shrink
321 	 * can leave us with a non-NULL entry in the first slot, so clear
322 	 * that here to make sure.
323 	 */
324 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
325 		tag_clear(node, i, 0);
326 
327 	node->slots[0] = NULL;
328 	node->count = 0;
329 
330 	kmem_cache_free(radix_tree_node_cachep, node);
331 }
332 
333 static inline void
334 radix_tree_node_free(struct radix_tree_node *node)
335 {
336 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
337 }
338 
339 /*
340  * Load up this CPU's radix_tree_node buffer with sufficient objects to
341  * ensure that the addition of a single element in the tree cannot fail.  On
342  * success, return zero, with preemption disabled.  On error, return -ENOMEM
343  * with preemption not disabled.
344  *
345  * To make use of this facility, the radix tree must be initialised without
346  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
347  */
348 static int __radix_tree_preload(gfp_t gfp_mask, int nr)
349 {
350 	struct radix_tree_preload *rtp;
351 	struct radix_tree_node *node;
352 	int ret = -ENOMEM;
353 
354 	/*
355 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
356 	 * they should never be accounted to any particular memory cgroup.
357 	 */
358 	gfp_mask &= ~__GFP_ACCOUNT;
359 
360 	preempt_disable();
361 	rtp = this_cpu_ptr(&radix_tree_preloads);
362 	while (rtp->nr < nr) {
363 		preempt_enable();
364 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
365 		if (node == NULL)
366 			goto out;
367 		preempt_disable();
368 		rtp = this_cpu_ptr(&radix_tree_preloads);
369 		if (rtp->nr < nr) {
370 			node->private_data = rtp->nodes;
371 			rtp->nodes = node;
372 			rtp->nr++;
373 		} else {
374 			kmem_cache_free(radix_tree_node_cachep, node);
375 		}
376 	}
377 	ret = 0;
378 out:
379 	return ret;
380 }
381 
382 /*
383  * Load up this CPU's radix_tree_node buffer with sufficient objects to
384  * ensure that the addition of a single element in the tree cannot fail.  On
385  * success, return zero, with preemption disabled.  On error, return -ENOMEM
386  * with preemption not disabled.
387  *
388  * To make use of this facility, the radix tree must be initialised without
389  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
390  */
391 int radix_tree_preload(gfp_t gfp_mask)
392 {
393 	/* Warn on non-sensical use... */
394 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
395 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
396 }
397 EXPORT_SYMBOL(radix_tree_preload);
398 
399 /*
400  * The same as above function, except we don't guarantee preloading happens.
401  * We do it, if we decide it helps. On success, return zero with preemption
402  * disabled. On error, return -ENOMEM with preemption not disabled.
403  */
404 int radix_tree_maybe_preload(gfp_t gfp_mask)
405 {
406 	if (gfpflags_allow_blocking(gfp_mask))
407 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
408 	/* Preloading doesn't help anything with this gfp mask, skip it */
409 	preempt_disable();
410 	return 0;
411 }
412 EXPORT_SYMBOL(radix_tree_maybe_preload);
413 
414 /*
415  * The same as function above, but preload number of nodes required to insert
416  * (1 << order) continuous naturally-aligned elements.
417  */
418 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
419 {
420 	unsigned long nr_subtrees;
421 	int nr_nodes, subtree_height;
422 
423 	/* Preloading doesn't help anything with this gfp mask, skip it */
424 	if (!gfpflags_allow_blocking(gfp_mask)) {
425 		preempt_disable();
426 		return 0;
427 	}
428 
429 	/*
430 	 * Calculate number and height of fully populated subtrees it takes to
431 	 * store (1 << order) elements.
432 	 */
433 	nr_subtrees = 1 << order;
434 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
435 			subtree_height++)
436 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
437 
438 	/*
439 	 * The worst case is zero height tree with a single item at index 0 and
440 	 * then inserting items starting at ULONG_MAX - (1 << order).
441 	 *
442 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
443 	 * 0-index item.
444 	 */
445 	nr_nodes = RADIX_TREE_MAX_PATH;
446 
447 	/* Plus branch to fully populated subtrees. */
448 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
449 
450 	/* Root node is shared. */
451 	nr_nodes--;
452 
453 	/* Plus nodes required to build subtrees. */
454 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
455 
456 	return __radix_tree_preload(gfp_mask, nr_nodes);
457 }
458 
459 /*
460  * The maximum index which can be stored in a radix tree
461  */
462 static inline unsigned long shift_maxindex(unsigned int shift)
463 {
464 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
465 }
466 
467 static inline unsigned long node_maxindex(struct radix_tree_node *node)
468 {
469 	return shift_maxindex(node->shift);
470 }
471 
472 static unsigned radix_tree_load_root(struct radix_tree_root *root,
473 		struct radix_tree_node **nodep, unsigned long *maxindex)
474 {
475 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
476 
477 	*nodep = node;
478 
479 	if (likely(radix_tree_is_internal_node(node))) {
480 		node = entry_to_node(node);
481 		*maxindex = node_maxindex(node);
482 		return node->shift + RADIX_TREE_MAP_SHIFT;
483 	}
484 
485 	*maxindex = 0;
486 	return 0;
487 }
488 
489 /*
490  *	Extend a radix tree so it can store key @index.
491  */
492 static int radix_tree_extend(struct radix_tree_root *root,
493 				unsigned long index, unsigned int shift)
494 {
495 	struct radix_tree_node *slot;
496 	unsigned int maxshift;
497 	int tag;
498 
499 	/* Figure out what the shift should be.  */
500 	maxshift = shift;
501 	while (index > shift_maxindex(maxshift))
502 		maxshift += RADIX_TREE_MAP_SHIFT;
503 
504 	slot = root->rnode;
505 	if (!slot)
506 		goto out;
507 
508 	do {
509 		struct radix_tree_node *node = radix_tree_node_alloc(root);
510 
511 		if (!node)
512 			return -ENOMEM;
513 
514 		/* Propagate the aggregated tag info into the new root */
515 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
516 			if (root_tag_get(root, tag))
517 				tag_set(node, tag, 0);
518 		}
519 
520 		BUG_ON(shift > BITS_PER_LONG);
521 		node->shift = shift;
522 		node->offset = 0;
523 		node->count = 1;
524 		node->parent = NULL;
525 		if (radix_tree_is_internal_node(slot))
526 			entry_to_node(slot)->parent = node;
527 		node->slots[0] = slot;
528 		slot = node_to_entry(node);
529 		rcu_assign_pointer(root->rnode, slot);
530 		shift += RADIX_TREE_MAP_SHIFT;
531 	} while (shift <= maxshift);
532 out:
533 	return maxshift + RADIX_TREE_MAP_SHIFT;
534 }
535 
536 /**
537  *	__radix_tree_create	-	create a slot in a radix tree
538  *	@root:		radix tree root
539  *	@index:		index key
540  *	@order:		index occupies 2^order aligned slots
541  *	@nodep:		returns node
542  *	@slotp:		returns slot
543  *
544  *	Create, if necessary, and return the node and slot for an item
545  *	at position @index in the radix tree @root.
546  *
547  *	Until there is more than one item in the tree, no nodes are
548  *	allocated and @root->rnode is used as a direct slot instead of
549  *	pointing to a node, in which case *@nodep will be NULL.
550  *
551  *	Returns -ENOMEM, or 0 for success.
552  */
553 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
554 			unsigned order, struct radix_tree_node **nodep,
555 			void ***slotp)
556 {
557 	struct radix_tree_node *node = NULL, *child;
558 	void **slot = (void **)&root->rnode;
559 	unsigned long maxindex;
560 	unsigned int shift, offset = 0;
561 	unsigned long max = index | ((1UL << order) - 1);
562 
563 	shift = radix_tree_load_root(root, &child, &maxindex);
564 
565 	/* Make sure the tree is high enough.  */
566 	if (max > maxindex) {
567 		int error = radix_tree_extend(root, max, shift);
568 		if (error < 0)
569 			return error;
570 		shift = error;
571 		child = root->rnode;
572 		if (order == shift)
573 			shift += RADIX_TREE_MAP_SHIFT;
574 	}
575 
576 	while (shift > order) {
577 		shift -= RADIX_TREE_MAP_SHIFT;
578 		if (child == NULL) {
579 			/* Have to add a child node.  */
580 			child = radix_tree_node_alloc(root);
581 			if (!child)
582 				return -ENOMEM;
583 			child->shift = shift;
584 			child->offset = offset;
585 			child->parent = node;
586 			rcu_assign_pointer(*slot, node_to_entry(child));
587 			if (node)
588 				node->count++;
589 		} else if (!radix_tree_is_internal_node(child))
590 			break;
591 
592 		/* Go a level down */
593 		node = entry_to_node(child);
594 		offset = radix_tree_descend(node, &child, index);
595 		slot = &node->slots[offset];
596 	}
597 
598 #ifdef CONFIG_RADIX_TREE_MULTIORDER
599 	/* Insert pointers to the canonical entry */
600 	if (order > shift) {
601 		unsigned i, n = 1 << (order - shift);
602 		offset = offset & ~(n - 1);
603 		slot = &node->slots[offset];
604 		child = node_to_entry(slot);
605 		for (i = 0; i < n; i++) {
606 			if (slot[i])
607 				return -EEXIST;
608 		}
609 
610 		for (i = 1; i < n; i++) {
611 			rcu_assign_pointer(slot[i], child);
612 			node->count++;
613 		}
614 	}
615 #endif
616 
617 	if (nodep)
618 		*nodep = node;
619 	if (slotp)
620 		*slotp = slot;
621 	return 0;
622 }
623 
624 /**
625  *	__radix_tree_insert    -    insert into a radix tree
626  *	@root:		radix tree root
627  *	@index:		index key
628  *	@order:		key covers the 2^order indices around index
629  *	@item:		item to insert
630  *
631  *	Insert an item into the radix tree at position @index.
632  */
633 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
634 			unsigned order, void *item)
635 {
636 	struct radix_tree_node *node;
637 	void **slot;
638 	int error;
639 
640 	BUG_ON(radix_tree_is_internal_node(item));
641 
642 	error = __radix_tree_create(root, index, order, &node, &slot);
643 	if (error)
644 		return error;
645 	if (*slot != NULL)
646 		return -EEXIST;
647 	rcu_assign_pointer(*slot, item);
648 
649 	if (node) {
650 		unsigned offset = get_slot_offset(node, slot);
651 		node->count++;
652 		BUG_ON(tag_get(node, 0, offset));
653 		BUG_ON(tag_get(node, 1, offset));
654 		BUG_ON(tag_get(node, 2, offset));
655 	} else {
656 		BUG_ON(root_tags_get(root));
657 	}
658 
659 	return 0;
660 }
661 EXPORT_SYMBOL(__radix_tree_insert);
662 
663 /**
664  *	__radix_tree_lookup	-	lookup an item in a radix tree
665  *	@root:		radix tree root
666  *	@index:		index key
667  *	@nodep:		returns node
668  *	@slotp:		returns slot
669  *
670  *	Lookup and return the item at position @index in the radix
671  *	tree @root.
672  *
673  *	Until there is more than one item in the tree, no nodes are
674  *	allocated and @root->rnode is used as a direct slot instead of
675  *	pointing to a node, in which case *@nodep will be NULL.
676  */
677 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
678 			  struct radix_tree_node **nodep, void ***slotp)
679 {
680 	struct radix_tree_node *node, *parent;
681 	unsigned long maxindex;
682 	void **slot;
683 
684  restart:
685 	parent = NULL;
686 	slot = (void **)&root->rnode;
687 	radix_tree_load_root(root, &node, &maxindex);
688 	if (index > maxindex)
689 		return NULL;
690 
691 	while (radix_tree_is_internal_node(node)) {
692 		unsigned offset;
693 
694 		if (node == RADIX_TREE_RETRY)
695 			goto restart;
696 		parent = entry_to_node(node);
697 		offset = radix_tree_descend(parent, &node, index);
698 		slot = parent->slots + offset;
699 	}
700 
701 	if (nodep)
702 		*nodep = parent;
703 	if (slotp)
704 		*slotp = slot;
705 	return node;
706 }
707 
708 /**
709  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
710  *	@root:		radix tree root
711  *	@index:		index key
712  *
713  *	Returns:  the slot corresponding to the position @index in the
714  *	radix tree @root. This is useful for update-if-exists operations.
715  *
716  *	This function can be called under rcu_read_lock iff the slot is not
717  *	modified by radix_tree_replace_slot, otherwise it must be called
718  *	exclusive from other writers. Any dereference of the slot must be done
719  *	using radix_tree_deref_slot.
720  */
721 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
722 {
723 	void **slot;
724 
725 	if (!__radix_tree_lookup(root, index, NULL, &slot))
726 		return NULL;
727 	return slot;
728 }
729 EXPORT_SYMBOL(radix_tree_lookup_slot);
730 
731 /**
732  *	radix_tree_lookup    -    perform lookup operation on a radix tree
733  *	@root:		radix tree root
734  *	@index:		index key
735  *
736  *	Lookup the item at the position @index in the radix tree @root.
737  *
738  *	This function can be called under rcu_read_lock, however the caller
739  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
740  *	them safely). No RCU barriers are required to access or modify the
741  *	returned item, however.
742  */
743 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
744 {
745 	return __radix_tree_lookup(root, index, NULL, NULL);
746 }
747 EXPORT_SYMBOL(radix_tree_lookup);
748 
749 /**
750  *	radix_tree_tag_set - set a tag on a radix tree node
751  *	@root:		radix tree root
752  *	@index:		index key
753  *	@tag:		tag index
754  *
755  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
756  *	corresponding to @index in the radix tree.  From
757  *	the root all the way down to the leaf node.
758  *
759  *	Returns the address of the tagged item.  Setting a tag on a not-present
760  *	item is a bug.
761  */
762 void *radix_tree_tag_set(struct radix_tree_root *root,
763 			unsigned long index, unsigned int tag)
764 {
765 	struct radix_tree_node *node, *parent;
766 	unsigned long maxindex;
767 
768 	radix_tree_load_root(root, &node, &maxindex);
769 	BUG_ON(index > maxindex);
770 
771 	while (radix_tree_is_internal_node(node)) {
772 		unsigned offset;
773 
774 		parent = entry_to_node(node);
775 		offset = radix_tree_descend(parent, &node, index);
776 		BUG_ON(!node);
777 
778 		if (!tag_get(parent, tag, offset))
779 			tag_set(parent, tag, offset);
780 	}
781 
782 	/* set the root's tag bit */
783 	if (!root_tag_get(root, tag))
784 		root_tag_set(root, tag);
785 
786 	return node;
787 }
788 EXPORT_SYMBOL(radix_tree_tag_set);
789 
790 static void node_tag_clear(struct radix_tree_root *root,
791 				struct radix_tree_node *node,
792 				unsigned int tag, unsigned int offset)
793 {
794 	while (node) {
795 		if (!tag_get(node, tag, offset))
796 			return;
797 		tag_clear(node, tag, offset);
798 		if (any_tag_set(node, tag))
799 			return;
800 
801 		offset = node->offset;
802 		node = node->parent;
803 	}
804 
805 	/* clear the root's tag bit */
806 	if (root_tag_get(root, tag))
807 		root_tag_clear(root, tag);
808 }
809 
810 /**
811  *	radix_tree_tag_clear - clear a tag on a radix tree node
812  *	@root:		radix tree root
813  *	@index:		index key
814  *	@tag:		tag index
815  *
816  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
817  *	corresponding to @index in the radix tree.  If this causes
818  *	the leaf node to have no tags set then clear the tag in the
819  *	next-to-leaf node, etc.
820  *
821  *	Returns the address of the tagged item on success, else NULL.  ie:
822  *	has the same return value and semantics as radix_tree_lookup().
823  */
824 void *radix_tree_tag_clear(struct radix_tree_root *root,
825 			unsigned long index, unsigned int tag)
826 {
827 	struct radix_tree_node *node, *parent;
828 	unsigned long maxindex;
829 	int uninitialized_var(offset);
830 
831 	radix_tree_load_root(root, &node, &maxindex);
832 	if (index > maxindex)
833 		return NULL;
834 
835 	parent = NULL;
836 
837 	while (radix_tree_is_internal_node(node)) {
838 		parent = entry_to_node(node);
839 		offset = radix_tree_descend(parent, &node, index);
840 	}
841 
842 	if (node)
843 		node_tag_clear(root, parent, tag, offset);
844 
845 	return node;
846 }
847 EXPORT_SYMBOL(radix_tree_tag_clear);
848 
849 /**
850  * radix_tree_tag_get - get a tag on a radix tree node
851  * @root:		radix tree root
852  * @index:		index key
853  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
854  *
855  * Return values:
856  *
857  *  0: tag not present or not set
858  *  1: tag set
859  *
860  * Note that the return value of this function may not be relied on, even if
861  * the RCU lock is held, unless tag modification and node deletion are excluded
862  * from concurrency.
863  */
864 int radix_tree_tag_get(struct radix_tree_root *root,
865 			unsigned long index, unsigned int tag)
866 {
867 	struct radix_tree_node *node, *parent;
868 	unsigned long maxindex;
869 
870 	if (!root_tag_get(root, tag))
871 		return 0;
872 
873 	radix_tree_load_root(root, &node, &maxindex);
874 	if (index > maxindex)
875 		return 0;
876 	if (node == NULL)
877 		return 0;
878 
879 	while (radix_tree_is_internal_node(node)) {
880 		unsigned offset;
881 
882 		parent = entry_to_node(node);
883 		offset = radix_tree_descend(parent, &node, index);
884 
885 		if (!node)
886 			return 0;
887 		if (!tag_get(parent, tag, offset))
888 			return 0;
889 		if (node == RADIX_TREE_RETRY)
890 			break;
891 	}
892 
893 	return 1;
894 }
895 EXPORT_SYMBOL(radix_tree_tag_get);
896 
897 static inline void __set_iter_shift(struct radix_tree_iter *iter,
898 					unsigned int shift)
899 {
900 #ifdef CONFIG_RADIX_TREE_MULTIORDER
901 	iter->shift = shift;
902 #endif
903 }
904 
905 /**
906  * radix_tree_next_chunk - find next chunk of slots for iteration
907  *
908  * @root:	radix tree root
909  * @iter:	iterator state
910  * @flags:	RADIX_TREE_ITER_* flags and tag index
911  * Returns:	pointer to chunk first slot, or NULL if iteration is over
912  */
913 void **radix_tree_next_chunk(struct radix_tree_root *root,
914 			     struct radix_tree_iter *iter, unsigned flags)
915 {
916 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
917 	struct radix_tree_node *node, *child;
918 	unsigned long index, offset, maxindex;
919 
920 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
921 		return NULL;
922 
923 	/*
924 	 * Catch next_index overflow after ~0UL. iter->index never overflows
925 	 * during iterating; it can be zero only at the beginning.
926 	 * And we cannot overflow iter->next_index in a single step,
927 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
928 	 *
929 	 * This condition also used by radix_tree_next_slot() to stop
930 	 * contiguous iterating, and forbid swithing to the next chunk.
931 	 */
932 	index = iter->next_index;
933 	if (!index && iter->index)
934 		return NULL;
935 
936  restart:
937 	radix_tree_load_root(root, &child, &maxindex);
938 	if (index > maxindex)
939 		return NULL;
940 	if (!child)
941 		return NULL;
942 
943 	if (!radix_tree_is_internal_node(child)) {
944 		/* Single-slot tree */
945 		iter->index = index;
946 		iter->next_index = maxindex + 1;
947 		iter->tags = 1;
948 		__set_iter_shift(iter, 0);
949 		return (void **)&root->rnode;
950 	}
951 
952 	do {
953 		node = entry_to_node(child);
954 		offset = radix_tree_descend(node, &child, index);
955 
956 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
957 				!tag_get(node, tag, offset) : !child) {
958 			/* Hole detected */
959 			if (flags & RADIX_TREE_ITER_CONTIG)
960 				return NULL;
961 
962 			if (flags & RADIX_TREE_ITER_TAGGED)
963 				offset = radix_tree_find_next_bit(
964 						node->tags[tag],
965 						RADIX_TREE_MAP_SIZE,
966 						offset + 1);
967 			else
968 				while (++offset	< RADIX_TREE_MAP_SIZE) {
969 					void *slot = node->slots[offset];
970 					if (is_sibling_entry(node, slot))
971 						continue;
972 					if (slot)
973 						break;
974 				}
975 			index &= ~node_maxindex(node);
976 			index += offset << node->shift;
977 			/* Overflow after ~0UL */
978 			if (!index)
979 				return NULL;
980 			if (offset == RADIX_TREE_MAP_SIZE)
981 				goto restart;
982 			child = rcu_dereference_raw(node->slots[offset]);
983 		}
984 
985 		if ((child == NULL) || (child == RADIX_TREE_RETRY))
986 			goto restart;
987 	} while (radix_tree_is_internal_node(child));
988 
989 	/* Update the iterator state */
990 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
991 	iter->next_index = (index | node_maxindex(node)) + 1;
992 	__set_iter_shift(iter, node->shift);
993 
994 	/* Construct iter->tags bit-mask from node->tags[tag] array */
995 	if (flags & RADIX_TREE_ITER_TAGGED) {
996 		unsigned tag_long, tag_bit;
997 
998 		tag_long = offset / BITS_PER_LONG;
999 		tag_bit  = offset % BITS_PER_LONG;
1000 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
1001 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1002 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1003 			/* Pick tags from next element */
1004 			if (tag_bit)
1005 				iter->tags |= node->tags[tag][tag_long + 1] <<
1006 						(BITS_PER_LONG - tag_bit);
1007 			/* Clip chunk size, here only BITS_PER_LONG tags */
1008 			iter->next_index = index + BITS_PER_LONG;
1009 		}
1010 	}
1011 
1012 	return node->slots + offset;
1013 }
1014 EXPORT_SYMBOL(radix_tree_next_chunk);
1015 
1016 /**
1017  * radix_tree_range_tag_if_tagged - for each item in given range set given
1018  *				   tag if item has another tag set
1019  * @root:		radix tree root
1020  * @first_indexp:	pointer to a starting index of a range to scan
1021  * @last_index:		last index of a range to scan
1022  * @nr_to_tag:		maximum number items to tag
1023  * @iftag:		tag index to test
1024  * @settag:		tag index to set if tested tag is set
1025  *
1026  * This function scans range of radix tree from first_index to last_index
1027  * (inclusive).  For each item in the range if iftag is set, the function sets
1028  * also settag. The function stops either after tagging nr_to_tag items or
1029  * after reaching last_index.
1030  *
1031  * The tags must be set from the leaf level only and propagated back up the
1032  * path to the root. We must do this so that we resolve the full path before
1033  * setting any tags on intermediate nodes. If we set tags as we descend, then
1034  * we can get to the leaf node and find that the index that has the iftag
1035  * set is outside the range we are scanning. This reults in dangling tags and
1036  * can lead to problems with later tag operations (e.g. livelocks on lookups).
1037  *
1038  * The function returns the number of leaves where the tag was set and sets
1039  * *first_indexp to the first unscanned index.
1040  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1041  * be prepared to handle that.
1042  */
1043 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1044 		unsigned long *first_indexp, unsigned long last_index,
1045 		unsigned long nr_to_tag,
1046 		unsigned int iftag, unsigned int settag)
1047 {
1048 	struct radix_tree_node *parent, *node, *child;
1049 	unsigned long maxindex;
1050 	unsigned long tagged = 0;
1051 	unsigned long index = *first_indexp;
1052 
1053 	radix_tree_load_root(root, &child, &maxindex);
1054 	last_index = min(last_index, maxindex);
1055 	if (index > last_index)
1056 		return 0;
1057 	if (!nr_to_tag)
1058 		return 0;
1059 	if (!root_tag_get(root, iftag)) {
1060 		*first_indexp = last_index + 1;
1061 		return 0;
1062 	}
1063 	if (!radix_tree_is_internal_node(child)) {
1064 		*first_indexp = last_index + 1;
1065 		root_tag_set(root, settag);
1066 		return 1;
1067 	}
1068 
1069 	node = entry_to_node(child);
1070 
1071 	for (;;) {
1072 		unsigned offset = radix_tree_descend(node, &child, index);
1073 		if (!child)
1074 			goto next;
1075 		if (!tag_get(node, iftag, offset))
1076 			goto next;
1077 		/* Sibling slots never have tags set on them */
1078 		if (radix_tree_is_internal_node(child)) {
1079 			node = entry_to_node(child);
1080 			continue;
1081 		}
1082 
1083 		/* tag the leaf */
1084 		tagged++;
1085 		tag_set(node, settag, offset);
1086 
1087 		/* walk back up the path tagging interior nodes */
1088 		parent = node;
1089 		for (;;) {
1090 			offset = parent->offset;
1091 			parent = parent->parent;
1092 			if (!parent)
1093 				break;
1094 			/* stop if we find a node with the tag already set */
1095 			if (tag_get(parent, settag, offset))
1096 				break;
1097 			tag_set(parent, settag, offset);
1098 		}
1099  next:
1100 		/* Go to next entry in node */
1101 		index = ((index >> node->shift) + 1) << node->shift;
1102 		/* Overflow can happen when last_index is ~0UL... */
1103 		if (index > last_index || !index)
1104 			break;
1105 		offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1106 		while (offset == 0) {
1107 			/*
1108 			 * We've fully scanned this node. Go up. Because
1109 			 * last_index is guaranteed to be in the tree, what
1110 			 * we do below cannot wander astray.
1111 			 */
1112 			node = node->parent;
1113 			offset = (index >> node->shift) & RADIX_TREE_MAP_MASK;
1114 		}
1115 		if (is_sibling_entry(node, node->slots[offset]))
1116 			goto next;
1117 		if (tagged >= nr_to_tag)
1118 			break;
1119 	}
1120 	/*
1121 	 * We need not to tag the root tag if there is no tag which is set with
1122 	 * settag within the range from *first_indexp to last_index.
1123 	 */
1124 	if (tagged > 0)
1125 		root_tag_set(root, settag);
1126 	*first_indexp = index;
1127 
1128 	return tagged;
1129 }
1130 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1131 
1132 /**
1133  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1134  *	@root:		radix tree root
1135  *	@results:	where the results of the lookup are placed
1136  *	@first_index:	start the lookup from this key
1137  *	@max_items:	place up to this many items at *results
1138  *
1139  *	Performs an index-ascending scan of the tree for present items.  Places
1140  *	them at *@results and returns the number of items which were placed at
1141  *	*@results.
1142  *
1143  *	The implementation is naive.
1144  *
1145  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1146  *	rcu_read_lock. In this case, rather than the returned results being
1147  *	an atomic snapshot of the tree at a single point in time, the
1148  *	semantics of an RCU protected gang lookup are as though multiple
1149  *	radix_tree_lookups have been issued in individual locks, and results
1150  *	stored in 'results'.
1151  */
1152 unsigned int
1153 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1154 			unsigned long first_index, unsigned int max_items)
1155 {
1156 	struct radix_tree_iter iter;
1157 	void **slot;
1158 	unsigned int ret = 0;
1159 
1160 	if (unlikely(!max_items))
1161 		return 0;
1162 
1163 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1164 		results[ret] = rcu_dereference_raw(*slot);
1165 		if (!results[ret])
1166 			continue;
1167 		if (radix_tree_is_internal_node(results[ret])) {
1168 			slot = radix_tree_iter_retry(&iter);
1169 			continue;
1170 		}
1171 		if (++ret == max_items)
1172 			break;
1173 	}
1174 
1175 	return ret;
1176 }
1177 EXPORT_SYMBOL(radix_tree_gang_lookup);
1178 
1179 /**
1180  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1181  *	@root:		radix tree root
1182  *	@results:	where the results of the lookup are placed
1183  *	@indices:	where their indices should be placed (but usually NULL)
1184  *	@first_index:	start the lookup from this key
1185  *	@max_items:	place up to this many items at *results
1186  *
1187  *	Performs an index-ascending scan of the tree for present items.  Places
1188  *	their slots at *@results and returns the number of items which were
1189  *	placed at *@results.
1190  *
1191  *	The implementation is naive.
1192  *
1193  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1194  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1195  *	protection, radix_tree_deref_slot may fail requiring a retry.
1196  */
1197 unsigned int
1198 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1199 			void ***results, unsigned long *indices,
1200 			unsigned long first_index, unsigned int max_items)
1201 {
1202 	struct radix_tree_iter iter;
1203 	void **slot;
1204 	unsigned int ret = 0;
1205 
1206 	if (unlikely(!max_items))
1207 		return 0;
1208 
1209 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1210 		results[ret] = slot;
1211 		if (indices)
1212 			indices[ret] = iter.index;
1213 		if (++ret == max_items)
1214 			break;
1215 	}
1216 
1217 	return ret;
1218 }
1219 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1220 
1221 /**
1222  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1223  *	                             based on a tag
1224  *	@root:		radix tree root
1225  *	@results:	where the results of the lookup are placed
1226  *	@first_index:	start the lookup from this key
1227  *	@max_items:	place up to this many items at *results
1228  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1229  *
1230  *	Performs an index-ascending scan of the tree for present items which
1231  *	have the tag indexed by @tag set.  Places the items at *@results and
1232  *	returns the number of items which were placed at *@results.
1233  */
1234 unsigned int
1235 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1236 		unsigned long first_index, unsigned int max_items,
1237 		unsigned int tag)
1238 {
1239 	struct radix_tree_iter iter;
1240 	void **slot;
1241 	unsigned int ret = 0;
1242 
1243 	if (unlikely(!max_items))
1244 		return 0;
1245 
1246 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1247 		results[ret] = rcu_dereference_raw(*slot);
1248 		if (!results[ret])
1249 			continue;
1250 		if (radix_tree_is_internal_node(results[ret])) {
1251 			slot = radix_tree_iter_retry(&iter);
1252 			continue;
1253 		}
1254 		if (++ret == max_items)
1255 			break;
1256 	}
1257 
1258 	return ret;
1259 }
1260 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1261 
1262 /**
1263  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1264  *					  radix tree based on a tag
1265  *	@root:		radix tree root
1266  *	@results:	where the results of the lookup are placed
1267  *	@first_index:	start the lookup from this key
1268  *	@max_items:	place up to this many items at *results
1269  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1270  *
1271  *	Performs an index-ascending scan of the tree for present items which
1272  *	have the tag indexed by @tag set.  Places the slots at *@results and
1273  *	returns the number of slots which were placed at *@results.
1274  */
1275 unsigned int
1276 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1277 		unsigned long first_index, unsigned int max_items,
1278 		unsigned int tag)
1279 {
1280 	struct radix_tree_iter iter;
1281 	void **slot;
1282 	unsigned int ret = 0;
1283 
1284 	if (unlikely(!max_items))
1285 		return 0;
1286 
1287 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1288 		results[ret] = slot;
1289 		if (++ret == max_items)
1290 			break;
1291 	}
1292 
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1296 
1297 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1298 #include <linux/sched.h> /* for cond_resched() */
1299 
1300 struct locate_info {
1301 	unsigned long found_index;
1302 	bool stop;
1303 };
1304 
1305 /*
1306  * This linear search is at present only useful to shmem_unuse_inode().
1307  */
1308 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1309 			      unsigned long index, struct locate_info *info)
1310 {
1311 	unsigned long i;
1312 
1313 	do {
1314 		unsigned int shift = slot->shift;
1315 
1316 		for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1317 		     i < RADIX_TREE_MAP_SIZE;
1318 		     i++, index += (1UL << shift)) {
1319 			struct radix_tree_node *node =
1320 					rcu_dereference_raw(slot->slots[i]);
1321 			if (node == RADIX_TREE_RETRY)
1322 				goto out;
1323 			if (!radix_tree_is_internal_node(node)) {
1324 				if (node == item) {
1325 					info->found_index = index;
1326 					info->stop = true;
1327 					goto out;
1328 				}
1329 				continue;
1330 			}
1331 			node = entry_to_node(node);
1332 			if (is_sibling_entry(slot, node))
1333 				continue;
1334 			slot = node;
1335 			break;
1336 		}
1337 	} while (i < RADIX_TREE_MAP_SIZE);
1338 
1339 out:
1340 	if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1341 		info->stop = true;
1342 	return index;
1343 }
1344 
1345 /**
1346  *	radix_tree_locate_item - search through radix tree for item
1347  *	@root:		radix tree root
1348  *	@item:		item to be found
1349  *
1350  *	Returns index where item was found, or -1 if not found.
1351  *	Caller must hold no lock (since this time-consuming function needs
1352  *	to be preemptible), and must check afterwards if item is still there.
1353  */
1354 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1355 {
1356 	struct radix_tree_node *node;
1357 	unsigned long max_index;
1358 	unsigned long cur_index = 0;
1359 	struct locate_info info = {
1360 		.found_index = -1,
1361 		.stop = false,
1362 	};
1363 
1364 	do {
1365 		rcu_read_lock();
1366 		node = rcu_dereference_raw(root->rnode);
1367 		if (!radix_tree_is_internal_node(node)) {
1368 			rcu_read_unlock();
1369 			if (node == item)
1370 				info.found_index = 0;
1371 			break;
1372 		}
1373 
1374 		node = entry_to_node(node);
1375 
1376 		max_index = node_maxindex(node);
1377 		if (cur_index > max_index) {
1378 			rcu_read_unlock();
1379 			break;
1380 		}
1381 
1382 		cur_index = __locate(node, item, cur_index, &info);
1383 		rcu_read_unlock();
1384 		cond_resched();
1385 	} while (!info.stop && cur_index <= max_index);
1386 
1387 	return info.found_index;
1388 }
1389 #else
1390 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1391 {
1392 	return -1;
1393 }
1394 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1395 
1396 /**
1397  *	radix_tree_shrink    -    shrink radix tree to minimum height
1398  *	@root		radix tree root
1399  */
1400 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1401 {
1402 	bool shrunk = false;
1403 
1404 	for (;;) {
1405 		struct radix_tree_node *node = root->rnode;
1406 		struct radix_tree_node *child;
1407 
1408 		if (!radix_tree_is_internal_node(node))
1409 			break;
1410 		node = entry_to_node(node);
1411 
1412 		/*
1413 		 * The candidate node has more than one child, or its child
1414 		 * is not at the leftmost slot, or the child is a multiorder
1415 		 * entry, we cannot shrink.
1416 		 */
1417 		if (node->count != 1)
1418 			break;
1419 		child = node->slots[0];
1420 		if (!child)
1421 			break;
1422 		if (!radix_tree_is_internal_node(child) && node->shift)
1423 			break;
1424 
1425 		if (radix_tree_is_internal_node(child))
1426 			entry_to_node(child)->parent = NULL;
1427 
1428 		/*
1429 		 * We don't need rcu_assign_pointer(), since we are simply
1430 		 * moving the node from one part of the tree to another: if it
1431 		 * was safe to dereference the old pointer to it
1432 		 * (node->slots[0]), it will be safe to dereference the new
1433 		 * one (root->rnode) as far as dependent read barriers go.
1434 		 */
1435 		root->rnode = child;
1436 
1437 		/*
1438 		 * We have a dilemma here. The node's slot[0] must not be
1439 		 * NULLed in case there are concurrent lookups expecting to
1440 		 * find the item. However if this was a bottom-level node,
1441 		 * then it may be subject to the slot pointer being visible
1442 		 * to callers dereferencing it. If item corresponding to
1443 		 * slot[0] is subsequently deleted, these callers would expect
1444 		 * their slot to become empty sooner or later.
1445 		 *
1446 		 * For example, lockless pagecache will look up a slot, deref
1447 		 * the page pointer, and if the page has 0 refcount it means it
1448 		 * was concurrently deleted from pagecache so try the deref
1449 		 * again. Fortunately there is already a requirement for logic
1450 		 * to retry the entire slot lookup -- the indirect pointer
1451 		 * problem (replacing direct root node with an indirect pointer
1452 		 * also results in a stale slot). So tag the slot as indirect
1453 		 * to force callers to retry.
1454 		 */
1455 		if (!radix_tree_is_internal_node(child))
1456 			node->slots[0] = RADIX_TREE_RETRY;
1457 
1458 		radix_tree_node_free(node);
1459 		shrunk = true;
1460 	}
1461 
1462 	return shrunk;
1463 }
1464 
1465 /**
1466  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1467  *	@root:		radix tree root
1468  *	@node:		node containing @index
1469  *
1470  *	After clearing the slot at @index in @node from radix tree
1471  *	rooted at @root, call this function to attempt freeing the
1472  *	node and shrinking the tree.
1473  *
1474  *	Returns %true if @node was freed, %false otherwise.
1475  */
1476 bool __radix_tree_delete_node(struct radix_tree_root *root,
1477 			      struct radix_tree_node *node)
1478 {
1479 	bool deleted = false;
1480 
1481 	do {
1482 		struct radix_tree_node *parent;
1483 
1484 		if (node->count) {
1485 			if (node == entry_to_node(root->rnode))
1486 				deleted |= radix_tree_shrink(root);
1487 			return deleted;
1488 		}
1489 
1490 		parent = node->parent;
1491 		if (parent) {
1492 			parent->slots[node->offset] = NULL;
1493 			parent->count--;
1494 		} else {
1495 			root_tag_clear_all(root);
1496 			root->rnode = NULL;
1497 		}
1498 
1499 		radix_tree_node_free(node);
1500 		deleted = true;
1501 
1502 		node = parent;
1503 	} while (node);
1504 
1505 	return deleted;
1506 }
1507 
1508 static inline void delete_sibling_entries(struct radix_tree_node *node,
1509 					void *ptr, unsigned offset)
1510 {
1511 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1512 	int i;
1513 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1514 		if (node->slots[offset + i] != ptr)
1515 			break;
1516 		node->slots[offset + i] = NULL;
1517 		node->count--;
1518 	}
1519 #endif
1520 }
1521 
1522 /**
1523  *	radix_tree_delete_item    -    delete an item from a radix tree
1524  *	@root:		radix tree root
1525  *	@index:		index key
1526  *	@item:		expected item
1527  *
1528  *	Remove @item at @index from the radix tree rooted at @root.
1529  *
1530  *	Returns the address of the deleted item, or NULL if it was not present
1531  *	or the entry at the given @index was not @item.
1532  */
1533 void *radix_tree_delete_item(struct radix_tree_root *root,
1534 			     unsigned long index, void *item)
1535 {
1536 	struct radix_tree_node *node;
1537 	unsigned int offset;
1538 	void **slot;
1539 	void *entry;
1540 	int tag;
1541 
1542 	entry = __radix_tree_lookup(root, index, &node, &slot);
1543 	if (!entry)
1544 		return NULL;
1545 
1546 	if (item && entry != item)
1547 		return NULL;
1548 
1549 	if (!node) {
1550 		root_tag_clear_all(root);
1551 		root->rnode = NULL;
1552 		return entry;
1553 	}
1554 
1555 	offset = get_slot_offset(node, slot);
1556 
1557 	/* Clear all tags associated with the item to be deleted.  */
1558 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1559 		node_tag_clear(root, node, tag, offset);
1560 
1561 	delete_sibling_entries(node, node_to_entry(slot), offset);
1562 	node->slots[offset] = NULL;
1563 	node->count--;
1564 
1565 	__radix_tree_delete_node(root, node);
1566 
1567 	return entry;
1568 }
1569 EXPORT_SYMBOL(radix_tree_delete_item);
1570 
1571 /**
1572  *	radix_tree_delete    -    delete an item from a radix tree
1573  *	@root:		radix tree root
1574  *	@index:		index key
1575  *
1576  *	Remove the item at @index from the radix tree rooted at @root.
1577  *
1578  *	Returns the address of the deleted item, or NULL if it was not present.
1579  */
1580 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1581 {
1582 	return radix_tree_delete_item(root, index, NULL);
1583 }
1584 EXPORT_SYMBOL(radix_tree_delete);
1585 
1586 void radix_tree_clear_tags(struct radix_tree_root *root,
1587 			   struct radix_tree_node *node,
1588 			   void **slot)
1589 {
1590 	if (node) {
1591 		unsigned int tag, offset = get_slot_offset(node, slot);
1592 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1593 			node_tag_clear(root, node, tag, offset);
1594 	} else {
1595 		/* Clear root node tags */
1596 		root->gfp_mask &= __GFP_BITS_MASK;
1597 	}
1598 }
1599 
1600 /**
1601  *	radix_tree_tagged - test whether any items in the tree are tagged
1602  *	@root:		radix tree root
1603  *	@tag:		tag to test
1604  */
1605 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1606 {
1607 	return root_tag_get(root, tag);
1608 }
1609 EXPORT_SYMBOL(radix_tree_tagged);
1610 
1611 static void
1612 radix_tree_node_ctor(void *arg)
1613 {
1614 	struct radix_tree_node *node = arg;
1615 
1616 	memset(node, 0, sizeof(*node));
1617 	INIT_LIST_HEAD(&node->private_list);
1618 }
1619 
1620 static __init unsigned long __maxindex(unsigned int height)
1621 {
1622 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1623 	int shift = RADIX_TREE_INDEX_BITS - width;
1624 
1625 	if (shift < 0)
1626 		return ~0UL;
1627 	if (shift >= BITS_PER_LONG)
1628 		return 0UL;
1629 	return ~0UL >> shift;
1630 }
1631 
1632 static __init void radix_tree_init_maxnodes(void)
1633 {
1634 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1635 	unsigned int i, j;
1636 
1637 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1638 		height_to_maxindex[i] = __maxindex(i);
1639 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1640 		for (j = i; j > 0; j--)
1641 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1642 	}
1643 }
1644 
1645 static int radix_tree_callback(struct notifier_block *nfb,
1646 				unsigned long action, void *hcpu)
1647 {
1648 	int cpu = (long)hcpu;
1649 	struct radix_tree_preload *rtp;
1650 	struct radix_tree_node *node;
1651 
1652 	/* Free per-cpu pool of preloaded nodes */
1653 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1654 		rtp = &per_cpu(radix_tree_preloads, cpu);
1655 		while (rtp->nr) {
1656 			node = rtp->nodes;
1657 			rtp->nodes = node->private_data;
1658 			kmem_cache_free(radix_tree_node_cachep, node);
1659 			rtp->nr--;
1660 		}
1661 	}
1662 	return NOTIFY_OK;
1663 }
1664 
1665 void __init radix_tree_init(void)
1666 {
1667 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1668 			sizeof(struct radix_tree_node), 0,
1669 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1670 			radix_tree_node_ctor);
1671 	radix_tree_init_maxnodes();
1672 	hotcpu_notifier(radix_tree_callback, 0);
1673 }
1674