xref: /openbmc/linux/lib/radix-tree.c (revision f1770e3c)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/cpu.h>
29 #include <linux/errno.h>
30 #include <linux/export.h>
31 #include <linux/idr.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/kmemleak.h>
35 #include <linux/percpu.h>
36 #include <linux/preempt.h>		/* in_interrupt() */
37 #include <linux/radix-tree.h>
38 #include <linux/rcupdate.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/xarray.h>
42 
43 
44 /*
45  * Radix tree node cache.
46  */
47 struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * The IDR does not have to be as high as the radix tree since it uses
64  * signed integers, not unsigned longs.
65  */
66 #define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
67 #define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
68 						RADIX_TREE_MAP_SHIFT))
69 #define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
70 
71 /*
72  * The IDA is even shorter since it uses a bitmap at the last level.
73  */
74 #define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
75 #define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
76 						RADIX_TREE_MAP_SHIFT))
77 #define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
78 
79 /*
80  * Per-cpu pool of preloaded nodes
81  */
82 struct radix_tree_preload {
83 	unsigned nr;
84 	/* nodes->parent points to next preallocated node */
85 	struct radix_tree_node *nodes;
86 };
87 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
88 
89 static inline struct radix_tree_node *entry_to_node(void *ptr)
90 {
91 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
92 }
93 
94 static inline void *node_to_entry(void *ptr)
95 {
96 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
97 }
98 
99 #define RADIX_TREE_RETRY	XA_RETRY_ENTRY
100 
101 static inline unsigned long
102 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
103 {
104 	return parent ? slot - parent->slots : 0;
105 }
106 
107 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
108 			struct radix_tree_node **nodep, unsigned long index)
109 {
110 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
111 	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
112 
113 	*nodep = (void *)entry;
114 	return offset;
115 }
116 
117 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
118 {
119 	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
120 }
121 
122 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
123 		int offset)
124 {
125 	__set_bit(offset, node->tags[tag]);
126 }
127 
128 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
129 		int offset)
130 {
131 	__clear_bit(offset, node->tags[tag]);
132 }
133 
134 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
135 		int offset)
136 {
137 	return test_bit(offset, node->tags[tag]);
138 }
139 
140 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
141 {
142 	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
143 }
144 
145 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
146 {
147 	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
148 }
149 
150 static inline void root_tag_clear_all(struct radix_tree_root *root)
151 {
152 	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
153 }
154 
155 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
156 {
157 	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
158 }
159 
160 static inline unsigned root_tags_get(const struct radix_tree_root *root)
161 {
162 	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
163 }
164 
165 static inline bool is_idr(const struct radix_tree_root *root)
166 {
167 	return !!(root->xa_flags & ROOT_IS_IDR);
168 }
169 
170 /*
171  * Returns 1 if any slot in the node has this tag set.
172  * Otherwise returns 0.
173  */
174 static inline int any_tag_set(const struct radix_tree_node *node,
175 							unsigned int tag)
176 {
177 	unsigned idx;
178 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
179 		if (node->tags[tag][idx])
180 			return 1;
181 	}
182 	return 0;
183 }
184 
185 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
186 {
187 	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
188 }
189 
190 /**
191  * radix_tree_find_next_bit - find the next set bit in a memory region
192  *
193  * @addr: The address to base the search on
194  * @size: The bitmap size in bits
195  * @offset: The bitnumber to start searching at
196  *
197  * Unrollable variant of find_next_bit() for constant size arrays.
198  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
199  * Returns next bit offset, or size if nothing found.
200  */
201 static __always_inline unsigned long
202 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
203 			 unsigned long offset)
204 {
205 	const unsigned long *addr = node->tags[tag];
206 
207 	if (offset < RADIX_TREE_MAP_SIZE) {
208 		unsigned long tmp;
209 
210 		addr += offset / BITS_PER_LONG;
211 		tmp = *addr >> (offset % BITS_PER_LONG);
212 		if (tmp)
213 			return __ffs(tmp) + offset;
214 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
215 		while (offset < RADIX_TREE_MAP_SIZE) {
216 			tmp = *++addr;
217 			if (tmp)
218 				return __ffs(tmp) + offset;
219 			offset += BITS_PER_LONG;
220 		}
221 	}
222 	return RADIX_TREE_MAP_SIZE;
223 }
224 
225 static unsigned int iter_offset(const struct radix_tree_iter *iter)
226 {
227 	return iter->index & RADIX_TREE_MAP_MASK;
228 }
229 
230 /*
231  * The maximum index which can be stored in a radix tree
232  */
233 static inline unsigned long shift_maxindex(unsigned int shift)
234 {
235 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
236 }
237 
238 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
239 {
240 	return shift_maxindex(node->shift);
241 }
242 
243 static unsigned long next_index(unsigned long index,
244 				const struct radix_tree_node *node,
245 				unsigned long offset)
246 {
247 	return (index & ~node_maxindex(node)) + (offset << node->shift);
248 }
249 
250 /*
251  * This assumes that the caller has performed appropriate preallocation, and
252  * that the caller has pinned this thread of control to the current CPU.
253  */
254 static struct radix_tree_node *
255 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
256 			struct radix_tree_root *root,
257 			unsigned int shift, unsigned int offset,
258 			unsigned int count, unsigned int nr_values)
259 {
260 	struct radix_tree_node *ret = NULL;
261 
262 	/*
263 	 * Preload code isn't irq safe and it doesn't make sense to use
264 	 * preloading during an interrupt anyway as all the allocations have
265 	 * to be atomic. So just do normal allocation when in interrupt.
266 	 */
267 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
268 		struct radix_tree_preload *rtp;
269 
270 		/*
271 		 * Even if the caller has preloaded, try to allocate from the
272 		 * cache first for the new node to get accounted to the memory
273 		 * cgroup.
274 		 */
275 		ret = kmem_cache_alloc(radix_tree_node_cachep,
276 				       gfp_mask | __GFP_NOWARN);
277 		if (ret)
278 			goto out;
279 
280 		/*
281 		 * Provided the caller has preloaded here, we will always
282 		 * succeed in getting a node here (and never reach
283 		 * kmem_cache_alloc)
284 		 */
285 		rtp = this_cpu_ptr(&radix_tree_preloads);
286 		if (rtp->nr) {
287 			ret = rtp->nodes;
288 			rtp->nodes = ret->parent;
289 			rtp->nr--;
290 		}
291 		/*
292 		 * Update the allocation stack trace as this is more useful
293 		 * for debugging.
294 		 */
295 		kmemleak_update_trace(ret);
296 		goto out;
297 	}
298 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
299 out:
300 	BUG_ON(radix_tree_is_internal_node(ret));
301 	if (ret) {
302 		ret->shift = shift;
303 		ret->offset = offset;
304 		ret->count = count;
305 		ret->nr_values = nr_values;
306 		ret->parent = parent;
307 		ret->array = root;
308 	}
309 	return ret;
310 }
311 
312 void radix_tree_node_rcu_free(struct rcu_head *head)
313 {
314 	struct radix_tree_node *node =
315 			container_of(head, struct radix_tree_node, rcu_head);
316 
317 	/*
318 	 * Must only free zeroed nodes into the slab.  We can be left with
319 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
320 	 * and tags here.
321 	 */
322 	memset(node->slots, 0, sizeof(node->slots));
323 	memset(node->tags, 0, sizeof(node->tags));
324 	INIT_LIST_HEAD(&node->private_list);
325 
326 	kmem_cache_free(radix_tree_node_cachep, node);
327 }
328 
329 static inline void
330 radix_tree_node_free(struct radix_tree_node *node)
331 {
332 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
333 }
334 
335 /*
336  * Load up this CPU's radix_tree_node buffer with sufficient objects to
337  * ensure that the addition of a single element in the tree cannot fail.  On
338  * success, return zero, with preemption disabled.  On error, return -ENOMEM
339  * with preemption not disabled.
340  *
341  * To make use of this facility, the radix tree must be initialised without
342  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
343  */
344 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
345 {
346 	struct radix_tree_preload *rtp;
347 	struct radix_tree_node *node;
348 	int ret = -ENOMEM;
349 
350 	/*
351 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
352 	 * they should never be accounted to any particular memory cgroup.
353 	 */
354 	gfp_mask &= ~__GFP_ACCOUNT;
355 
356 	preempt_disable();
357 	rtp = this_cpu_ptr(&radix_tree_preloads);
358 	while (rtp->nr < nr) {
359 		preempt_enable();
360 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
361 		if (node == NULL)
362 			goto out;
363 		preempt_disable();
364 		rtp = this_cpu_ptr(&radix_tree_preloads);
365 		if (rtp->nr < nr) {
366 			node->parent = rtp->nodes;
367 			rtp->nodes = node;
368 			rtp->nr++;
369 		} else {
370 			kmem_cache_free(radix_tree_node_cachep, node);
371 		}
372 	}
373 	ret = 0;
374 out:
375 	return ret;
376 }
377 
378 /*
379  * Load up this CPU's radix_tree_node buffer with sufficient objects to
380  * ensure that the addition of a single element in the tree cannot fail.  On
381  * success, return zero, with preemption disabled.  On error, return -ENOMEM
382  * with preemption not disabled.
383  *
384  * To make use of this facility, the radix tree must be initialised without
385  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
386  */
387 int radix_tree_preload(gfp_t gfp_mask)
388 {
389 	/* Warn on non-sensical use... */
390 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
391 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
392 }
393 EXPORT_SYMBOL(radix_tree_preload);
394 
395 /*
396  * The same as above function, except we don't guarantee preloading happens.
397  * We do it, if we decide it helps. On success, return zero with preemption
398  * disabled. On error, return -ENOMEM with preemption not disabled.
399  */
400 int radix_tree_maybe_preload(gfp_t gfp_mask)
401 {
402 	if (gfpflags_allow_blocking(gfp_mask))
403 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
404 	/* Preloading doesn't help anything with this gfp mask, skip it */
405 	preempt_disable();
406 	return 0;
407 }
408 EXPORT_SYMBOL(radix_tree_maybe_preload);
409 
410 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
411 		struct radix_tree_node **nodep, unsigned long *maxindex)
412 {
413 	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
414 
415 	*nodep = node;
416 
417 	if (likely(radix_tree_is_internal_node(node))) {
418 		node = entry_to_node(node);
419 		*maxindex = node_maxindex(node);
420 		return node->shift + RADIX_TREE_MAP_SHIFT;
421 	}
422 
423 	*maxindex = 0;
424 	return 0;
425 }
426 
427 /*
428  *	Extend a radix tree so it can store key @index.
429  */
430 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
431 				unsigned long index, unsigned int shift)
432 {
433 	void *entry;
434 	unsigned int maxshift;
435 	int tag;
436 
437 	/* Figure out what the shift should be.  */
438 	maxshift = shift;
439 	while (index > shift_maxindex(maxshift))
440 		maxshift += RADIX_TREE_MAP_SHIFT;
441 
442 	entry = rcu_dereference_raw(root->xa_head);
443 	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
444 		goto out;
445 
446 	do {
447 		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
448 							root, shift, 0, 1, 0);
449 		if (!node)
450 			return -ENOMEM;
451 
452 		if (is_idr(root)) {
453 			all_tag_set(node, IDR_FREE);
454 			if (!root_tag_get(root, IDR_FREE)) {
455 				tag_clear(node, IDR_FREE, 0);
456 				root_tag_set(root, IDR_FREE);
457 			}
458 		} else {
459 			/* Propagate the aggregated tag info to the new child */
460 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
461 				if (root_tag_get(root, tag))
462 					tag_set(node, tag, 0);
463 			}
464 		}
465 
466 		BUG_ON(shift > BITS_PER_LONG);
467 		if (radix_tree_is_internal_node(entry)) {
468 			entry_to_node(entry)->parent = node;
469 		} else if (xa_is_value(entry)) {
470 			/* Moving a value entry root->xa_head to a node */
471 			node->nr_values = 1;
472 		}
473 		/*
474 		 * entry was already in the radix tree, so we do not need
475 		 * rcu_assign_pointer here
476 		 */
477 		node->slots[0] = (void __rcu *)entry;
478 		entry = node_to_entry(node);
479 		rcu_assign_pointer(root->xa_head, entry);
480 		shift += RADIX_TREE_MAP_SHIFT;
481 	} while (shift <= maxshift);
482 out:
483 	return maxshift + RADIX_TREE_MAP_SHIFT;
484 }
485 
486 /**
487  *	radix_tree_shrink    -    shrink radix tree to minimum height
488  *	@root		radix tree root
489  */
490 static inline bool radix_tree_shrink(struct radix_tree_root *root)
491 {
492 	bool shrunk = false;
493 
494 	for (;;) {
495 		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
496 		struct radix_tree_node *child;
497 
498 		if (!radix_tree_is_internal_node(node))
499 			break;
500 		node = entry_to_node(node);
501 
502 		/*
503 		 * The candidate node has more than one child, or its child
504 		 * is not at the leftmost slot, we cannot shrink.
505 		 */
506 		if (node->count != 1)
507 			break;
508 		child = rcu_dereference_raw(node->slots[0]);
509 		if (!child)
510 			break;
511 
512 		/*
513 		 * For an IDR, we must not shrink entry 0 into the root in
514 		 * case somebody calls idr_replace() with a pointer that
515 		 * appears to be an internal entry
516 		 */
517 		if (!node->shift && is_idr(root))
518 			break;
519 
520 		if (radix_tree_is_internal_node(child))
521 			entry_to_node(child)->parent = NULL;
522 
523 		/*
524 		 * We don't need rcu_assign_pointer(), since we are simply
525 		 * moving the node from one part of the tree to another: if it
526 		 * was safe to dereference the old pointer to it
527 		 * (node->slots[0]), it will be safe to dereference the new
528 		 * one (root->xa_head) as far as dependent read barriers go.
529 		 */
530 		root->xa_head = (void __rcu *)child;
531 		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
532 			root_tag_clear(root, IDR_FREE);
533 
534 		/*
535 		 * We have a dilemma here. The node's slot[0] must not be
536 		 * NULLed in case there are concurrent lookups expecting to
537 		 * find the item. However if this was a bottom-level node,
538 		 * then it may be subject to the slot pointer being visible
539 		 * to callers dereferencing it. If item corresponding to
540 		 * slot[0] is subsequently deleted, these callers would expect
541 		 * their slot to become empty sooner or later.
542 		 *
543 		 * For example, lockless pagecache will look up a slot, deref
544 		 * the page pointer, and if the page has 0 refcount it means it
545 		 * was concurrently deleted from pagecache so try the deref
546 		 * again. Fortunately there is already a requirement for logic
547 		 * to retry the entire slot lookup -- the indirect pointer
548 		 * problem (replacing direct root node with an indirect pointer
549 		 * also results in a stale slot). So tag the slot as indirect
550 		 * to force callers to retry.
551 		 */
552 		node->count = 0;
553 		if (!radix_tree_is_internal_node(child)) {
554 			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
555 		}
556 
557 		WARN_ON_ONCE(!list_empty(&node->private_list));
558 		radix_tree_node_free(node);
559 		shrunk = true;
560 	}
561 
562 	return shrunk;
563 }
564 
565 static bool delete_node(struct radix_tree_root *root,
566 			struct radix_tree_node *node)
567 {
568 	bool deleted = false;
569 
570 	do {
571 		struct radix_tree_node *parent;
572 
573 		if (node->count) {
574 			if (node_to_entry(node) ==
575 					rcu_dereference_raw(root->xa_head))
576 				deleted |= radix_tree_shrink(root);
577 			return deleted;
578 		}
579 
580 		parent = node->parent;
581 		if (parent) {
582 			parent->slots[node->offset] = NULL;
583 			parent->count--;
584 		} else {
585 			/*
586 			 * Shouldn't the tags already have all been cleared
587 			 * by the caller?
588 			 */
589 			if (!is_idr(root))
590 				root_tag_clear_all(root);
591 			root->xa_head = NULL;
592 		}
593 
594 		WARN_ON_ONCE(!list_empty(&node->private_list));
595 		radix_tree_node_free(node);
596 		deleted = true;
597 
598 		node = parent;
599 	} while (node);
600 
601 	return deleted;
602 }
603 
604 /**
605  *	__radix_tree_create	-	create a slot in a radix tree
606  *	@root:		radix tree root
607  *	@index:		index key
608  *	@nodep:		returns node
609  *	@slotp:		returns slot
610  *
611  *	Create, if necessary, and return the node and slot for an item
612  *	at position @index in the radix tree @root.
613  *
614  *	Until there is more than one item in the tree, no nodes are
615  *	allocated and @root->xa_head is used as a direct slot instead of
616  *	pointing to a node, in which case *@nodep will be NULL.
617  *
618  *	Returns -ENOMEM, or 0 for success.
619  */
620 static int __radix_tree_create(struct radix_tree_root *root,
621 		unsigned long index, struct radix_tree_node **nodep,
622 		void __rcu ***slotp)
623 {
624 	struct radix_tree_node *node = NULL, *child;
625 	void __rcu **slot = (void __rcu **)&root->xa_head;
626 	unsigned long maxindex;
627 	unsigned int shift, offset = 0;
628 	unsigned long max = index;
629 	gfp_t gfp = root_gfp_mask(root);
630 
631 	shift = radix_tree_load_root(root, &child, &maxindex);
632 
633 	/* Make sure the tree is high enough.  */
634 	if (max > maxindex) {
635 		int error = radix_tree_extend(root, gfp, max, shift);
636 		if (error < 0)
637 			return error;
638 		shift = error;
639 		child = rcu_dereference_raw(root->xa_head);
640 	}
641 
642 	while (shift > 0) {
643 		shift -= RADIX_TREE_MAP_SHIFT;
644 		if (child == NULL) {
645 			/* Have to add a child node.  */
646 			child = radix_tree_node_alloc(gfp, node, root, shift,
647 							offset, 0, 0);
648 			if (!child)
649 				return -ENOMEM;
650 			rcu_assign_pointer(*slot, node_to_entry(child));
651 			if (node)
652 				node->count++;
653 		} else if (!radix_tree_is_internal_node(child))
654 			break;
655 
656 		/* Go a level down */
657 		node = entry_to_node(child);
658 		offset = radix_tree_descend(node, &child, index);
659 		slot = &node->slots[offset];
660 	}
661 
662 	if (nodep)
663 		*nodep = node;
664 	if (slotp)
665 		*slotp = slot;
666 	return 0;
667 }
668 
669 /*
670  * Free any nodes below this node.  The tree is presumed to not need
671  * shrinking, and any user data in the tree is presumed to not need a
672  * destructor called on it.  If we need to add a destructor, we can
673  * add that functionality later.  Note that we may not clear tags or
674  * slots from the tree as an RCU walker may still have a pointer into
675  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
676  * but we'll still have to clear those in rcu_free.
677  */
678 static void radix_tree_free_nodes(struct radix_tree_node *node)
679 {
680 	unsigned offset = 0;
681 	struct radix_tree_node *child = entry_to_node(node);
682 
683 	for (;;) {
684 		void *entry = rcu_dereference_raw(child->slots[offset]);
685 		if (xa_is_node(entry) && child->shift) {
686 			child = entry_to_node(entry);
687 			offset = 0;
688 			continue;
689 		}
690 		offset++;
691 		while (offset == RADIX_TREE_MAP_SIZE) {
692 			struct radix_tree_node *old = child;
693 			offset = child->offset + 1;
694 			child = child->parent;
695 			WARN_ON_ONCE(!list_empty(&old->private_list));
696 			radix_tree_node_free(old);
697 			if (old == entry_to_node(node))
698 				return;
699 		}
700 	}
701 }
702 
703 static inline int insert_entries(struct radix_tree_node *node,
704 		void __rcu **slot, void *item, bool replace)
705 {
706 	if (*slot)
707 		return -EEXIST;
708 	rcu_assign_pointer(*slot, item);
709 	if (node) {
710 		node->count++;
711 		if (xa_is_value(item))
712 			node->nr_values++;
713 	}
714 	return 1;
715 }
716 
717 /**
718  *	__radix_tree_insert    -    insert into a radix tree
719  *	@root:		radix tree root
720  *	@index:		index key
721  *	@item:		item to insert
722  *
723  *	Insert an item into the radix tree at position @index.
724  */
725 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
726 			void *item)
727 {
728 	struct radix_tree_node *node;
729 	void __rcu **slot;
730 	int error;
731 
732 	BUG_ON(radix_tree_is_internal_node(item));
733 
734 	error = __radix_tree_create(root, index, &node, &slot);
735 	if (error)
736 		return error;
737 
738 	error = insert_entries(node, slot, item, false);
739 	if (error < 0)
740 		return error;
741 
742 	if (node) {
743 		unsigned offset = get_slot_offset(node, slot);
744 		BUG_ON(tag_get(node, 0, offset));
745 		BUG_ON(tag_get(node, 1, offset));
746 		BUG_ON(tag_get(node, 2, offset));
747 	} else {
748 		BUG_ON(root_tags_get(root));
749 	}
750 
751 	return 0;
752 }
753 EXPORT_SYMBOL(radix_tree_insert);
754 
755 /**
756  *	__radix_tree_lookup	-	lookup an item in a radix tree
757  *	@root:		radix tree root
758  *	@index:		index key
759  *	@nodep:		returns node
760  *	@slotp:		returns slot
761  *
762  *	Lookup and return the item at position @index in the radix
763  *	tree @root.
764  *
765  *	Until there is more than one item in the tree, no nodes are
766  *	allocated and @root->xa_head is used as a direct slot instead of
767  *	pointing to a node, in which case *@nodep will be NULL.
768  */
769 void *__radix_tree_lookup(const struct radix_tree_root *root,
770 			  unsigned long index, struct radix_tree_node **nodep,
771 			  void __rcu ***slotp)
772 {
773 	struct radix_tree_node *node, *parent;
774 	unsigned long maxindex;
775 	void __rcu **slot;
776 
777  restart:
778 	parent = NULL;
779 	slot = (void __rcu **)&root->xa_head;
780 	radix_tree_load_root(root, &node, &maxindex);
781 	if (index > maxindex)
782 		return NULL;
783 
784 	while (radix_tree_is_internal_node(node)) {
785 		unsigned offset;
786 
787 		parent = entry_to_node(node);
788 		offset = radix_tree_descend(parent, &node, index);
789 		slot = parent->slots + offset;
790 		if (node == RADIX_TREE_RETRY)
791 			goto restart;
792 		if (parent->shift == 0)
793 			break;
794 	}
795 
796 	if (nodep)
797 		*nodep = parent;
798 	if (slotp)
799 		*slotp = slot;
800 	return node;
801 }
802 
803 /**
804  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
805  *	@root:		radix tree root
806  *	@index:		index key
807  *
808  *	Returns:  the slot corresponding to the position @index in the
809  *	radix tree @root. This is useful for update-if-exists operations.
810  *
811  *	This function can be called under rcu_read_lock iff the slot is not
812  *	modified by radix_tree_replace_slot, otherwise it must be called
813  *	exclusive from other writers. Any dereference of the slot must be done
814  *	using radix_tree_deref_slot.
815  */
816 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
817 				unsigned long index)
818 {
819 	void __rcu **slot;
820 
821 	if (!__radix_tree_lookup(root, index, NULL, &slot))
822 		return NULL;
823 	return slot;
824 }
825 EXPORT_SYMBOL(radix_tree_lookup_slot);
826 
827 /**
828  *	radix_tree_lookup    -    perform lookup operation on a radix tree
829  *	@root:		radix tree root
830  *	@index:		index key
831  *
832  *	Lookup the item at the position @index in the radix tree @root.
833  *
834  *	This function can be called under rcu_read_lock, however the caller
835  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
836  *	them safely). No RCU barriers are required to access or modify the
837  *	returned item, however.
838  */
839 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
840 {
841 	return __radix_tree_lookup(root, index, NULL, NULL);
842 }
843 EXPORT_SYMBOL(radix_tree_lookup);
844 
845 static void replace_slot(void __rcu **slot, void *item,
846 		struct radix_tree_node *node, int count, int values)
847 {
848 	if (node && (count || values)) {
849 		node->count += count;
850 		node->nr_values += values;
851 	}
852 
853 	rcu_assign_pointer(*slot, item);
854 }
855 
856 static bool node_tag_get(const struct radix_tree_root *root,
857 				const struct radix_tree_node *node,
858 				unsigned int tag, unsigned int offset)
859 {
860 	if (node)
861 		return tag_get(node, tag, offset);
862 	return root_tag_get(root, tag);
863 }
864 
865 /*
866  * IDR users want to be able to store NULL in the tree, so if the slot isn't
867  * free, don't adjust the count, even if it's transitioning between NULL and
868  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
869  * have empty bits, but it only stores NULL in slots when they're being
870  * deleted.
871  */
872 static int calculate_count(struct radix_tree_root *root,
873 				struct radix_tree_node *node, void __rcu **slot,
874 				void *item, void *old)
875 {
876 	if (is_idr(root)) {
877 		unsigned offset = get_slot_offset(node, slot);
878 		bool free = node_tag_get(root, node, IDR_FREE, offset);
879 		if (!free)
880 			return 0;
881 		if (!old)
882 			return 1;
883 	}
884 	return !!item - !!old;
885 }
886 
887 /**
888  * __radix_tree_replace		- replace item in a slot
889  * @root:		radix tree root
890  * @node:		pointer to tree node
891  * @slot:		pointer to slot in @node
892  * @item:		new item to store in the slot.
893  *
894  * For use with __radix_tree_lookup().  Caller must hold tree write locked
895  * across slot lookup and replacement.
896  */
897 void __radix_tree_replace(struct radix_tree_root *root,
898 			  struct radix_tree_node *node,
899 			  void __rcu **slot, void *item)
900 {
901 	void *old = rcu_dereference_raw(*slot);
902 	int values = !!xa_is_value(item) - !!xa_is_value(old);
903 	int count = calculate_count(root, node, slot, item, old);
904 
905 	/*
906 	 * This function supports replacing value entries and
907 	 * deleting entries, but that needs accounting against the
908 	 * node unless the slot is root->xa_head.
909 	 */
910 	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
911 			(count || values));
912 	replace_slot(slot, item, node, count, values);
913 
914 	if (!node)
915 		return;
916 
917 	delete_node(root, node);
918 }
919 
920 /**
921  * radix_tree_replace_slot	- replace item in a slot
922  * @root:	radix tree root
923  * @slot:	pointer to slot
924  * @item:	new item to store in the slot.
925  *
926  * For use with radix_tree_lookup_slot() and
927  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
928  * across slot lookup and replacement.
929  *
930  * NOTE: This cannot be used to switch between non-entries (empty slots),
931  * regular entries, and value entries, as that requires accounting
932  * inside the radix tree node. When switching from one type of entry or
933  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
934  * radix_tree_iter_replace().
935  */
936 void radix_tree_replace_slot(struct radix_tree_root *root,
937 			     void __rcu **slot, void *item)
938 {
939 	__radix_tree_replace(root, NULL, slot, item);
940 }
941 EXPORT_SYMBOL(radix_tree_replace_slot);
942 
943 /**
944  * radix_tree_iter_replace - replace item in a slot
945  * @root:	radix tree root
946  * @slot:	pointer to slot
947  * @item:	new item to store in the slot.
948  *
949  * For use with radix_tree_for_each_slot().
950  * Caller must hold tree write locked.
951  */
952 void radix_tree_iter_replace(struct radix_tree_root *root,
953 				const struct radix_tree_iter *iter,
954 				void __rcu **slot, void *item)
955 {
956 	__radix_tree_replace(root, iter->node, slot, item);
957 }
958 
959 static void node_tag_set(struct radix_tree_root *root,
960 				struct radix_tree_node *node,
961 				unsigned int tag, unsigned int offset)
962 {
963 	while (node) {
964 		if (tag_get(node, tag, offset))
965 			return;
966 		tag_set(node, tag, offset);
967 		offset = node->offset;
968 		node = node->parent;
969 	}
970 
971 	if (!root_tag_get(root, tag))
972 		root_tag_set(root, tag);
973 }
974 
975 /**
976  *	radix_tree_tag_set - set a tag on a radix tree node
977  *	@root:		radix tree root
978  *	@index:		index key
979  *	@tag:		tag index
980  *
981  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
982  *	corresponding to @index in the radix tree.  From
983  *	the root all the way down to the leaf node.
984  *
985  *	Returns the address of the tagged item.  Setting a tag on a not-present
986  *	item is a bug.
987  */
988 void *radix_tree_tag_set(struct radix_tree_root *root,
989 			unsigned long index, unsigned int tag)
990 {
991 	struct radix_tree_node *node, *parent;
992 	unsigned long maxindex;
993 
994 	radix_tree_load_root(root, &node, &maxindex);
995 	BUG_ON(index > maxindex);
996 
997 	while (radix_tree_is_internal_node(node)) {
998 		unsigned offset;
999 
1000 		parent = entry_to_node(node);
1001 		offset = radix_tree_descend(parent, &node, index);
1002 		BUG_ON(!node);
1003 
1004 		if (!tag_get(parent, tag, offset))
1005 			tag_set(parent, tag, offset);
1006 	}
1007 
1008 	/* set the root's tag bit */
1009 	if (!root_tag_get(root, tag))
1010 		root_tag_set(root, tag);
1011 
1012 	return node;
1013 }
1014 EXPORT_SYMBOL(radix_tree_tag_set);
1015 
1016 static void node_tag_clear(struct radix_tree_root *root,
1017 				struct radix_tree_node *node,
1018 				unsigned int tag, unsigned int offset)
1019 {
1020 	while (node) {
1021 		if (!tag_get(node, tag, offset))
1022 			return;
1023 		tag_clear(node, tag, offset);
1024 		if (any_tag_set(node, tag))
1025 			return;
1026 
1027 		offset = node->offset;
1028 		node = node->parent;
1029 	}
1030 
1031 	/* clear the root's tag bit */
1032 	if (root_tag_get(root, tag))
1033 		root_tag_clear(root, tag);
1034 }
1035 
1036 /**
1037  *	radix_tree_tag_clear - clear a tag on a radix tree node
1038  *	@root:		radix tree root
1039  *	@index:		index key
1040  *	@tag:		tag index
1041  *
1042  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1043  *	corresponding to @index in the radix tree.  If this causes
1044  *	the leaf node to have no tags set then clear the tag in the
1045  *	next-to-leaf node, etc.
1046  *
1047  *	Returns the address of the tagged item on success, else NULL.  ie:
1048  *	has the same return value and semantics as radix_tree_lookup().
1049  */
1050 void *radix_tree_tag_clear(struct radix_tree_root *root,
1051 			unsigned long index, unsigned int tag)
1052 {
1053 	struct radix_tree_node *node, *parent;
1054 	unsigned long maxindex;
1055 	int uninitialized_var(offset);
1056 
1057 	radix_tree_load_root(root, &node, &maxindex);
1058 	if (index > maxindex)
1059 		return NULL;
1060 
1061 	parent = NULL;
1062 
1063 	while (radix_tree_is_internal_node(node)) {
1064 		parent = entry_to_node(node);
1065 		offset = radix_tree_descend(parent, &node, index);
1066 	}
1067 
1068 	if (node)
1069 		node_tag_clear(root, parent, tag, offset);
1070 
1071 	return node;
1072 }
1073 EXPORT_SYMBOL(radix_tree_tag_clear);
1074 
1075 /**
1076   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1077   * @root: radix tree root
1078   * @iter: iterator state
1079   * @tag: tag to clear
1080   */
1081 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1082 			const struct radix_tree_iter *iter, unsigned int tag)
1083 {
1084 	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1085 }
1086 
1087 /**
1088  * radix_tree_tag_get - get a tag on a radix tree node
1089  * @root:		radix tree root
1090  * @index:		index key
1091  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1092  *
1093  * Return values:
1094  *
1095  *  0: tag not present or not set
1096  *  1: tag set
1097  *
1098  * Note that the return value of this function may not be relied on, even if
1099  * the RCU lock is held, unless tag modification and node deletion are excluded
1100  * from concurrency.
1101  */
1102 int radix_tree_tag_get(const struct radix_tree_root *root,
1103 			unsigned long index, unsigned int tag)
1104 {
1105 	struct radix_tree_node *node, *parent;
1106 	unsigned long maxindex;
1107 
1108 	if (!root_tag_get(root, tag))
1109 		return 0;
1110 
1111 	radix_tree_load_root(root, &node, &maxindex);
1112 	if (index > maxindex)
1113 		return 0;
1114 
1115 	while (radix_tree_is_internal_node(node)) {
1116 		unsigned offset;
1117 
1118 		parent = entry_to_node(node);
1119 		offset = radix_tree_descend(parent, &node, index);
1120 
1121 		if (!tag_get(parent, tag, offset))
1122 			return 0;
1123 		if (node == RADIX_TREE_RETRY)
1124 			break;
1125 	}
1126 
1127 	return 1;
1128 }
1129 EXPORT_SYMBOL(radix_tree_tag_get);
1130 
1131 /* Construct iter->tags bit-mask from node->tags[tag] array */
1132 static void set_iter_tags(struct radix_tree_iter *iter,
1133 				struct radix_tree_node *node, unsigned offset,
1134 				unsigned tag)
1135 {
1136 	unsigned tag_long = offset / BITS_PER_LONG;
1137 	unsigned tag_bit  = offset % BITS_PER_LONG;
1138 
1139 	if (!node) {
1140 		iter->tags = 1;
1141 		return;
1142 	}
1143 
1144 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1145 
1146 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1147 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1148 		/* Pick tags from next element */
1149 		if (tag_bit)
1150 			iter->tags |= node->tags[tag][tag_long + 1] <<
1151 						(BITS_PER_LONG - tag_bit);
1152 		/* Clip chunk size, here only BITS_PER_LONG tags */
1153 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1154 	}
1155 }
1156 
1157 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1158 					struct radix_tree_iter *iter)
1159 {
1160 	slot++;
1161 	iter->index = __radix_tree_iter_add(iter, 1);
1162 	iter->next_index = iter->index;
1163 	iter->tags = 0;
1164 	return NULL;
1165 }
1166 EXPORT_SYMBOL(radix_tree_iter_resume);
1167 
1168 /**
1169  * radix_tree_next_chunk - find next chunk of slots for iteration
1170  *
1171  * @root:	radix tree root
1172  * @iter:	iterator state
1173  * @flags:	RADIX_TREE_ITER_* flags and tag index
1174  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1175  */
1176 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1177 			     struct radix_tree_iter *iter, unsigned flags)
1178 {
1179 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1180 	struct radix_tree_node *node, *child;
1181 	unsigned long index, offset, maxindex;
1182 
1183 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1184 		return NULL;
1185 
1186 	/*
1187 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1188 	 * during iterating; it can be zero only at the beginning.
1189 	 * And we cannot overflow iter->next_index in a single step,
1190 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1191 	 *
1192 	 * This condition also used by radix_tree_next_slot() to stop
1193 	 * contiguous iterating, and forbid switching to the next chunk.
1194 	 */
1195 	index = iter->next_index;
1196 	if (!index && iter->index)
1197 		return NULL;
1198 
1199  restart:
1200 	radix_tree_load_root(root, &child, &maxindex);
1201 	if (index > maxindex)
1202 		return NULL;
1203 	if (!child)
1204 		return NULL;
1205 
1206 	if (!radix_tree_is_internal_node(child)) {
1207 		/* Single-slot tree */
1208 		iter->index = index;
1209 		iter->next_index = maxindex + 1;
1210 		iter->tags = 1;
1211 		iter->node = NULL;
1212 		return (void __rcu **)&root->xa_head;
1213 	}
1214 
1215 	do {
1216 		node = entry_to_node(child);
1217 		offset = radix_tree_descend(node, &child, index);
1218 
1219 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1220 				!tag_get(node, tag, offset) : !child) {
1221 			/* Hole detected */
1222 			if (flags & RADIX_TREE_ITER_CONTIG)
1223 				return NULL;
1224 
1225 			if (flags & RADIX_TREE_ITER_TAGGED)
1226 				offset = radix_tree_find_next_bit(node, tag,
1227 						offset + 1);
1228 			else
1229 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1230 					void *slot = rcu_dereference_raw(
1231 							node->slots[offset]);
1232 					if (slot)
1233 						break;
1234 				}
1235 			index &= ~node_maxindex(node);
1236 			index += offset << node->shift;
1237 			/* Overflow after ~0UL */
1238 			if (!index)
1239 				return NULL;
1240 			if (offset == RADIX_TREE_MAP_SIZE)
1241 				goto restart;
1242 			child = rcu_dereference_raw(node->slots[offset]);
1243 		}
1244 
1245 		if (!child)
1246 			goto restart;
1247 		if (child == RADIX_TREE_RETRY)
1248 			break;
1249 	} while (node->shift && radix_tree_is_internal_node(child));
1250 
1251 	/* Update the iterator state */
1252 	iter->index = (index &~ node_maxindex(node)) | offset;
1253 	iter->next_index = (index | node_maxindex(node)) + 1;
1254 	iter->node = node;
1255 
1256 	if (flags & RADIX_TREE_ITER_TAGGED)
1257 		set_iter_tags(iter, node, offset, tag);
1258 
1259 	return node->slots + offset;
1260 }
1261 EXPORT_SYMBOL(radix_tree_next_chunk);
1262 
1263 /**
1264  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1265  *	@root:		radix tree root
1266  *	@results:	where the results of the lookup are placed
1267  *	@first_index:	start the lookup from this key
1268  *	@max_items:	place up to this many items at *results
1269  *
1270  *	Performs an index-ascending scan of the tree for present items.  Places
1271  *	them at *@results and returns the number of items which were placed at
1272  *	*@results.
1273  *
1274  *	The implementation is naive.
1275  *
1276  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1277  *	rcu_read_lock. In this case, rather than the returned results being
1278  *	an atomic snapshot of the tree at a single point in time, the
1279  *	semantics of an RCU protected gang lookup are as though multiple
1280  *	radix_tree_lookups have been issued in individual locks, and results
1281  *	stored in 'results'.
1282  */
1283 unsigned int
1284 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1285 			unsigned long first_index, unsigned int max_items)
1286 {
1287 	struct radix_tree_iter iter;
1288 	void __rcu **slot;
1289 	unsigned int ret = 0;
1290 
1291 	if (unlikely(!max_items))
1292 		return 0;
1293 
1294 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1295 		results[ret] = rcu_dereference_raw(*slot);
1296 		if (!results[ret])
1297 			continue;
1298 		if (radix_tree_is_internal_node(results[ret])) {
1299 			slot = radix_tree_iter_retry(&iter);
1300 			continue;
1301 		}
1302 		if (++ret == max_items)
1303 			break;
1304 	}
1305 
1306 	return ret;
1307 }
1308 EXPORT_SYMBOL(radix_tree_gang_lookup);
1309 
1310 /**
1311  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1312  *	                             based on a tag
1313  *	@root:		radix tree root
1314  *	@results:	where the results of the lookup are placed
1315  *	@first_index:	start the lookup from this key
1316  *	@max_items:	place up to this many items at *results
1317  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1318  *
1319  *	Performs an index-ascending scan of the tree for present items which
1320  *	have the tag indexed by @tag set.  Places the items at *@results and
1321  *	returns the number of items which were placed at *@results.
1322  */
1323 unsigned int
1324 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1325 		unsigned long first_index, unsigned int max_items,
1326 		unsigned int tag)
1327 {
1328 	struct radix_tree_iter iter;
1329 	void __rcu **slot;
1330 	unsigned int ret = 0;
1331 
1332 	if (unlikely(!max_items))
1333 		return 0;
1334 
1335 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1336 		results[ret] = rcu_dereference_raw(*slot);
1337 		if (!results[ret])
1338 			continue;
1339 		if (radix_tree_is_internal_node(results[ret])) {
1340 			slot = radix_tree_iter_retry(&iter);
1341 			continue;
1342 		}
1343 		if (++ret == max_items)
1344 			break;
1345 	}
1346 
1347 	return ret;
1348 }
1349 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1350 
1351 /**
1352  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1353  *					  radix tree based on a tag
1354  *	@root:		radix tree root
1355  *	@results:	where the results of the lookup are placed
1356  *	@first_index:	start the lookup from this key
1357  *	@max_items:	place up to this many items at *results
1358  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1359  *
1360  *	Performs an index-ascending scan of the tree for present items which
1361  *	have the tag indexed by @tag set.  Places the slots at *@results and
1362  *	returns the number of slots which were placed at *@results.
1363  */
1364 unsigned int
1365 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1366 		void __rcu ***results, unsigned long first_index,
1367 		unsigned int max_items, unsigned int tag)
1368 {
1369 	struct radix_tree_iter iter;
1370 	void __rcu **slot;
1371 	unsigned int ret = 0;
1372 
1373 	if (unlikely(!max_items))
1374 		return 0;
1375 
1376 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1377 		results[ret] = slot;
1378 		if (++ret == max_items)
1379 			break;
1380 	}
1381 
1382 	return ret;
1383 }
1384 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1385 
1386 static bool __radix_tree_delete(struct radix_tree_root *root,
1387 				struct radix_tree_node *node, void __rcu **slot)
1388 {
1389 	void *old = rcu_dereference_raw(*slot);
1390 	int values = xa_is_value(old) ? -1 : 0;
1391 	unsigned offset = get_slot_offset(node, slot);
1392 	int tag;
1393 
1394 	if (is_idr(root))
1395 		node_tag_set(root, node, IDR_FREE, offset);
1396 	else
1397 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1398 			node_tag_clear(root, node, tag, offset);
1399 
1400 	replace_slot(slot, NULL, node, -1, values);
1401 	return node && delete_node(root, node);
1402 }
1403 
1404 /**
1405  * radix_tree_iter_delete - delete the entry at this iterator position
1406  * @root: radix tree root
1407  * @iter: iterator state
1408  * @slot: pointer to slot
1409  *
1410  * Delete the entry at the position currently pointed to by the iterator.
1411  * This may result in the current node being freed; if it is, the iterator
1412  * is advanced so that it will not reference the freed memory.  This
1413  * function may be called without any locking if there are no other threads
1414  * which can access this tree.
1415  */
1416 void radix_tree_iter_delete(struct radix_tree_root *root,
1417 				struct radix_tree_iter *iter, void __rcu **slot)
1418 {
1419 	if (__radix_tree_delete(root, iter->node, slot))
1420 		iter->index = iter->next_index;
1421 }
1422 EXPORT_SYMBOL(radix_tree_iter_delete);
1423 
1424 /**
1425  * radix_tree_delete_item - delete an item from a radix tree
1426  * @root: radix tree root
1427  * @index: index key
1428  * @item: expected item
1429  *
1430  * Remove @item at @index from the radix tree rooted at @root.
1431  *
1432  * Return: the deleted entry, or %NULL if it was not present
1433  * or the entry at the given @index was not @item.
1434  */
1435 void *radix_tree_delete_item(struct radix_tree_root *root,
1436 			     unsigned long index, void *item)
1437 {
1438 	struct radix_tree_node *node = NULL;
1439 	void __rcu **slot = NULL;
1440 	void *entry;
1441 
1442 	entry = __radix_tree_lookup(root, index, &node, &slot);
1443 	if (!slot)
1444 		return NULL;
1445 	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1446 						get_slot_offset(node, slot))))
1447 		return NULL;
1448 
1449 	if (item && entry != item)
1450 		return NULL;
1451 
1452 	__radix_tree_delete(root, node, slot);
1453 
1454 	return entry;
1455 }
1456 EXPORT_SYMBOL(radix_tree_delete_item);
1457 
1458 /**
1459  * radix_tree_delete - delete an entry from a radix tree
1460  * @root: radix tree root
1461  * @index: index key
1462  *
1463  * Remove the entry at @index from the radix tree rooted at @root.
1464  *
1465  * Return: The deleted entry, or %NULL if it was not present.
1466  */
1467 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1468 {
1469 	return radix_tree_delete_item(root, index, NULL);
1470 }
1471 EXPORT_SYMBOL(radix_tree_delete);
1472 
1473 /**
1474  *	radix_tree_tagged - test whether any items in the tree are tagged
1475  *	@root:		radix tree root
1476  *	@tag:		tag to test
1477  */
1478 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1479 {
1480 	return root_tag_get(root, tag);
1481 }
1482 EXPORT_SYMBOL(radix_tree_tagged);
1483 
1484 /**
1485  * idr_preload - preload for idr_alloc()
1486  * @gfp_mask: allocation mask to use for preloading
1487  *
1488  * Preallocate memory to use for the next call to idr_alloc().  This function
1489  * returns with preemption disabled.  It will be enabled by idr_preload_end().
1490  */
1491 void idr_preload(gfp_t gfp_mask)
1492 {
1493 	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1494 		preempt_disable();
1495 }
1496 EXPORT_SYMBOL(idr_preload);
1497 
1498 void __rcu **idr_get_free(struct radix_tree_root *root,
1499 			      struct radix_tree_iter *iter, gfp_t gfp,
1500 			      unsigned long max)
1501 {
1502 	struct radix_tree_node *node = NULL, *child;
1503 	void __rcu **slot = (void __rcu **)&root->xa_head;
1504 	unsigned long maxindex, start = iter->next_index;
1505 	unsigned int shift, offset = 0;
1506 
1507  grow:
1508 	shift = radix_tree_load_root(root, &child, &maxindex);
1509 	if (!radix_tree_tagged(root, IDR_FREE))
1510 		start = max(start, maxindex + 1);
1511 	if (start > max)
1512 		return ERR_PTR(-ENOSPC);
1513 
1514 	if (start > maxindex) {
1515 		int error = radix_tree_extend(root, gfp, start, shift);
1516 		if (error < 0)
1517 			return ERR_PTR(error);
1518 		shift = error;
1519 		child = rcu_dereference_raw(root->xa_head);
1520 	}
1521 	if (start == 0 && shift == 0)
1522 		shift = RADIX_TREE_MAP_SHIFT;
1523 
1524 	while (shift) {
1525 		shift -= RADIX_TREE_MAP_SHIFT;
1526 		if (child == NULL) {
1527 			/* Have to add a child node.  */
1528 			child = radix_tree_node_alloc(gfp, node, root, shift,
1529 							offset, 0, 0);
1530 			if (!child)
1531 				return ERR_PTR(-ENOMEM);
1532 			all_tag_set(child, IDR_FREE);
1533 			rcu_assign_pointer(*slot, node_to_entry(child));
1534 			if (node)
1535 				node->count++;
1536 		} else if (!radix_tree_is_internal_node(child))
1537 			break;
1538 
1539 		node = entry_to_node(child);
1540 		offset = radix_tree_descend(node, &child, start);
1541 		if (!tag_get(node, IDR_FREE, offset)) {
1542 			offset = radix_tree_find_next_bit(node, IDR_FREE,
1543 							offset + 1);
1544 			start = next_index(start, node, offset);
1545 			if (start > max)
1546 				return ERR_PTR(-ENOSPC);
1547 			while (offset == RADIX_TREE_MAP_SIZE) {
1548 				offset = node->offset + 1;
1549 				node = node->parent;
1550 				if (!node)
1551 					goto grow;
1552 				shift = node->shift;
1553 			}
1554 			child = rcu_dereference_raw(node->slots[offset]);
1555 		}
1556 		slot = &node->slots[offset];
1557 	}
1558 
1559 	iter->index = start;
1560 	if (node)
1561 		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1562 	else
1563 		iter->next_index = 1;
1564 	iter->node = node;
1565 	set_iter_tags(iter, node, offset, IDR_FREE);
1566 
1567 	return slot;
1568 }
1569 
1570 /**
1571  * idr_destroy - release all internal memory from an IDR
1572  * @idr: idr handle
1573  *
1574  * After this function is called, the IDR is empty, and may be reused or
1575  * the data structure containing it may be freed.
1576  *
1577  * A typical clean-up sequence for objects stored in an idr tree will use
1578  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1579  * free the memory used to keep track of those objects.
1580  */
1581 void idr_destroy(struct idr *idr)
1582 {
1583 	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1584 	if (radix_tree_is_internal_node(node))
1585 		radix_tree_free_nodes(node);
1586 	idr->idr_rt.xa_head = NULL;
1587 	root_tag_set(&idr->idr_rt, IDR_FREE);
1588 }
1589 EXPORT_SYMBOL(idr_destroy);
1590 
1591 static void
1592 radix_tree_node_ctor(void *arg)
1593 {
1594 	struct radix_tree_node *node = arg;
1595 
1596 	memset(node, 0, sizeof(*node));
1597 	INIT_LIST_HEAD(&node->private_list);
1598 }
1599 
1600 static int radix_tree_cpu_dead(unsigned int cpu)
1601 {
1602 	struct radix_tree_preload *rtp;
1603 	struct radix_tree_node *node;
1604 
1605 	/* Free per-cpu pool of preloaded nodes */
1606 	rtp = &per_cpu(radix_tree_preloads, cpu);
1607 	while (rtp->nr) {
1608 		node = rtp->nodes;
1609 		rtp->nodes = node->parent;
1610 		kmem_cache_free(radix_tree_node_cachep, node);
1611 		rtp->nr--;
1612 	}
1613 	return 0;
1614 }
1615 
1616 void __init radix_tree_init(void)
1617 {
1618 	int ret;
1619 
1620 	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1621 	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1622 	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1623 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1624 			sizeof(struct radix_tree_node), 0,
1625 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1626 			radix_tree_node_ctor);
1627 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1628 					NULL, radix_tree_cpu_dead);
1629 	WARN_ON(ret < 0);
1630 }
1631