xref: /openbmc/linux/lib/radix-tree.c (revision edfd52e6)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
34 
35 
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
40 #endif
41 
42 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
44 
45 #define RADIX_TREE_TAG_LONGS	\
46 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
47 
48 struct radix_tree_node {
49 	unsigned int	height;		/* Height from the bottom */
50 	unsigned int	count;
51 	struct rcu_head	rcu_head;
52 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
53 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
54 };
55 
56 struct radix_tree_path {
57 	struct radix_tree_node *node;
58 	int offset;
59 };
60 
61 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 					  RADIX_TREE_MAP_SHIFT))
64 
65 /*
66  * The height_to_maxindex array needs to be one deeper than the maximum
67  * path as height 0 holds only 1 entry.
68  */
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
70 
71 /*
72  * Radix tree node cache.
73  */
74 static struct kmem_cache *radix_tree_node_cachep;
75 
76 /*
77  * Per-cpu pool of preloaded nodes
78  */
79 struct radix_tree_preload {
80 	int nr;
81 	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
82 };
83 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
84 
85 static inline void *ptr_to_indirect(void *ptr)
86 {
87 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
88 }
89 
90 static inline void *indirect_to_ptr(void *ptr)
91 {
92 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
93 }
94 
95 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
96 {
97 	return root->gfp_mask & __GFP_BITS_MASK;
98 }
99 
100 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
101 		int offset)
102 {
103 	__set_bit(offset, node->tags[tag]);
104 }
105 
106 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
107 		int offset)
108 {
109 	__clear_bit(offset, node->tags[tag]);
110 }
111 
112 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
113 		int offset)
114 {
115 	return test_bit(offset, node->tags[tag]);
116 }
117 
118 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
119 {
120 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
121 }
122 
123 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
124 {
125 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
126 }
127 
128 static inline void root_tag_clear_all(struct radix_tree_root *root)
129 {
130 	root->gfp_mask &= __GFP_BITS_MASK;
131 }
132 
133 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
134 {
135 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
136 }
137 
138 /*
139  * Returns 1 if any slot in the node has this tag set.
140  * Otherwise returns 0.
141  */
142 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
143 {
144 	int idx;
145 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
146 		if (node->tags[tag][idx])
147 			return 1;
148 	}
149 	return 0;
150 }
151 /*
152  * This assumes that the caller has performed appropriate preallocation, and
153  * that the caller has pinned this thread of control to the current CPU.
154  */
155 static struct radix_tree_node *
156 radix_tree_node_alloc(struct radix_tree_root *root)
157 {
158 	struct radix_tree_node *ret = NULL;
159 	gfp_t gfp_mask = root_gfp_mask(root);
160 
161 	if (!(gfp_mask & __GFP_WAIT)) {
162 		struct radix_tree_preload *rtp;
163 
164 		/*
165 		 * Provided the caller has preloaded here, we will always
166 		 * succeed in getting a node here (and never reach
167 		 * kmem_cache_alloc)
168 		 */
169 		rtp = &__get_cpu_var(radix_tree_preloads);
170 		if (rtp->nr) {
171 			ret = rtp->nodes[rtp->nr - 1];
172 			rtp->nodes[rtp->nr - 1] = NULL;
173 			rtp->nr--;
174 		}
175 	}
176 	if (ret == NULL)
177 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
178 
179 	BUG_ON(radix_tree_is_indirect_ptr(ret));
180 	return ret;
181 }
182 
183 static void radix_tree_node_rcu_free(struct rcu_head *head)
184 {
185 	struct radix_tree_node *node =
186 			container_of(head, struct radix_tree_node, rcu_head);
187 	int i;
188 
189 	/*
190 	 * must only free zeroed nodes into the slab. radix_tree_shrink
191 	 * can leave us with a non-NULL entry in the first slot, so clear
192 	 * that here to make sure.
193 	 */
194 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
195 		tag_clear(node, i, 0);
196 
197 	node->slots[0] = NULL;
198 	node->count = 0;
199 
200 	kmem_cache_free(radix_tree_node_cachep, node);
201 }
202 
203 static inline void
204 radix_tree_node_free(struct radix_tree_node *node)
205 {
206 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
207 }
208 
209 /*
210  * Load up this CPU's radix_tree_node buffer with sufficient objects to
211  * ensure that the addition of a single element in the tree cannot fail.  On
212  * success, return zero, with preemption disabled.  On error, return -ENOMEM
213  * with preemption not disabled.
214  *
215  * To make use of this facility, the radix tree must be initialised without
216  * __GFP_WAIT being passed to INIT_RADIX_TREE().
217  */
218 int radix_tree_preload(gfp_t gfp_mask)
219 {
220 	struct radix_tree_preload *rtp;
221 	struct radix_tree_node *node;
222 	int ret = -ENOMEM;
223 
224 	preempt_disable();
225 	rtp = &__get_cpu_var(radix_tree_preloads);
226 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
227 		preempt_enable();
228 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
229 		if (node == NULL)
230 			goto out;
231 		preempt_disable();
232 		rtp = &__get_cpu_var(radix_tree_preloads);
233 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
234 			rtp->nodes[rtp->nr++] = node;
235 		else
236 			kmem_cache_free(radix_tree_node_cachep, node);
237 	}
238 	ret = 0;
239 out:
240 	return ret;
241 }
242 EXPORT_SYMBOL(radix_tree_preload);
243 
244 /*
245  *	Return the maximum key which can be store into a
246  *	radix tree with height HEIGHT.
247  */
248 static inline unsigned long radix_tree_maxindex(unsigned int height)
249 {
250 	return height_to_maxindex[height];
251 }
252 
253 /*
254  *	Extend a radix tree so it can store key @index.
255  */
256 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
257 {
258 	struct radix_tree_node *node;
259 	unsigned int height;
260 	int tag;
261 
262 	/* Figure out what the height should be.  */
263 	height = root->height + 1;
264 	while (index > radix_tree_maxindex(height))
265 		height++;
266 
267 	if (root->rnode == NULL) {
268 		root->height = height;
269 		goto out;
270 	}
271 
272 	do {
273 		unsigned int newheight;
274 		if (!(node = radix_tree_node_alloc(root)))
275 			return -ENOMEM;
276 
277 		/* Increase the height.  */
278 		node->slots[0] = indirect_to_ptr(root->rnode);
279 
280 		/* Propagate the aggregated tag info into the new root */
281 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
282 			if (root_tag_get(root, tag))
283 				tag_set(node, tag, 0);
284 		}
285 
286 		newheight = root->height+1;
287 		node->height = newheight;
288 		node->count = 1;
289 		node = ptr_to_indirect(node);
290 		rcu_assign_pointer(root->rnode, node);
291 		root->height = newheight;
292 	} while (height > root->height);
293 out:
294 	return 0;
295 }
296 
297 /**
298  *	radix_tree_insert    -    insert into a radix tree
299  *	@root:		radix tree root
300  *	@index:		index key
301  *	@item:		item to insert
302  *
303  *	Insert an item into the radix tree at position @index.
304  */
305 int radix_tree_insert(struct radix_tree_root *root,
306 			unsigned long index, void *item)
307 {
308 	struct radix_tree_node *node = NULL, *slot;
309 	unsigned int height, shift;
310 	int offset;
311 	int error;
312 
313 	BUG_ON(radix_tree_is_indirect_ptr(item));
314 
315 	/* Make sure the tree is high enough.  */
316 	if (index > radix_tree_maxindex(root->height)) {
317 		error = radix_tree_extend(root, index);
318 		if (error)
319 			return error;
320 	}
321 
322 	slot = indirect_to_ptr(root->rnode);
323 
324 	height = root->height;
325 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
326 
327 	offset = 0;			/* uninitialised var warning */
328 	while (height > 0) {
329 		if (slot == NULL) {
330 			/* Have to add a child node.  */
331 			if (!(slot = radix_tree_node_alloc(root)))
332 				return -ENOMEM;
333 			slot->height = height;
334 			if (node) {
335 				rcu_assign_pointer(node->slots[offset], slot);
336 				node->count++;
337 			} else
338 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
339 		}
340 
341 		/* Go a level down */
342 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
343 		node = slot;
344 		slot = node->slots[offset];
345 		shift -= RADIX_TREE_MAP_SHIFT;
346 		height--;
347 	}
348 
349 	if (slot != NULL)
350 		return -EEXIST;
351 
352 	if (node) {
353 		node->count++;
354 		rcu_assign_pointer(node->slots[offset], item);
355 		BUG_ON(tag_get(node, 0, offset));
356 		BUG_ON(tag_get(node, 1, offset));
357 	} else {
358 		rcu_assign_pointer(root->rnode, item);
359 		BUG_ON(root_tag_get(root, 0));
360 		BUG_ON(root_tag_get(root, 1));
361 	}
362 
363 	return 0;
364 }
365 EXPORT_SYMBOL(radix_tree_insert);
366 
367 /*
368  * is_slot == 1 : search for the slot.
369  * is_slot == 0 : search for the node.
370  */
371 static void *radix_tree_lookup_element(struct radix_tree_root *root,
372 				unsigned long index, int is_slot)
373 {
374 	unsigned int height, shift;
375 	struct radix_tree_node *node, **slot;
376 
377 	node = rcu_dereference_raw(root->rnode);
378 	if (node == NULL)
379 		return NULL;
380 
381 	if (!radix_tree_is_indirect_ptr(node)) {
382 		if (index > 0)
383 			return NULL;
384 		return is_slot ? (void *)&root->rnode : node;
385 	}
386 	node = indirect_to_ptr(node);
387 
388 	height = node->height;
389 	if (index > radix_tree_maxindex(height))
390 		return NULL;
391 
392 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
393 
394 	do {
395 		slot = (struct radix_tree_node **)
396 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
397 		node = rcu_dereference_raw(*slot);
398 		if (node == NULL)
399 			return NULL;
400 
401 		shift -= RADIX_TREE_MAP_SHIFT;
402 		height--;
403 	} while (height > 0);
404 
405 	return is_slot ? (void *)slot : indirect_to_ptr(node);
406 }
407 
408 /**
409  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
410  *	@root:		radix tree root
411  *	@index:		index key
412  *
413  *	Returns:  the slot corresponding to the position @index in the
414  *	radix tree @root. This is useful for update-if-exists operations.
415  *
416  *	This function can be called under rcu_read_lock iff the slot is not
417  *	modified by radix_tree_replace_slot, otherwise it must be called
418  *	exclusive from other writers. Any dereference of the slot must be done
419  *	using radix_tree_deref_slot.
420  */
421 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
422 {
423 	return (void **)radix_tree_lookup_element(root, index, 1);
424 }
425 EXPORT_SYMBOL(radix_tree_lookup_slot);
426 
427 /**
428  *	radix_tree_lookup    -    perform lookup operation on a radix tree
429  *	@root:		radix tree root
430  *	@index:		index key
431  *
432  *	Lookup the item at the position @index in the radix tree @root.
433  *
434  *	This function can be called under rcu_read_lock, however the caller
435  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
436  *	them safely). No RCU barriers are required to access or modify the
437  *	returned item, however.
438  */
439 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
440 {
441 	return radix_tree_lookup_element(root, index, 0);
442 }
443 EXPORT_SYMBOL(radix_tree_lookup);
444 
445 /**
446  *	radix_tree_tag_set - set a tag on a radix tree node
447  *	@root:		radix tree root
448  *	@index:		index key
449  *	@tag: 		tag index
450  *
451  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
452  *	corresponding to @index in the radix tree.  From
453  *	the root all the way down to the leaf node.
454  *
455  *	Returns the address of the tagged item.   Setting a tag on a not-present
456  *	item is a bug.
457  */
458 void *radix_tree_tag_set(struct radix_tree_root *root,
459 			unsigned long index, unsigned int tag)
460 {
461 	unsigned int height, shift;
462 	struct radix_tree_node *slot;
463 
464 	height = root->height;
465 	BUG_ON(index > radix_tree_maxindex(height));
466 
467 	slot = indirect_to_ptr(root->rnode);
468 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
469 
470 	while (height > 0) {
471 		int offset;
472 
473 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
474 		if (!tag_get(slot, tag, offset))
475 			tag_set(slot, tag, offset);
476 		slot = slot->slots[offset];
477 		BUG_ON(slot == NULL);
478 		shift -= RADIX_TREE_MAP_SHIFT;
479 		height--;
480 	}
481 
482 	/* set the root's tag bit */
483 	if (slot && !root_tag_get(root, tag))
484 		root_tag_set(root, tag);
485 
486 	return slot;
487 }
488 EXPORT_SYMBOL(radix_tree_tag_set);
489 
490 /**
491  *	radix_tree_tag_clear - clear a tag on a radix tree node
492  *	@root:		radix tree root
493  *	@index:		index key
494  *	@tag: 		tag index
495  *
496  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
497  *	corresponding to @index in the radix tree.  If
498  *	this causes the leaf node to have no tags set then clear the tag in the
499  *	next-to-leaf node, etc.
500  *
501  *	Returns the address of the tagged item on success, else NULL.  ie:
502  *	has the same return value and semantics as radix_tree_lookup().
503  */
504 void *radix_tree_tag_clear(struct radix_tree_root *root,
505 			unsigned long index, unsigned int tag)
506 {
507 	/*
508 	 * The radix tree path needs to be one longer than the maximum path
509 	 * since the "list" is null terminated.
510 	 */
511 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
512 	struct radix_tree_node *slot = NULL;
513 	unsigned int height, shift;
514 
515 	height = root->height;
516 	if (index > radix_tree_maxindex(height))
517 		goto out;
518 
519 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
520 	pathp->node = NULL;
521 	slot = indirect_to_ptr(root->rnode);
522 
523 	while (height > 0) {
524 		int offset;
525 
526 		if (slot == NULL)
527 			goto out;
528 
529 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 		pathp[1].offset = offset;
531 		pathp[1].node = slot;
532 		slot = slot->slots[offset];
533 		pathp++;
534 		shift -= RADIX_TREE_MAP_SHIFT;
535 		height--;
536 	}
537 
538 	if (slot == NULL)
539 		goto out;
540 
541 	while (pathp->node) {
542 		if (!tag_get(pathp->node, tag, pathp->offset))
543 			goto out;
544 		tag_clear(pathp->node, tag, pathp->offset);
545 		if (any_tag_set(pathp->node, tag))
546 			goto out;
547 		pathp--;
548 	}
549 
550 	/* clear the root's tag bit */
551 	if (root_tag_get(root, tag))
552 		root_tag_clear(root, tag);
553 
554 out:
555 	return slot;
556 }
557 EXPORT_SYMBOL(radix_tree_tag_clear);
558 
559 /**
560  * radix_tree_tag_get - get a tag on a radix tree node
561  * @root:		radix tree root
562  * @index:		index key
563  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
564  *
565  * Return values:
566  *
567  *  0: tag not present or not set
568  *  1: tag set
569  *
570  * Note that the return value of this function may not be relied on, even if
571  * the RCU lock is held, unless tag modification and node deletion are excluded
572  * from concurrency.
573  */
574 int radix_tree_tag_get(struct radix_tree_root *root,
575 			unsigned long index, unsigned int tag)
576 {
577 	unsigned int height, shift;
578 	struct radix_tree_node *node;
579 
580 	/* check the root's tag bit */
581 	if (!root_tag_get(root, tag))
582 		return 0;
583 
584 	node = rcu_dereference_raw(root->rnode);
585 	if (node == NULL)
586 		return 0;
587 
588 	if (!radix_tree_is_indirect_ptr(node))
589 		return (index == 0);
590 	node = indirect_to_ptr(node);
591 
592 	height = node->height;
593 	if (index > radix_tree_maxindex(height))
594 		return 0;
595 
596 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
597 
598 	for ( ; ; ) {
599 		int offset;
600 
601 		if (node == NULL)
602 			return 0;
603 
604 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
605 		if (!tag_get(node, tag, offset))
606 			return 0;
607 		if (height == 1)
608 			return 1;
609 		node = rcu_dereference_raw(node->slots[offset]);
610 		shift -= RADIX_TREE_MAP_SHIFT;
611 		height--;
612 	}
613 }
614 EXPORT_SYMBOL(radix_tree_tag_get);
615 
616 /**
617  * radix_tree_range_tag_if_tagged - for each item in given range set given
618  *				   tag if item has another tag set
619  * @root:		radix tree root
620  * @first_indexp:	pointer to a starting index of a range to scan
621  * @last_index:		last index of a range to scan
622  * @nr_to_tag:		maximum number items to tag
623  * @iftag:		tag index to test
624  * @settag:		tag index to set if tested tag is set
625  *
626  * This function scans range of radix tree from first_index to last_index
627  * (inclusive).  For each item in the range if iftag is set, the function sets
628  * also settag. The function stops either after tagging nr_to_tag items or
629  * after reaching last_index.
630  *
631  * The tags must be set from the leaf level only and propagated back up the
632  * path to the root. We must do this so that we resolve the full path before
633  * setting any tags on intermediate nodes. If we set tags as we descend, then
634  * we can get to the leaf node and find that the index that has the iftag
635  * set is outside the range we are scanning. This reults in dangling tags and
636  * can lead to problems with later tag operations (e.g. livelocks on lookups).
637  *
638  * The function returns number of leaves where the tag was set and sets
639  * *first_indexp to the first unscanned index.
640  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
641  * be prepared to handle that.
642  */
643 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
644 		unsigned long *first_indexp, unsigned long last_index,
645 		unsigned long nr_to_tag,
646 		unsigned int iftag, unsigned int settag)
647 {
648 	unsigned int height = root->height;
649 	struct radix_tree_path path[height];
650 	struct radix_tree_path *pathp = path;
651 	struct radix_tree_node *slot;
652 	unsigned int shift;
653 	unsigned long tagged = 0;
654 	unsigned long index = *first_indexp;
655 
656 	last_index = min(last_index, radix_tree_maxindex(height));
657 	if (index > last_index)
658 		return 0;
659 	if (!nr_to_tag)
660 		return 0;
661 	if (!root_tag_get(root, iftag)) {
662 		*first_indexp = last_index + 1;
663 		return 0;
664 	}
665 	if (height == 0) {
666 		*first_indexp = last_index + 1;
667 		root_tag_set(root, settag);
668 		return 1;
669 	}
670 
671 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
672 	slot = indirect_to_ptr(root->rnode);
673 
674 	/*
675 	 * we fill the path from (root->height - 2) to 0, leaving the index at
676 	 * (root->height - 1) as a terminator. Zero the node in the terminator
677 	 * so that we can use this to end walk loops back up the path.
678 	 */
679 	path[height - 1].node = NULL;
680 
681 	for (;;) {
682 		int offset;
683 
684 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
685 		if (!slot->slots[offset])
686 			goto next;
687 		if (!tag_get(slot, iftag, offset))
688 			goto next;
689 		if (height > 1) {
690 			/* Go down one level */
691 			height--;
692 			shift -= RADIX_TREE_MAP_SHIFT;
693 			path[height - 1].node = slot;
694 			path[height - 1].offset = offset;
695 			slot = slot->slots[offset];
696 			continue;
697 		}
698 
699 		/* tag the leaf */
700 		tagged++;
701 		tag_set(slot, settag, offset);
702 
703 		/* walk back up the path tagging interior nodes */
704 		pathp = &path[0];
705 		while (pathp->node) {
706 			/* stop if we find a node with the tag already set */
707 			if (tag_get(pathp->node, settag, pathp->offset))
708 				break;
709 			tag_set(pathp->node, settag, pathp->offset);
710 			pathp++;
711 		}
712 
713 next:
714 		/* Go to next item at level determined by 'shift' */
715 		index = ((index >> shift) + 1) << shift;
716 		/* Overflow can happen when last_index is ~0UL... */
717 		if (index > last_index || !index)
718 			break;
719 		if (tagged >= nr_to_tag)
720 			break;
721 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
722 			/*
723 			 * We've fully scanned this node. Go up. Because
724 			 * last_index is guaranteed to be in the tree, what
725 			 * we do below cannot wander astray.
726 			 */
727 			slot = path[height - 1].node;
728 			height++;
729 			shift += RADIX_TREE_MAP_SHIFT;
730 		}
731 	}
732 	/*
733 	 * We need not to tag the root tag if there is no tag which is set with
734 	 * settag within the range from *first_indexp to last_index.
735 	 */
736 	if (tagged > 0)
737 		root_tag_set(root, settag);
738 	*first_indexp = index;
739 
740 	return tagged;
741 }
742 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
743 
744 
745 /**
746  *	radix_tree_next_hole    -    find the next hole (not-present entry)
747  *	@root:		tree root
748  *	@index:		index key
749  *	@max_scan:	maximum range to search
750  *
751  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
752  *	indexed hole.
753  *
754  *	Returns: the index of the hole if found, otherwise returns an index
755  *	outside of the set specified (in which case 'return - index >= max_scan'
756  *	will be true). In rare cases of index wrap-around, 0 will be returned.
757  *
758  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
759  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
760  *	the tree at a single point in time. For example, if a hole is created
761  *	at index 5, then subsequently a hole is created at index 10,
762  *	radix_tree_next_hole covering both indexes may return 10 if called
763  *	under rcu_read_lock.
764  */
765 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
766 				unsigned long index, unsigned long max_scan)
767 {
768 	unsigned long i;
769 
770 	for (i = 0; i < max_scan; i++) {
771 		if (!radix_tree_lookup(root, index))
772 			break;
773 		index++;
774 		if (index == 0)
775 			break;
776 	}
777 
778 	return index;
779 }
780 EXPORT_SYMBOL(radix_tree_next_hole);
781 
782 /**
783  *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
784  *	@root:		tree root
785  *	@index:		index key
786  *	@max_scan:	maximum range to search
787  *
788  *	Search backwards in the range [max(index-max_scan+1, 0), index]
789  *	for the first hole.
790  *
791  *	Returns: the index of the hole if found, otherwise returns an index
792  *	outside of the set specified (in which case 'index - return >= max_scan'
793  *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
794  *
795  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
796  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
797  *	the tree at a single point in time. For example, if a hole is created
798  *	at index 10, then subsequently a hole is created at index 5,
799  *	radix_tree_prev_hole covering both indexes may return 5 if called under
800  *	rcu_read_lock.
801  */
802 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
803 				   unsigned long index, unsigned long max_scan)
804 {
805 	unsigned long i;
806 
807 	for (i = 0; i < max_scan; i++) {
808 		if (!radix_tree_lookup(root, index))
809 			break;
810 		index--;
811 		if (index == ULONG_MAX)
812 			break;
813 	}
814 
815 	return index;
816 }
817 EXPORT_SYMBOL(radix_tree_prev_hole);
818 
819 static unsigned int
820 __lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
821 	unsigned long index, unsigned int max_items, unsigned long *next_index)
822 {
823 	unsigned int nr_found = 0;
824 	unsigned int shift, height;
825 	unsigned long i;
826 
827 	height = slot->height;
828 	if (height == 0)
829 		goto out;
830 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
831 
832 	for ( ; height > 1; height--) {
833 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
834 		for (;;) {
835 			if (slot->slots[i] != NULL)
836 				break;
837 			index &= ~((1UL << shift) - 1);
838 			index += 1UL << shift;
839 			if (index == 0)
840 				goto out;	/* 32-bit wraparound */
841 			i++;
842 			if (i == RADIX_TREE_MAP_SIZE)
843 				goto out;
844 		}
845 
846 		shift -= RADIX_TREE_MAP_SHIFT;
847 		slot = rcu_dereference_raw(slot->slots[i]);
848 		if (slot == NULL)
849 			goto out;
850 	}
851 
852 	/* Bottom level: grab some items */
853 	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
854 		if (slot->slots[i]) {
855 			results[nr_found] = &(slot->slots[i]);
856 			if (indices)
857 				indices[nr_found] = index;
858 			if (++nr_found == max_items) {
859 				index++;
860 				goto out;
861 			}
862 		}
863 		index++;
864 	}
865 out:
866 	*next_index = index;
867 	return nr_found;
868 }
869 
870 /**
871  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
872  *	@root:		radix tree root
873  *	@results:	where the results of the lookup are placed
874  *	@first_index:	start the lookup from this key
875  *	@max_items:	place up to this many items at *results
876  *
877  *	Performs an index-ascending scan of the tree for present items.  Places
878  *	them at *@results and returns the number of items which were placed at
879  *	*@results.
880  *
881  *	The implementation is naive.
882  *
883  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
884  *	rcu_read_lock. In this case, rather than the returned results being
885  *	an atomic snapshot of the tree at a single point in time, the semantics
886  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
887  *	have been issued in individual locks, and results stored in 'results'.
888  */
889 unsigned int
890 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
891 			unsigned long first_index, unsigned int max_items)
892 {
893 	unsigned long max_index;
894 	struct radix_tree_node *node;
895 	unsigned long cur_index = first_index;
896 	unsigned int ret;
897 
898 	node = rcu_dereference_raw(root->rnode);
899 	if (!node)
900 		return 0;
901 
902 	if (!radix_tree_is_indirect_ptr(node)) {
903 		if (first_index > 0)
904 			return 0;
905 		results[0] = node;
906 		return 1;
907 	}
908 	node = indirect_to_ptr(node);
909 
910 	max_index = radix_tree_maxindex(node->height);
911 
912 	ret = 0;
913 	while (ret < max_items) {
914 		unsigned int nr_found, slots_found, i;
915 		unsigned long next_index;	/* Index of next search */
916 
917 		if (cur_index > max_index)
918 			break;
919 		slots_found = __lookup(node, (void ***)results + ret, NULL,
920 				cur_index, max_items - ret, &next_index);
921 		nr_found = 0;
922 		for (i = 0; i < slots_found; i++) {
923 			struct radix_tree_node *slot;
924 			slot = *(((void ***)results)[ret + i]);
925 			if (!slot)
926 				continue;
927 			results[ret + nr_found] =
928 				indirect_to_ptr(rcu_dereference_raw(slot));
929 			nr_found++;
930 		}
931 		ret += nr_found;
932 		if (next_index == 0)
933 			break;
934 		cur_index = next_index;
935 	}
936 
937 	return ret;
938 }
939 EXPORT_SYMBOL(radix_tree_gang_lookup);
940 
941 /**
942  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
943  *	@root:		radix tree root
944  *	@results:	where the results of the lookup are placed
945  *	@indices:	where their indices should be placed (but usually NULL)
946  *	@first_index:	start the lookup from this key
947  *	@max_items:	place up to this many items at *results
948  *
949  *	Performs an index-ascending scan of the tree for present items.  Places
950  *	their slots at *@results and returns the number of items which were
951  *	placed at *@results.
952  *
953  *	The implementation is naive.
954  *
955  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
956  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
957  *	protection, radix_tree_deref_slot may fail requiring a retry.
958  */
959 unsigned int
960 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
961 			void ***results, unsigned long *indices,
962 			unsigned long first_index, unsigned int max_items)
963 {
964 	unsigned long max_index;
965 	struct radix_tree_node *node;
966 	unsigned long cur_index = first_index;
967 	unsigned int ret;
968 
969 	node = rcu_dereference_raw(root->rnode);
970 	if (!node)
971 		return 0;
972 
973 	if (!radix_tree_is_indirect_ptr(node)) {
974 		if (first_index > 0)
975 			return 0;
976 		results[0] = (void **)&root->rnode;
977 		if (indices)
978 			indices[0] = 0;
979 		return 1;
980 	}
981 	node = indirect_to_ptr(node);
982 
983 	max_index = radix_tree_maxindex(node->height);
984 
985 	ret = 0;
986 	while (ret < max_items) {
987 		unsigned int slots_found;
988 		unsigned long next_index;	/* Index of next search */
989 
990 		if (cur_index > max_index)
991 			break;
992 		slots_found = __lookup(node, results + ret,
993 				indices ? indices + ret : NULL,
994 				cur_index, max_items - ret, &next_index);
995 		ret += slots_found;
996 		if (next_index == 0)
997 			break;
998 		cur_index = next_index;
999 	}
1000 
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1004 
1005 /*
1006  * FIXME: the two tag_get()s here should use find_next_bit() instead of
1007  * open-coding the search.
1008  */
1009 static unsigned int
1010 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1011 	unsigned int max_items, unsigned long *next_index, unsigned int tag)
1012 {
1013 	unsigned int nr_found = 0;
1014 	unsigned int shift, height;
1015 
1016 	height = slot->height;
1017 	if (height == 0)
1018 		goto out;
1019 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1020 
1021 	while (height > 0) {
1022 		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1023 
1024 		for (;;) {
1025 			if (tag_get(slot, tag, i))
1026 				break;
1027 			index &= ~((1UL << shift) - 1);
1028 			index += 1UL << shift;
1029 			if (index == 0)
1030 				goto out;	/* 32-bit wraparound */
1031 			i++;
1032 			if (i == RADIX_TREE_MAP_SIZE)
1033 				goto out;
1034 		}
1035 		height--;
1036 		if (height == 0) {	/* Bottom level: grab some items */
1037 			unsigned long j = index & RADIX_TREE_MAP_MASK;
1038 
1039 			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1040 				index++;
1041 				if (!tag_get(slot, tag, j))
1042 					continue;
1043 				/*
1044 				 * Even though the tag was found set, we need to
1045 				 * recheck that we have a non-NULL node, because
1046 				 * if this lookup is lockless, it may have been
1047 				 * subsequently deleted.
1048 				 *
1049 				 * Similar care must be taken in any place that
1050 				 * lookup ->slots[x] without a lock (ie. can't
1051 				 * rely on its value remaining the same).
1052 				 */
1053 				if (slot->slots[j]) {
1054 					results[nr_found++] = &(slot->slots[j]);
1055 					if (nr_found == max_items)
1056 						goto out;
1057 				}
1058 			}
1059 		}
1060 		shift -= RADIX_TREE_MAP_SHIFT;
1061 		slot = rcu_dereference_raw(slot->slots[i]);
1062 		if (slot == NULL)
1063 			break;
1064 	}
1065 out:
1066 	*next_index = index;
1067 	return nr_found;
1068 }
1069 
1070 /**
1071  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1072  *	                             based on a tag
1073  *	@root:		radix tree root
1074  *	@results:	where the results of the lookup are placed
1075  *	@first_index:	start the lookup from this key
1076  *	@max_items:	place up to this many items at *results
1077  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1078  *
1079  *	Performs an index-ascending scan of the tree for present items which
1080  *	have the tag indexed by @tag set.  Places the items at *@results and
1081  *	returns the number of items which were placed at *@results.
1082  */
1083 unsigned int
1084 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1085 		unsigned long first_index, unsigned int max_items,
1086 		unsigned int tag)
1087 {
1088 	struct radix_tree_node *node;
1089 	unsigned long max_index;
1090 	unsigned long cur_index = first_index;
1091 	unsigned int ret;
1092 
1093 	/* check the root's tag bit */
1094 	if (!root_tag_get(root, tag))
1095 		return 0;
1096 
1097 	node = rcu_dereference_raw(root->rnode);
1098 	if (!node)
1099 		return 0;
1100 
1101 	if (!radix_tree_is_indirect_ptr(node)) {
1102 		if (first_index > 0)
1103 			return 0;
1104 		results[0] = node;
1105 		return 1;
1106 	}
1107 	node = indirect_to_ptr(node);
1108 
1109 	max_index = radix_tree_maxindex(node->height);
1110 
1111 	ret = 0;
1112 	while (ret < max_items) {
1113 		unsigned int nr_found, slots_found, i;
1114 		unsigned long next_index;	/* Index of next search */
1115 
1116 		if (cur_index > max_index)
1117 			break;
1118 		slots_found = __lookup_tag(node, (void ***)results + ret,
1119 				cur_index, max_items - ret, &next_index, tag);
1120 		nr_found = 0;
1121 		for (i = 0; i < slots_found; i++) {
1122 			struct radix_tree_node *slot;
1123 			slot = *(((void ***)results)[ret + i]);
1124 			if (!slot)
1125 				continue;
1126 			results[ret + nr_found] =
1127 				indirect_to_ptr(rcu_dereference_raw(slot));
1128 			nr_found++;
1129 		}
1130 		ret += nr_found;
1131 		if (next_index == 0)
1132 			break;
1133 		cur_index = next_index;
1134 	}
1135 
1136 	return ret;
1137 }
1138 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1139 
1140 /**
1141  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1142  *					  radix tree based on a tag
1143  *	@root:		radix tree root
1144  *	@results:	where the results of the lookup are placed
1145  *	@first_index:	start the lookup from this key
1146  *	@max_items:	place up to this many items at *results
1147  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1148  *
1149  *	Performs an index-ascending scan of the tree for present items which
1150  *	have the tag indexed by @tag set.  Places the slots at *@results and
1151  *	returns the number of slots which were placed at *@results.
1152  */
1153 unsigned int
1154 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1155 		unsigned long first_index, unsigned int max_items,
1156 		unsigned int tag)
1157 {
1158 	struct radix_tree_node *node;
1159 	unsigned long max_index;
1160 	unsigned long cur_index = first_index;
1161 	unsigned int ret;
1162 
1163 	/* check the root's tag bit */
1164 	if (!root_tag_get(root, tag))
1165 		return 0;
1166 
1167 	node = rcu_dereference_raw(root->rnode);
1168 	if (!node)
1169 		return 0;
1170 
1171 	if (!radix_tree_is_indirect_ptr(node)) {
1172 		if (first_index > 0)
1173 			return 0;
1174 		results[0] = (void **)&root->rnode;
1175 		return 1;
1176 	}
1177 	node = indirect_to_ptr(node);
1178 
1179 	max_index = radix_tree_maxindex(node->height);
1180 
1181 	ret = 0;
1182 	while (ret < max_items) {
1183 		unsigned int slots_found;
1184 		unsigned long next_index;	/* Index of next search */
1185 
1186 		if (cur_index > max_index)
1187 			break;
1188 		slots_found = __lookup_tag(node, results + ret,
1189 				cur_index, max_items - ret, &next_index, tag);
1190 		ret += slots_found;
1191 		if (next_index == 0)
1192 			break;
1193 		cur_index = next_index;
1194 	}
1195 
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1199 
1200 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1201 #include <linux/sched.h> /* for cond_resched() */
1202 
1203 /*
1204  * This linear search is at present only useful to shmem_unuse_inode().
1205  */
1206 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1207 			      unsigned long index, unsigned long *found_index)
1208 {
1209 	unsigned int shift, height;
1210 	unsigned long i;
1211 
1212 	height = slot->height;
1213 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1214 
1215 	for ( ; height > 1; height--) {
1216 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1217 		for (;;) {
1218 			if (slot->slots[i] != NULL)
1219 				break;
1220 			index &= ~((1UL << shift) - 1);
1221 			index += 1UL << shift;
1222 			if (index == 0)
1223 				goto out;	/* 32-bit wraparound */
1224 			i++;
1225 			if (i == RADIX_TREE_MAP_SIZE)
1226 				goto out;
1227 		}
1228 
1229 		shift -= RADIX_TREE_MAP_SHIFT;
1230 		slot = rcu_dereference_raw(slot->slots[i]);
1231 		if (slot == NULL)
1232 			goto out;
1233 	}
1234 
1235 	/* Bottom level: check items */
1236 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1237 		if (slot->slots[i] == item) {
1238 			*found_index = index + i;
1239 			index = 0;
1240 			goto out;
1241 		}
1242 	}
1243 	index += RADIX_TREE_MAP_SIZE;
1244 out:
1245 	return index;
1246 }
1247 
1248 /**
1249  *	radix_tree_locate_item - search through radix tree for item
1250  *	@root:		radix tree root
1251  *	@item:		item to be found
1252  *
1253  *	Returns index where item was found, or -1 if not found.
1254  *	Caller must hold no lock (since this time-consuming function needs
1255  *	to be preemptible), and must check afterwards if item is still there.
1256  */
1257 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1258 {
1259 	struct radix_tree_node *node;
1260 	unsigned long max_index;
1261 	unsigned long cur_index = 0;
1262 	unsigned long found_index = -1;
1263 
1264 	do {
1265 		rcu_read_lock();
1266 		node = rcu_dereference_raw(root->rnode);
1267 		if (!radix_tree_is_indirect_ptr(node)) {
1268 			rcu_read_unlock();
1269 			if (node == item)
1270 				found_index = 0;
1271 			break;
1272 		}
1273 
1274 		node = indirect_to_ptr(node);
1275 		max_index = radix_tree_maxindex(node->height);
1276 		if (cur_index > max_index)
1277 			break;
1278 
1279 		cur_index = __locate(node, item, cur_index, &found_index);
1280 		rcu_read_unlock();
1281 		cond_resched();
1282 	} while (cur_index != 0 && cur_index <= max_index);
1283 
1284 	return found_index;
1285 }
1286 #else
1287 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1288 {
1289 	return -1;
1290 }
1291 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1292 
1293 /**
1294  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1295  *	@root		radix tree root
1296  */
1297 static inline void radix_tree_shrink(struct radix_tree_root *root)
1298 {
1299 	/* try to shrink tree height */
1300 	while (root->height > 0) {
1301 		struct radix_tree_node *to_free = root->rnode;
1302 		void *newptr;
1303 
1304 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1305 		to_free = indirect_to_ptr(to_free);
1306 
1307 		/*
1308 		 * The candidate node has more than one child, or its child
1309 		 * is not at the leftmost slot, we cannot shrink.
1310 		 */
1311 		if (to_free->count != 1)
1312 			break;
1313 		if (!to_free->slots[0])
1314 			break;
1315 
1316 		/*
1317 		 * We don't need rcu_assign_pointer(), since we are simply
1318 		 * moving the node from one part of the tree to another: if it
1319 		 * was safe to dereference the old pointer to it
1320 		 * (to_free->slots[0]), it will be safe to dereference the new
1321 		 * one (root->rnode) as far as dependent read barriers go.
1322 		 */
1323 		newptr = to_free->slots[0];
1324 		if (root->height > 1)
1325 			newptr = ptr_to_indirect(newptr);
1326 		root->rnode = newptr;
1327 		root->height--;
1328 
1329 		/*
1330 		 * We have a dilemma here. The node's slot[0] must not be
1331 		 * NULLed in case there are concurrent lookups expecting to
1332 		 * find the item. However if this was a bottom-level node,
1333 		 * then it may be subject to the slot pointer being visible
1334 		 * to callers dereferencing it. If item corresponding to
1335 		 * slot[0] is subsequently deleted, these callers would expect
1336 		 * their slot to become empty sooner or later.
1337 		 *
1338 		 * For example, lockless pagecache will look up a slot, deref
1339 		 * the page pointer, and if the page is 0 refcount it means it
1340 		 * was concurrently deleted from pagecache so try the deref
1341 		 * again. Fortunately there is already a requirement for logic
1342 		 * to retry the entire slot lookup -- the indirect pointer
1343 		 * problem (replacing direct root node with an indirect pointer
1344 		 * also results in a stale slot). So tag the slot as indirect
1345 		 * to force callers to retry.
1346 		 */
1347 		if (root->height == 0)
1348 			*((unsigned long *)&to_free->slots[0]) |=
1349 						RADIX_TREE_INDIRECT_PTR;
1350 
1351 		radix_tree_node_free(to_free);
1352 	}
1353 }
1354 
1355 /**
1356  *	radix_tree_delete    -    delete an item from a radix tree
1357  *	@root:		radix tree root
1358  *	@index:		index key
1359  *
1360  *	Remove the item at @index from the radix tree rooted at @root.
1361  *
1362  *	Returns the address of the deleted item, or NULL if it was not present.
1363  */
1364 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1365 {
1366 	/*
1367 	 * The radix tree path needs to be one longer than the maximum path
1368 	 * since the "list" is null terminated.
1369 	 */
1370 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1371 	struct radix_tree_node *slot = NULL;
1372 	struct radix_tree_node *to_free;
1373 	unsigned int height, shift;
1374 	int tag;
1375 	int offset;
1376 
1377 	height = root->height;
1378 	if (index > radix_tree_maxindex(height))
1379 		goto out;
1380 
1381 	slot = root->rnode;
1382 	if (height == 0) {
1383 		root_tag_clear_all(root);
1384 		root->rnode = NULL;
1385 		goto out;
1386 	}
1387 	slot = indirect_to_ptr(slot);
1388 
1389 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1390 	pathp->node = NULL;
1391 
1392 	do {
1393 		if (slot == NULL)
1394 			goto out;
1395 
1396 		pathp++;
1397 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1398 		pathp->offset = offset;
1399 		pathp->node = slot;
1400 		slot = slot->slots[offset];
1401 		shift -= RADIX_TREE_MAP_SHIFT;
1402 		height--;
1403 	} while (height > 0);
1404 
1405 	if (slot == NULL)
1406 		goto out;
1407 
1408 	/*
1409 	 * Clear all tags associated with the just-deleted item
1410 	 */
1411 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1412 		if (tag_get(pathp->node, tag, pathp->offset))
1413 			radix_tree_tag_clear(root, index, tag);
1414 	}
1415 
1416 	to_free = NULL;
1417 	/* Now free the nodes we do not need anymore */
1418 	while (pathp->node) {
1419 		pathp->node->slots[pathp->offset] = NULL;
1420 		pathp->node->count--;
1421 		/*
1422 		 * Queue the node for deferred freeing after the
1423 		 * last reference to it disappears (set NULL, above).
1424 		 */
1425 		if (to_free)
1426 			radix_tree_node_free(to_free);
1427 
1428 		if (pathp->node->count) {
1429 			if (pathp->node == indirect_to_ptr(root->rnode))
1430 				radix_tree_shrink(root);
1431 			goto out;
1432 		}
1433 
1434 		/* Node with zero slots in use so free it */
1435 		to_free = pathp->node;
1436 		pathp--;
1437 
1438 	}
1439 	root_tag_clear_all(root);
1440 	root->height = 0;
1441 	root->rnode = NULL;
1442 	if (to_free)
1443 		radix_tree_node_free(to_free);
1444 
1445 out:
1446 	return slot;
1447 }
1448 EXPORT_SYMBOL(radix_tree_delete);
1449 
1450 /**
1451  *	radix_tree_tagged - test whether any items in the tree are tagged
1452  *	@root:		radix tree root
1453  *	@tag:		tag to test
1454  */
1455 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1456 {
1457 	return root_tag_get(root, tag);
1458 }
1459 EXPORT_SYMBOL(radix_tree_tagged);
1460 
1461 static void
1462 radix_tree_node_ctor(void *node)
1463 {
1464 	memset(node, 0, sizeof(struct radix_tree_node));
1465 }
1466 
1467 static __init unsigned long __maxindex(unsigned int height)
1468 {
1469 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1470 	int shift = RADIX_TREE_INDEX_BITS - width;
1471 
1472 	if (shift < 0)
1473 		return ~0UL;
1474 	if (shift >= BITS_PER_LONG)
1475 		return 0UL;
1476 	return ~0UL >> shift;
1477 }
1478 
1479 static __init void radix_tree_init_maxindex(void)
1480 {
1481 	unsigned int i;
1482 
1483 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1484 		height_to_maxindex[i] = __maxindex(i);
1485 }
1486 
1487 static int radix_tree_callback(struct notifier_block *nfb,
1488                             unsigned long action,
1489                             void *hcpu)
1490 {
1491        int cpu = (long)hcpu;
1492        struct radix_tree_preload *rtp;
1493 
1494        /* Free per-cpu pool of perloaded nodes */
1495        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1496                rtp = &per_cpu(radix_tree_preloads, cpu);
1497                while (rtp->nr) {
1498                        kmem_cache_free(radix_tree_node_cachep,
1499                                        rtp->nodes[rtp->nr-1]);
1500                        rtp->nodes[rtp->nr-1] = NULL;
1501                        rtp->nr--;
1502                }
1503        }
1504        return NOTIFY_OK;
1505 }
1506 
1507 void __init radix_tree_init(void)
1508 {
1509 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1510 			sizeof(struct radix_tree_node), 0,
1511 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1512 			radix_tree_node_ctor);
1513 	radix_tree_init_maxindex();
1514 	hotcpu_notifier(radix_tree_callback, 0);
1515 }
1516