1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/errno.h> 27 #include <linux/init.h> 28 #include <linux/kernel.h> 29 #include <linux/export.h> 30 #include <linux/radix-tree.h> 31 #include <linux/percpu.h> 32 #include <linux/slab.h> 33 #include <linux/kmemleak.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline struct radix_tree_node *entry_to_node(void *ptr) 73 { 74 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE); 75 } 76 77 static inline void *node_to_entry(void *ptr) 78 { 79 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 80 } 81 82 #define RADIX_TREE_RETRY node_to_entry(NULL) 83 84 #ifdef CONFIG_RADIX_TREE_MULTIORDER 85 /* Sibling slots point directly to another slot in the same node */ 86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 87 { 88 void **ptr = node; 89 return (parent->slots <= ptr) && 90 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 91 } 92 #else 93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 94 { 95 return false; 96 } 97 #endif 98 99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 100 void **slot) 101 { 102 return slot - parent->slots; 103 } 104 105 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 106 struct radix_tree_node **nodep, unsigned long index) 107 { 108 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 109 void **entry = rcu_dereference_raw(parent->slots[offset]); 110 111 #ifdef CONFIG_RADIX_TREE_MULTIORDER 112 if (radix_tree_is_internal_node(entry)) { 113 if (is_sibling_entry(parent, entry)) { 114 void **sibentry = (void **) entry_to_node(entry); 115 offset = get_slot_offset(parent, sibentry); 116 entry = rcu_dereference_raw(*sibentry); 117 } 118 } 119 #endif 120 121 *nodep = (void *)entry; 122 return offset; 123 } 124 125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 126 { 127 return root->gfp_mask & __GFP_BITS_MASK; 128 } 129 130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 131 int offset) 132 { 133 __set_bit(offset, node->tags[tag]); 134 } 135 136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 137 int offset) 138 { 139 __clear_bit(offset, node->tags[tag]); 140 } 141 142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 143 int offset) 144 { 145 return test_bit(offset, node->tags[tag]); 146 } 147 148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 149 { 150 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 154 { 155 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 156 } 157 158 static inline void root_tag_clear_all(struct radix_tree_root *root) 159 { 160 root->gfp_mask &= __GFP_BITS_MASK; 161 } 162 163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 164 { 165 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 166 } 167 168 static inline unsigned root_tags_get(struct radix_tree_root *root) 169 { 170 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 171 } 172 173 /* 174 * Returns 1 if any slot in the node has this tag set. 175 * Otherwise returns 0. 176 */ 177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 178 { 179 unsigned idx; 180 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 181 if (node->tags[tag][idx]) 182 return 1; 183 } 184 return 0; 185 } 186 187 /** 188 * radix_tree_find_next_bit - find the next set bit in a memory region 189 * 190 * @addr: The address to base the search on 191 * @size: The bitmap size in bits 192 * @offset: The bitnumber to start searching at 193 * 194 * Unrollable variant of find_next_bit() for constant size arrays. 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 196 * Returns next bit offset, or size if nothing found. 197 */ 198 static __always_inline unsigned long 199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag, 200 unsigned long offset) 201 { 202 const unsigned long *addr = node->tags[tag]; 203 204 if (offset < RADIX_TREE_MAP_SIZE) { 205 unsigned long tmp; 206 207 addr += offset / BITS_PER_LONG; 208 tmp = *addr >> (offset % BITS_PER_LONG); 209 if (tmp) 210 return __ffs(tmp) + offset; 211 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 212 while (offset < RADIX_TREE_MAP_SIZE) { 213 tmp = *++addr; 214 if (tmp) 215 return __ffs(tmp) + offset; 216 offset += BITS_PER_LONG; 217 } 218 } 219 return RADIX_TREE_MAP_SIZE; 220 } 221 222 static unsigned int iter_offset(const struct radix_tree_iter *iter) 223 { 224 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK; 225 } 226 227 /* 228 * The maximum index which can be stored in a radix tree 229 */ 230 static inline unsigned long shift_maxindex(unsigned int shift) 231 { 232 return (RADIX_TREE_MAP_SIZE << shift) - 1; 233 } 234 235 static inline unsigned long node_maxindex(struct radix_tree_node *node) 236 { 237 return shift_maxindex(node->shift); 238 } 239 240 #ifndef __KERNEL__ 241 static void dump_node(struct radix_tree_node *node, unsigned long index) 242 { 243 unsigned long i; 244 245 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n", 246 node, node->offset, index, index | node_maxindex(node), 247 node->parent, 248 node->tags[0][0], node->tags[1][0], node->tags[2][0], 249 node->shift, node->count, node->exceptional); 250 251 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 252 unsigned long first = index | (i << node->shift); 253 unsigned long last = first | ((1UL << node->shift) - 1); 254 void *entry = node->slots[i]; 255 if (!entry) 256 continue; 257 if (entry == RADIX_TREE_RETRY) { 258 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n", 259 i, first, last, node); 260 } else if (!radix_tree_is_internal_node(entry)) { 261 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n", 262 entry, i, first, last, node); 263 } else if (is_sibling_entry(node, entry)) { 264 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n", 265 entry, i, first, last, node, 266 *(void **)entry_to_node(entry)); 267 } else { 268 dump_node(entry_to_node(entry), first); 269 } 270 } 271 } 272 273 /* For debug */ 274 static void radix_tree_dump(struct radix_tree_root *root) 275 { 276 pr_debug("radix root: %p rnode %p tags %x\n", 277 root, root->rnode, 278 root->gfp_mask >> __GFP_BITS_SHIFT); 279 if (!radix_tree_is_internal_node(root->rnode)) 280 return; 281 dump_node(entry_to_node(root->rnode), 0); 282 } 283 #endif 284 285 /* 286 * This assumes that the caller has performed appropriate preallocation, and 287 * that the caller has pinned this thread of control to the current CPU. 288 */ 289 static struct radix_tree_node * 290 radix_tree_node_alloc(struct radix_tree_root *root, 291 struct radix_tree_node *parent, 292 unsigned int shift, unsigned int offset, 293 unsigned int count, unsigned int exceptional) 294 { 295 struct radix_tree_node *ret = NULL; 296 gfp_t gfp_mask = root_gfp_mask(root); 297 298 /* 299 * Preload code isn't irq safe and it doesn't make sense to use 300 * preloading during an interrupt anyway as all the allocations have 301 * to be atomic. So just do normal allocation when in interrupt. 302 */ 303 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 304 struct radix_tree_preload *rtp; 305 306 /* 307 * Even if the caller has preloaded, try to allocate from the 308 * cache first for the new node to get accounted to the memory 309 * cgroup. 310 */ 311 ret = kmem_cache_alloc(radix_tree_node_cachep, 312 gfp_mask | __GFP_NOWARN); 313 if (ret) 314 goto out; 315 316 /* 317 * Provided the caller has preloaded here, we will always 318 * succeed in getting a node here (and never reach 319 * kmem_cache_alloc) 320 */ 321 rtp = this_cpu_ptr(&radix_tree_preloads); 322 if (rtp->nr) { 323 ret = rtp->nodes; 324 rtp->nodes = ret->private_data; 325 ret->private_data = NULL; 326 rtp->nr--; 327 } 328 /* 329 * Update the allocation stack trace as this is more useful 330 * for debugging. 331 */ 332 kmemleak_update_trace(ret); 333 goto out; 334 } 335 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 336 out: 337 BUG_ON(radix_tree_is_internal_node(ret)); 338 if (ret) { 339 ret->parent = parent; 340 ret->shift = shift; 341 ret->offset = offset; 342 ret->count = count; 343 ret->exceptional = exceptional; 344 } 345 return ret; 346 } 347 348 static void radix_tree_node_rcu_free(struct rcu_head *head) 349 { 350 struct radix_tree_node *node = 351 container_of(head, struct radix_tree_node, rcu_head); 352 353 /* 354 * Must only free zeroed nodes into the slab. We can be left with 355 * non-NULL entries by radix_tree_free_nodes, so clear the entries 356 * and tags here. 357 */ 358 memset(node->slots, 0, sizeof(node->slots)); 359 memset(node->tags, 0, sizeof(node->tags)); 360 INIT_LIST_HEAD(&node->private_list); 361 362 kmem_cache_free(radix_tree_node_cachep, node); 363 } 364 365 static inline void 366 radix_tree_node_free(struct radix_tree_node *node) 367 { 368 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 369 } 370 371 /* 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to 373 * ensure that the addition of a single element in the tree cannot fail. On 374 * success, return zero, with preemption disabled. On error, return -ENOMEM 375 * with preemption not disabled. 376 * 377 * To make use of this facility, the radix tree must be initialised without 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 379 */ 380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr) 381 { 382 struct radix_tree_preload *rtp; 383 struct radix_tree_node *node; 384 int ret = -ENOMEM; 385 386 /* 387 * Nodes preloaded by one cgroup can be be used by another cgroup, so 388 * they should never be accounted to any particular memory cgroup. 389 */ 390 gfp_mask &= ~__GFP_ACCOUNT; 391 392 preempt_disable(); 393 rtp = this_cpu_ptr(&radix_tree_preloads); 394 while (rtp->nr < nr) { 395 preempt_enable(); 396 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 397 if (node == NULL) 398 goto out; 399 preempt_disable(); 400 rtp = this_cpu_ptr(&radix_tree_preloads); 401 if (rtp->nr < nr) { 402 node->private_data = rtp->nodes; 403 rtp->nodes = node; 404 rtp->nr++; 405 } else { 406 kmem_cache_free(radix_tree_node_cachep, node); 407 } 408 } 409 ret = 0; 410 out: 411 return ret; 412 } 413 414 /* 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to 416 * ensure that the addition of a single element in the tree cannot fail. On 417 * success, return zero, with preemption disabled. On error, return -ENOMEM 418 * with preemption not disabled. 419 * 420 * To make use of this facility, the radix tree must be initialised without 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 422 */ 423 int radix_tree_preload(gfp_t gfp_mask) 424 { 425 /* Warn on non-sensical use... */ 426 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 427 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 428 } 429 EXPORT_SYMBOL(radix_tree_preload); 430 431 /* 432 * The same as above function, except we don't guarantee preloading happens. 433 * We do it, if we decide it helps. On success, return zero with preemption 434 * disabled. On error, return -ENOMEM with preemption not disabled. 435 */ 436 int radix_tree_maybe_preload(gfp_t gfp_mask) 437 { 438 if (gfpflags_allow_blocking(gfp_mask)) 439 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 440 /* Preloading doesn't help anything with this gfp mask, skip it */ 441 preempt_disable(); 442 return 0; 443 } 444 EXPORT_SYMBOL(radix_tree_maybe_preload); 445 446 #ifdef CONFIG_RADIX_TREE_MULTIORDER 447 /* 448 * Preload with enough objects to ensure that we can split a single entry 449 * of order @old_order into many entries of size @new_order 450 */ 451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order, 452 gfp_t gfp_mask) 453 { 454 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT); 455 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) - 456 (new_order / RADIX_TREE_MAP_SHIFT); 457 unsigned nr = 0; 458 459 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 460 BUG_ON(new_order >= old_order); 461 462 while (layers--) 463 nr = nr * RADIX_TREE_MAP_SIZE + 1; 464 return __radix_tree_preload(gfp_mask, top * nr); 465 } 466 #endif 467 468 /* 469 * The same as function above, but preload number of nodes required to insert 470 * (1 << order) continuous naturally-aligned elements. 471 */ 472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 473 { 474 unsigned long nr_subtrees; 475 int nr_nodes, subtree_height; 476 477 /* Preloading doesn't help anything with this gfp mask, skip it */ 478 if (!gfpflags_allow_blocking(gfp_mask)) { 479 preempt_disable(); 480 return 0; 481 } 482 483 /* 484 * Calculate number and height of fully populated subtrees it takes to 485 * store (1 << order) elements. 486 */ 487 nr_subtrees = 1 << order; 488 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 489 subtree_height++) 490 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 491 492 /* 493 * The worst case is zero height tree with a single item at index 0 and 494 * then inserting items starting at ULONG_MAX - (1 << order). 495 * 496 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 497 * 0-index item. 498 */ 499 nr_nodes = RADIX_TREE_MAX_PATH; 500 501 /* Plus branch to fully populated subtrees. */ 502 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 503 504 /* Root node is shared. */ 505 nr_nodes--; 506 507 /* Plus nodes required to build subtrees. */ 508 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 509 510 return __radix_tree_preload(gfp_mask, nr_nodes); 511 } 512 513 static unsigned radix_tree_load_root(struct radix_tree_root *root, 514 struct radix_tree_node **nodep, unsigned long *maxindex) 515 { 516 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 517 518 *nodep = node; 519 520 if (likely(radix_tree_is_internal_node(node))) { 521 node = entry_to_node(node); 522 *maxindex = node_maxindex(node); 523 return node->shift + RADIX_TREE_MAP_SHIFT; 524 } 525 526 *maxindex = 0; 527 return 0; 528 } 529 530 /* 531 * Extend a radix tree so it can store key @index. 532 */ 533 static int radix_tree_extend(struct radix_tree_root *root, 534 unsigned long index, unsigned int shift) 535 { 536 struct radix_tree_node *slot; 537 unsigned int maxshift; 538 int tag; 539 540 /* Figure out what the shift should be. */ 541 maxshift = shift; 542 while (index > shift_maxindex(maxshift)) 543 maxshift += RADIX_TREE_MAP_SHIFT; 544 545 slot = root->rnode; 546 if (!slot) 547 goto out; 548 549 do { 550 struct radix_tree_node *node = radix_tree_node_alloc(root, 551 NULL, shift, 0, 1, 0); 552 if (!node) 553 return -ENOMEM; 554 555 /* Propagate the aggregated tag info into the new root */ 556 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 557 if (root_tag_get(root, tag)) 558 tag_set(node, tag, 0); 559 } 560 561 BUG_ON(shift > BITS_PER_LONG); 562 if (radix_tree_is_internal_node(slot)) { 563 entry_to_node(slot)->parent = node; 564 } else if (radix_tree_exceptional_entry(slot)) { 565 /* Moving an exceptional root->rnode to a node */ 566 node->exceptional = 1; 567 } 568 node->slots[0] = slot; 569 slot = node_to_entry(node); 570 rcu_assign_pointer(root->rnode, slot); 571 shift += RADIX_TREE_MAP_SHIFT; 572 } while (shift <= maxshift); 573 out: 574 return maxshift + RADIX_TREE_MAP_SHIFT; 575 } 576 577 /** 578 * radix_tree_shrink - shrink radix tree to minimum height 579 * @root radix tree root 580 */ 581 static inline void radix_tree_shrink(struct radix_tree_root *root, 582 radix_tree_update_node_t update_node, 583 void *private) 584 { 585 for (;;) { 586 struct radix_tree_node *node = root->rnode; 587 struct radix_tree_node *child; 588 589 if (!radix_tree_is_internal_node(node)) 590 break; 591 node = entry_to_node(node); 592 593 /* 594 * The candidate node has more than one child, or its child 595 * is not at the leftmost slot, or the child is a multiorder 596 * entry, we cannot shrink. 597 */ 598 if (node->count != 1) 599 break; 600 child = node->slots[0]; 601 if (!child) 602 break; 603 if (!radix_tree_is_internal_node(child) && node->shift) 604 break; 605 606 if (radix_tree_is_internal_node(child)) 607 entry_to_node(child)->parent = NULL; 608 609 /* 610 * We don't need rcu_assign_pointer(), since we are simply 611 * moving the node from one part of the tree to another: if it 612 * was safe to dereference the old pointer to it 613 * (node->slots[0]), it will be safe to dereference the new 614 * one (root->rnode) as far as dependent read barriers go. 615 */ 616 root->rnode = child; 617 618 /* 619 * We have a dilemma here. The node's slot[0] must not be 620 * NULLed in case there are concurrent lookups expecting to 621 * find the item. However if this was a bottom-level node, 622 * then it may be subject to the slot pointer being visible 623 * to callers dereferencing it. If item corresponding to 624 * slot[0] is subsequently deleted, these callers would expect 625 * their slot to become empty sooner or later. 626 * 627 * For example, lockless pagecache will look up a slot, deref 628 * the page pointer, and if the page has 0 refcount it means it 629 * was concurrently deleted from pagecache so try the deref 630 * again. Fortunately there is already a requirement for logic 631 * to retry the entire slot lookup -- the indirect pointer 632 * problem (replacing direct root node with an indirect pointer 633 * also results in a stale slot). So tag the slot as indirect 634 * to force callers to retry. 635 */ 636 node->count = 0; 637 if (!radix_tree_is_internal_node(child)) { 638 node->slots[0] = RADIX_TREE_RETRY; 639 if (update_node) 640 update_node(node, private); 641 } 642 643 radix_tree_node_free(node); 644 } 645 } 646 647 static void delete_node(struct radix_tree_root *root, 648 struct radix_tree_node *node, 649 radix_tree_update_node_t update_node, void *private) 650 { 651 do { 652 struct radix_tree_node *parent; 653 654 if (node->count) { 655 if (node == entry_to_node(root->rnode)) 656 radix_tree_shrink(root, update_node, private); 657 return; 658 } 659 660 parent = node->parent; 661 if (parent) { 662 parent->slots[node->offset] = NULL; 663 parent->count--; 664 } else { 665 root_tag_clear_all(root); 666 root->rnode = NULL; 667 } 668 669 radix_tree_node_free(node); 670 671 node = parent; 672 } while (node); 673 } 674 675 /** 676 * __radix_tree_create - create a slot in a radix tree 677 * @root: radix tree root 678 * @index: index key 679 * @order: index occupies 2^order aligned slots 680 * @nodep: returns node 681 * @slotp: returns slot 682 * 683 * Create, if necessary, and return the node and slot for an item 684 * at position @index in the radix tree @root. 685 * 686 * Until there is more than one item in the tree, no nodes are 687 * allocated and @root->rnode is used as a direct slot instead of 688 * pointing to a node, in which case *@nodep will be NULL. 689 * 690 * Returns -ENOMEM, or 0 for success. 691 */ 692 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 693 unsigned order, struct radix_tree_node **nodep, 694 void ***slotp) 695 { 696 struct radix_tree_node *node = NULL, *child; 697 void **slot = (void **)&root->rnode; 698 unsigned long maxindex; 699 unsigned int shift, offset = 0; 700 unsigned long max = index | ((1UL << order) - 1); 701 702 shift = radix_tree_load_root(root, &child, &maxindex); 703 704 /* Make sure the tree is high enough. */ 705 if (order > 0 && max == ((1UL << order) - 1)) 706 max++; 707 if (max > maxindex) { 708 int error = radix_tree_extend(root, max, shift); 709 if (error < 0) 710 return error; 711 shift = error; 712 child = root->rnode; 713 } 714 715 while (shift > order) { 716 shift -= RADIX_TREE_MAP_SHIFT; 717 if (child == NULL) { 718 /* Have to add a child node. */ 719 child = radix_tree_node_alloc(root, node, shift, 720 offset, 0, 0); 721 if (!child) 722 return -ENOMEM; 723 rcu_assign_pointer(*slot, node_to_entry(child)); 724 if (node) 725 node->count++; 726 } else if (!radix_tree_is_internal_node(child)) 727 break; 728 729 /* Go a level down */ 730 node = entry_to_node(child); 731 offset = radix_tree_descend(node, &child, index); 732 slot = &node->slots[offset]; 733 } 734 735 if (nodep) 736 *nodep = node; 737 if (slotp) 738 *slotp = slot; 739 return 0; 740 } 741 742 #ifdef CONFIG_RADIX_TREE_MULTIORDER 743 /* 744 * Free any nodes below this node. The tree is presumed to not need 745 * shrinking, and any user data in the tree is presumed to not need a 746 * destructor called on it. If we need to add a destructor, we can 747 * add that functionality later. Note that we may not clear tags or 748 * slots from the tree as an RCU walker may still have a pointer into 749 * this subtree. We could replace the entries with RADIX_TREE_RETRY, 750 * but we'll still have to clear those in rcu_free. 751 */ 752 static void radix_tree_free_nodes(struct radix_tree_node *node) 753 { 754 unsigned offset = 0; 755 struct radix_tree_node *child = entry_to_node(node); 756 757 for (;;) { 758 void *entry = child->slots[offset]; 759 if (radix_tree_is_internal_node(entry) && 760 !is_sibling_entry(child, entry)) { 761 child = entry_to_node(entry); 762 offset = 0; 763 continue; 764 } 765 offset++; 766 while (offset == RADIX_TREE_MAP_SIZE) { 767 struct radix_tree_node *old = child; 768 offset = child->offset + 1; 769 child = child->parent; 770 radix_tree_node_free(old); 771 if (old == entry_to_node(node)) 772 return; 773 } 774 } 775 } 776 777 static inline int insert_entries(struct radix_tree_node *node, void **slot, 778 void *item, unsigned order, bool replace) 779 { 780 struct radix_tree_node *child; 781 unsigned i, n, tag, offset, tags = 0; 782 783 if (node) { 784 if (order > node->shift) 785 n = 1 << (order - node->shift); 786 else 787 n = 1; 788 offset = get_slot_offset(node, slot); 789 } else { 790 n = 1; 791 offset = 0; 792 } 793 794 if (n > 1) { 795 offset = offset & ~(n - 1); 796 slot = &node->slots[offset]; 797 } 798 child = node_to_entry(slot); 799 800 for (i = 0; i < n; i++) { 801 if (slot[i]) { 802 if (replace) { 803 node->count--; 804 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 805 if (tag_get(node, tag, offset + i)) 806 tags |= 1 << tag; 807 } else 808 return -EEXIST; 809 } 810 } 811 812 for (i = 0; i < n; i++) { 813 struct radix_tree_node *old = slot[i]; 814 if (i) { 815 rcu_assign_pointer(slot[i], child); 816 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 817 if (tags & (1 << tag)) 818 tag_clear(node, tag, offset + i); 819 } else { 820 rcu_assign_pointer(slot[i], item); 821 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 822 if (tags & (1 << tag)) 823 tag_set(node, tag, offset); 824 } 825 if (radix_tree_is_internal_node(old) && 826 !is_sibling_entry(node, old) && 827 (old != RADIX_TREE_RETRY)) 828 radix_tree_free_nodes(old); 829 if (radix_tree_exceptional_entry(old)) 830 node->exceptional--; 831 } 832 if (node) { 833 node->count += n; 834 if (radix_tree_exceptional_entry(item)) 835 node->exceptional += n; 836 } 837 return n; 838 } 839 #else 840 static inline int insert_entries(struct radix_tree_node *node, void **slot, 841 void *item, unsigned order, bool replace) 842 { 843 if (*slot) 844 return -EEXIST; 845 rcu_assign_pointer(*slot, item); 846 if (node) { 847 node->count++; 848 if (radix_tree_exceptional_entry(item)) 849 node->exceptional++; 850 } 851 return 1; 852 } 853 #endif 854 855 /** 856 * __radix_tree_insert - insert into a radix tree 857 * @root: radix tree root 858 * @index: index key 859 * @order: key covers the 2^order indices around index 860 * @item: item to insert 861 * 862 * Insert an item into the radix tree at position @index. 863 */ 864 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 865 unsigned order, void *item) 866 { 867 struct radix_tree_node *node; 868 void **slot; 869 int error; 870 871 BUG_ON(radix_tree_is_internal_node(item)); 872 873 error = __radix_tree_create(root, index, order, &node, &slot); 874 if (error) 875 return error; 876 877 error = insert_entries(node, slot, item, order, false); 878 if (error < 0) 879 return error; 880 881 if (node) { 882 unsigned offset = get_slot_offset(node, slot); 883 BUG_ON(tag_get(node, 0, offset)); 884 BUG_ON(tag_get(node, 1, offset)); 885 BUG_ON(tag_get(node, 2, offset)); 886 } else { 887 BUG_ON(root_tags_get(root)); 888 } 889 890 return 0; 891 } 892 EXPORT_SYMBOL(__radix_tree_insert); 893 894 /** 895 * __radix_tree_lookup - lookup an item in a radix tree 896 * @root: radix tree root 897 * @index: index key 898 * @nodep: returns node 899 * @slotp: returns slot 900 * 901 * Lookup and return the item at position @index in the radix 902 * tree @root. 903 * 904 * Until there is more than one item in the tree, no nodes are 905 * allocated and @root->rnode is used as a direct slot instead of 906 * pointing to a node, in which case *@nodep will be NULL. 907 */ 908 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 909 struct radix_tree_node **nodep, void ***slotp) 910 { 911 struct radix_tree_node *node, *parent; 912 unsigned long maxindex; 913 void **slot; 914 915 restart: 916 parent = NULL; 917 slot = (void **)&root->rnode; 918 radix_tree_load_root(root, &node, &maxindex); 919 if (index > maxindex) 920 return NULL; 921 922 while (radix_tree_is_internal_node(node)) { 923 unsigned offset; 924 925 if (node == RADIX_TREE_RETRY) 926 goto restart; 927 parent = entry_to_node(node); 928 offset = radix_tree_descend(parent, &node, index); 929 slot = parent->slots + offset; 930 } 931 932 if (nodep) 933 *nodep = parent; 934 if (slotp) 935 *slotp = slot; 936 return node; 937 } 938 939 /** 940 * radix_tree_lookup_slot - lookup a slot in a radix tree 941 * @root: radix tree root 942 * @index: index key 943 * 944 * Returns: the slot corresponding to the position @index in the 945 * radix tree @root. This is useful for update-if-exists operations. 946 * 947 * This function can be called under rcu_read_lock iff the slot is not 948 * modified by radix_tree_replace_slot, otherwise it must be called 949 * exclusive from other writers. Any dereference of the slot must be done 950 * using radix_tree_deref_slot. 951 */ 952 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 953 { 954 void **slot; 955 956 if (!__radix_tree_lookup(root, index, NULL, &slot)) 957 return NULL; 958 return slot; 959 } 960 EXPORT_SYMBOL(radix_tree_lookup_slot); 961 962 /** 963 * radix_tree_lookup - perform lookup operation on a radix tree 964 * @root: radix tree root 965 * @index: index key 966 * 967 * Lookup the item at the position @index in the radix tree @root. 968 * 969 * This function can be called under rcu_read_lock, however the caller 970 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 971 * them safely). No RCU barriers are required to access or modify the 972 * returned item, however. 973 */ 974 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 975 { 976 return __radix_tree_lookup(root, index, NULL, NULL); 977 } 978 EXPORT_SYMBOL(radix_tree_lookup); 979 980 static inline int slot_count(struct radix_tree_node *node, 981 void **slot) 982 { 983 int n = 1; 984 #ifdef CONFIG_RADIX_TREE_MULTIORDER 985 void *ptr = node_to_entry(slot); 986 unsigned offset = get_slot_offset(node, slot); 987 int i; 988 989 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 990 if (node->slots[offset + i] != ptr) 991 break; 992 n++; 993 } 994 #endif 995 return n; 996 } 997 998 static void replace_slot(struct radix_tree_root *root, 999 struct radix_tree_node *node, 1000 void **slot, void *item, 1001 bool warn_typeswitch) 1002 { 1003 void *old = rcu_dereference_raw(*slot); 1004 int count, exceptional; 1005 1006 WARN_ON_ONCE(radix_tree_is_internal_node(item)); 1007 1008 count = !!item - !!old; 1009 exceptional = !!radix_tree_exceptional_entry(item) - 1010 !!radix_tree_exceptional_entry(old); 1011 1012 WARN_ON_ONCE(warn_typeswitch && (count || exceptional)); 1013 1014 if (node) { 1015 node->count += count; 1016 if (exceptional) { 1017 exceptional *= slot_count(node, slot); 1018 node->exceptional += exceptional; 1019 } 1020 } 1021 1022 rcu_assign_pointer(*slot, item); 1023 } 1024 1025 static inline void delete_sibling_entries(struct radix_tree_node *node, 1026 void **slot) 1027 { 1028 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1029 bool exceptional = radix_tree_exceptional_entry(*slot); 1030 void *ptr = node_to_entry(slot); 1031 unsigned offset = get_slot_offset(node, slot); 1032 int i; 1033 1034 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1035 if (node->slots[offset + i] != ptr) 1036 break; 1037 node->slots[offset + i] = NULL; 1038 node->count--; 1039 if (exceptional) 1040 node->exceptional--; 1041 } 1042 #endif 1043 } 1044 1045 /** 1046 * __radix_tree_replace - replace item in a slot 1047 * @root: radix tree root 1048 * @node: pointer to tree node 1049 * @slot: pointer to slot in @node 1050 * @item: new item to store in the slot. 1051 * @update_node: callback for changing leaf nodes 1052 * @private: private data to pass to @update_node 1053 * 1054 * For use with __radix_tree_lookup(). Caller must hold tree write locked 1055 * across slot lookup and replacement. 1056 */ 1057 void __radix_tree_replace(struct radix_tree_root *root, 1058 struct radix_tree_node *node, 1059 void **slot, void *item, 1060 radix_tree_update_node_t update_node, void *private) 1061 { 1062 if (!item) 1063 delete_sibling_entries(node, slot); 1064 /* 1065 * This function supports replacing exceptional entries and 1066 * deleting entries, but that needs accounting against the 1067 * node unless the slot is root->rnode. 1068 */ 1069 replace_slot(root, node, slot, item, 1070 !node && slot != (void **)&root->rnode); 1071 1072 if (!node) 1073 return; 1074 1075 if (update_node) 1076 update_node(node, private); 1077 1078 delete_node(root, node, update_node, private); 1079 } 1080 1081 /** 1082 * radix_tree_replace_slot - replace item in a slot 1083 * @root: radix tree root 1084 * @slot: pointer to slot 1085 * @item: new item to store in the slot. 1086 * 1087 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(), 1088 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked 1089 * across slot lookup and replacement. 1090 * 1091 * NOTE: This cannot be used to switch between non-entries (empty slots), 1092 * regular entries, and exceptional entries, as that requires accounting 1093 * inside the radix tree node. When switching from one type of entry or 1094 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or 1095 * radix_tree_iter_replace(). 1096 */ 1097 void radix_tree_replace_slot(struct radix_tree_root *root, 1098 void **slot, void *item) 1099 { 1100 replace_slot(root, NULL, slot, item, true); 1101 } 1102 1103 /** 1104 * radix_tree_iter_replace - replace item in a slot 1105 * @root: radix tree root 1106 * @slot: pointer to slot 1107 * @item: new item to store in the slot. 1108 * 1109 * For use with radix_tree_split() and radix_tree_for_each_slot(). 1110 * Caller must hold tree write locked across split and replacement. 1111 */ 1112 void radix_tree_iter_replace(struct radix_tree_root *root, 1113 const struct radix_tree_iter *iter, void **slot, void *item) 1114 { 1115 __radix_tree_replace(root, iter->node, slot, item, NULL, NULL); 1116 } 1117 1118 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1119 /** 1120 * radix_tree_join - replace multiple entries with one multiorder entry 1121 * @root: radix tree root 1122 * @index: an index inside the new entry 1123 * @order: order of the new entry 1124 * @item: new entry 1125 * 1126 * Call this function to replace several entries with one larger entry. 1127 * The existing entries are presumed to not need freeing as a result of 1128 * this call. 1129 * 1130 * The replacement entry will have all the tags set on it that were set 1131 * on any of the entries it is replacing. 1132 */ 1133 int radix_tree_join(struct radix_tree_root *root, unsigned long index, 1134 unsigned order, void *item) 1135 { 1136 struct radix_tree_node *node; 1137 void **slot; 1138 int error; 1139 1140 BUG_ON(radix_tree_is_internal_node(item)); 1141 1142 error = __radix_tree_create(root, index, order, &node, &slot); 1143 if (!error) 1144 error = insert_entries(node, slot, item, order, true); 1145 if (error > 0) 1146 error = 0; 1147 1148 return error; 1149 } 1150 1151 /** 1152 * radix_tree_split - Split an entry into smaller entries 1153 * @root: radix tree root 1154 * @index: An index within the large entry 1155 * @order: Order of new entries 1156 * 1157 * Call this function as the first step in replacing a multiorder entry 1158 * with several entries of lower order. After this function returns, 1159 * loop over the relevant portion of the tree using radix_tree_for_each_slot() 1160 * and call radix_tree_iter_replace() to set up each new entry. 1161 * 1162 * The tags from this entry are replicated to all the new entries. 1163 * 1164 * The radix tree should be locked against modification during the entire 1165 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which 1166 * should prompt RCU walkers to restart the lookup from the root. 1167 */ 1168 int radix_tree_split(struct radix_tree_root *root, unsigned long index, 1169 unsigned order) 1170 { 1171 struct radix_tree_node *parent, *node, *child; 1172 void **slot; 1173 unsigned int offset, end; 1174 unsigned n, tag, tags = 0; 1175 1176 if (!__radix_tree_lookup(root, index, &parent, &slot)) 1177 return -ENOENT; 1178 if (!parent) 1179 return -ENOENT; 1180 1181 offset = get_slot_offset(parent, slot); 1182 1183 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1184 if (tag_get(parent, tag, offset)) 1185 tags |= 1 << tag; 1186 1187 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) { 1188 if (!is_sibling_entry(parent, parent->slots[end])) 1189 break; 1190 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1191 if (tags & (1 << tag)) 1192 tag_set(parent, tag, end); 1193 /* rcu_assign_pointer ensures tags are set before RETRY */ 1194 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY); 1195 } 1196 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY); 1197 parent->exceptional -= (end - offset); 1198 1199 if (order == parent->shift) 1200 return 0; 1201 if (order > parent->shift) { 1202 while (offset < end) 1203 offset += insert_entries(parent, &parent->slots[offset], 1204 RADIX_TREE_RETRY, order, true); 1205 return 0; 1206 } 1207 1208 node = parent; 1209 1210 for (;;) { 1211 if (node->shift > order) { 1212 child = radix_tree_node_alloc(root, node, 1213 node->shift - RADIX_TREE_MAP_SHIFT, 1214 offset, 0, 0); 1215 if (!child) 1216 goto nomem; 1217 if (node != parent) { 1218 node->count++; 1219 node->slots[offset] = node_to_entry(child); 1220 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1221 if (tags & (1 << tag)) 1222 tag_set(node, tag, offset); 1223 } 1224 1225 node = child; 1226 offset = 0; 1227 continue; 1228 } 1229 1230 n = insert_entries(node, &node->slots[offset], 1231 RADIX_TREE_RETRY, order, false); 1232 BUG_ON(n > RADIX_TREE_MAP_SIZE); 1233 1234 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1235 if (tags & (1 << tag)) 1236 tag_set(node, tag, offset); 1237 offset += n; 1238 1239 while (offset == RADIX_TREE_MAP_SIZE) { 1240 if (node == parent) 1241 break; 1242 offset = node->offset; 1243 child = node; 1244 node = node->parent; 1245 rcu_assign_pointer(node->slots[offset], 1246 node_to_entry(child)); 1247 offset++; 1248 } 1249 if ((node == parent) && (offset == end)) 1250 return 0; 1251 } 1252 1253 nomem: 1254 /* Shouldn't happen; did user forget to preload? */ 1255 /* TODO: free all the allocated nodes */ 1256 WARN_ON(1); 1257 return -ENOMEM; 1258 } 1259 #endif 1260 1261 /** 1262 * radix_tree_tag_set - set a tag on a radix tree node 1263 * @root: radix tree root 1264 * @index: index key 1265 * @tag: tag index 1266 * 1267 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 1268 * corresponding to @index in the radix tree. From 1269 * the root all the way down to the leaf node. 1270 * 1271 * Returns the address of the tagged item. Setting a tag on a not-present 1272 * item is a bug. 1273 */ 1274 void *radix_tree_tag_set(struct radix_tree_root *root, 1275 unsigned long index, unsigned int tag) 1276 { 1277 struct radix_tree_node *node, *parent; 1278 unsigned long maxindex; 1279 1280 radix_tree_load_root(root, &node, &maxindex); 1281 BUG_ON(index > maxindex); 1282 1283 while (radix_tree_is_internal_node(node)) { 1284 unsigned offset; 1285 1286 parent = entry_to_node(node); 1287 offset = radix_tree_descend(parent, &node, index); 1288 BUG_ON(!node); 1289 1290 if (!tag_get(parent, tag, offset)) 1291 tag_set(parent, tag, offset); 1292 } 1293 1294 /* set the root's tag bit */ 1295 if (!root_tag_get(root, tag)) 1296 root_tag_set(root, tag); 1297 1298 return node; 1299 } 1300 EXPORT_SYMBOL(radix_tree_tag_set); 1301 1302 static void node_tag_clear(struct radix_tree_root *root, 1303 struct radix_tree_node *node, 1304 unsigned int tag, unsigned int offset) 1305 { 1306 while (node) { 1307 if (!tag_get(node, tag, offset)) 1308 return; 1309 tag_clear(node, tag, offset); 1310 if (any_tag_set(node, tag)) 1311 return; 1312 1313 offset = node->offset; 1314 node = node->parent; 1315 } 1316 1317 /* clear the root's tag bit */ 1318 if (root_tag_get(root, tag)) 1319 root_tag_clear(root, tag); 1320 } 1321 1322 static void node_tag_set(struct radix_tree_root *root, 1323 struct radix_tree_node *node, 1324 unsigned int tag, unsigned int offset) 1325 { 1326 while (node) { 1327 if (tag_get(node, tag, offset)) 1328 return; 1329 tag_set(node, tag, offset); 1330 offset = node->offset; 1331 node = node->parent; 1332 } 1333 1334 if (!root_tag_get(root, tag)) 1335 root_tag_set(root, tag); 1336 } 1337 1338 /** 1339 * radix_tree_iter_tag_set - set a tag on the current iterator entry 1340 * @root: radix tree root 1341 * @iter: iterator state 1342 * @tag: tag to set 1343 */ 1344 void radix_tree_iter_tag_set(struct radix_tree_root *root, 1345 const struct radix_tree_iter *iter, unsigned int tag) 1346 { 1347 node_tag_set(root, iter->node, tag, iter_offset(iter)); 1348 } 1349 1350 /** 1351 * radix_tree_tag_clear - clear a tag on a radix tree node 1352 * @root: radix tree root 1353 * @index: index key 1354 * @tag: tag index 1355 * 1356 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 1357 * corresponding to @index in the radix tree. If this causes 1358 * the leaf node to have no tags set then clear the tag in the 1359 * next-to-leaf node, etc. 1360 * 1361 * Returns the address of the tagged item on success, else NULL. ie: 1362 * has the same return value and semantics as radix_tree_lookup(). 1363 */ 1364 void *radix_tree_tag_clear(struct radix_tree_root *root, 1365 unsigned long index, unsigned int tag) 1366 { 1367 struct radix_tree_node *node, *parent; 1368 unsigned long maxindex; 1369 int uninitialized_var(offset); 1370 1371 radix_tree_load_root(root, &node, &maxindex); 1372 if (index > maxindex) 1373 return NULL; 1374 1375 parent = NULL; 1376 1377 while (radix_tree_is_internal_node(node)) { 1378 parent = entry_to_node(node); 1379 offset = radix_tree_descend(parent, &node, index); 1380 } 1381 1382 if (node) 1383 node_tag_clear(root, parent, tag, offset); 1384 1385 return node; 1386 } 1387 EXPORT_SYMBOL(radix_tree_tag_clear); 1388 1389 /** 1390 * radix_tree_tag_get - get a tag on a radix tree node 1391 * @root: radix tree root 1392 * @index: index key 1393 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 1394 * 1395 * Return values: 1396 * 1397 * 0: tag not present or not set 1398 * 1: tag set 1399 * 1400 * Note that the return value of this function may not be relied on, even if 1401 * the RCU lock is held, unless tag modification and node deletion are excluded 1402 * from concurrency. 1403 */ 1404 int radix_tree_tag_get(struct radix_tree_root *root, 1405 unsigned long index, unsigned int tag) 1406 { 1407 struct radix_tree_node *node, *parent; 1408 unsigned long maxindex; 1409 1410 if (!root_tag_get(root, tag)) 1411 return 0; 1412 1413 radix_tree_load_root(root, &node, &maxindex); 1414 if (index > maxindex) 1415 return 0; 1416 if (node == NULL) 1417 return 0; 1418 1419 while (radix_tree_is_internal_node(node)) { 1420 unsigned offset; 1421 1422 parent = entry_to_node(node); 1423 offset = radix_tree_descend(parent, &node, index); 1424 1425 if (!node) 1426 return 0; 1427 if (!tag_get(parent, tag, offset)) 1428 return 0; 1429 if (node == RADIX_TREE_RETRY) 1430 break; 1431 } 1432 1433 return 1; 1434 } 1435 EXPORT_SYMBOL(radix_tree_tag_get); 1436 1437 static inline void __set_iter_shift(struct radix_tree_iter *iter, 1438 unsigned int shift) 1439 { 1440 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1441 iter->shift = shift; 1442 #endif 1443 } 1444 1445 /* Construct iter->tags bit-mask from node->tags[tag] array */ 1446 static void set_iter_tags(struct radix_tree_iter *iter, 1447 struct radix_tree_node *node, unsigned offset, 1448 unsigned tag) 1449 { 1450 unsigned tag_long = offset / BITS_PER_LONG; 1451 unsigned tag_bit = offset % BITS_PER_LONG; 1452 1453 iter->tags = node->tags[tag][tag_long] >> tag_bit; 1454 1455 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 1456 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 1457 /* Pick tags from next element */ 1458 if (tag_bit) 1459 iter->tags |= node->tags[tag][tag_long + 1] << 1460 (BITS_PER_LONG - tag_bit); 1461 /* Clip chunk size, here only BITS_PER_LONG tags */ 1462 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG); 1463 } 1464 } 1465 1466 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1467 static void **skip_siblings(struct radix_tree_node **nodep, 1468 void **slot, struct radix_tree_iter *iter) 1469 { 1470 void *sib = node_to_entry(slot - 1); 1471 1472 while (iter->index < iter->next_index) { 1473 *nodep = rcu_dereference_raw(*slot); 1474 if (*nodep && *nodep != sib) 1475 return slot; 1476 slot++; 1477 iter->index = __radix_tree_iter_add(iter, 1); 1478 iter->tags >>= 1; 1479 } 1480 1481 *nodep = NULL; 1482 return NULL; 1483 } 1484 1485 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, 1486 unsigned flags) 1487 { 1488 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1489 struct radix_tree_node *node = rcu_dereference_raw(*slot); 1490 1491 slot = skip_siblings(&node, slot, iter); 1492 1493 while (radix_tree_is_internal_node(node)) { 1494 unsigned offset; 1495 unsigned long next_index; 1496 1497 if (node == RADIX_TREE_RETRY) 1498 return slot; 1499 node = entry_to_node(node); 1500 iter->node = node; 1501 iter->shift = node->shift; 1502 1503 if (flags & RADIX_TREE_ITER_TAGGED) { 1504 offset = radix_tree_find_next_bit(node, tag, 0); 1505 if (offset == RADIX_TREE_MAP_SIZE) 1506 return NULL; 1507 slot = &node->slots[offset]; 1508 iter->index = __radix_tree_iter_add(iter, offset); 1509 set_iter_tags(iter, node, offset, tag); 1510 node = rcu_dereference_raw(*slot); 1511 } else { 1512 offset = 0; 1513 slot = &node->slots[0]; 1514 for (;;) { 1515 node = rcu_dereference_raw(*slot); 1516 if (node) 1517 break; 1518 slot++; 1519 offset++; 1520 if (offset == RADIX_TREE_MAP_SIZE) 1521 return NULL; 1522 } 1523 iter->index = __radix_tree_iter_add(iter, offset); 1524 } 1525 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0)) 1526 goto none; 1527 next_index = (iter->index | shift_maxindex(iter->shift)) + 1; 1528 if (next_index < iter->next_index) 1529 iter->next_index = next_index; 1530 } 1531 1532 return slot; 1533 none: 1534 iter->next_index = 0; 1535 return NULL; 1536 } 1537 EXPORT_SYMBOL(__radix_tree_next_slot); 1538 #else 1539 static void **skip_siblings(struct radix_tree_node **nodep, 1540 void **slot, struct radix_tree_iter *iter) 1541 { 1542 return slot; 1543 } 1544 #endif 1545 1546 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter) 1547 { 1548 struct radix_tree_node *node; 1549 1550 slot++; 1551 iter->index = __radix_tree_iter_add(iter, 1); 1552 node = rcu_dereference_raw(*slot); 1553 skip_siblings(&node, slot, iter); 1554 iter->next_index = iter->index; 1555 iter->tags = 0; 1556 return NULL; 1557 } 1558 EXPORT_SYMBOL(radix_tree_iter_resume); 1559 1560 /** 1561 * radix_tree_next_chunk - find next chunk of slots for iteration 1562 * 1563 * @root: radix tree root 1564 * @iter: iterator state 1565 * @flags: RADIX_TREE_ITER_* flags and tag index 1566 * Returns: pointer to chunk first slot, or NULL if iteration is over 1567 */ 1568 void **radix_tree_next_chunk(struct radix_tree_root *root, 1569 struct radix_tree_iter *iter, unsigned flags) 1570 { 1571 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 1572 struct radix_tree_node *node, *child; 1573 unsigned long index, offset, maxindex; 1574 1575 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 1576 return NULL; 1577 1578 /* 1579 * Catch next_index overflow after ~0UL. iter->index never overflows 1580 * during iterating; it can be zero only at the beginning. 1581 * And we cannot overflow iter->next_index in a single step, 1582 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 1583 * 1584 * This condition also used by radix_tree_next_slot() to stop 1585 * contiguous iterating, and forbid switching to the next chunk. 1586 */ 1587 index = iter->next_index; 1588 if (!index && iter->index) 1589 return NULL; 1590 1591 restart: 1592 radix_tree_load_root(root, &child, &maxindex); 1593 if (index > maxindex) 1594 return NULL; 1595 if (!child) 1596 return NULL; 1597 1598 if (!radix_tree_is_internal_node(child)) { 1599 /* Single-slot tree */ 1600 iter->index = index; 1601 iter->next_index = maxindex + 1; 1602 iter->tags = 1; 1603 iter->node = NULL; 1604 __set_iter_shift(iter, 0); 1605 return (void **)&root->rnode; 1606 } 1607 1608 do { 1609 node = entry_to_node(child); 1610 offset = radix_tree_descend(node, &child, index); 1611 1612 if ((flags & RADIX_TREE_ITER_TAGGED) ? 1613 !tag_get(node, tag, offset) : !child) { 1614 /* Hole detected */ 1615 if (flags & RADIX_TREE_ITER_CONTIG) 1616 return NULL; 1617 1618 if (flags & RADIX_TREE_ITER_TAGGED) 1619 offset = radix_tree_find_next_bit(node, tag, 1620 offset + 1); 1621 else 1622 while (++offset < RADIX_TREE_MAP_SIZE) { 1623 void *slot = node->slots[offset]; 1624 if (is_sibling_entry(node, slot)) 1625 continue; 1626 if (slot) 1627 break; 1628 } 1629 index &= ~node_maxindex(node); 1630 index += offset << node->shift; 1631 /* Overflow after ~0UL */ 1632 if (!index) 1633 return NULL; 1634 if (offset == RADIX_TREE_MAP_SIZE) 1635 goto restart; 1636 child = rcu_dereference_raw(node->slots[offset]); 1637 } 1638 1639 if (!child) 1640 goto restart; 1641 if (child == RADIX_TREE_RETRY) 1642 break; 1643 } while (radix_tree_is_internal_node(child)); 1644 1645 /* Update the iterator state */ 1646 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 1647 iter->next_index = (index | node_maxindex(node)) + 1; 1648 iter->node = node; 1649 __set_iter_shift(iter, node->shift); 1650 1651 if (flags & RADIX_TREE_ITER_TAGGED) 1652 set_iter_tags(iter, node, offset, tag); 1653 1654 return node->slots + offset; 1655 } 1656 EXPORT_SYMBOL(radix_tree_next_chunk); 1657 1658 /** 1659 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1660 * @root: radix tree root 1661 * @results: where the results of the lookup are placed 1662 * @first_index: start the lookup from this key 1663 * @max_items: place up to this many items at *results 1664 * 1665 * Performs an index-ascending scan of the tree for present items. Places 1666 * them at *@results and returns the number of items which were placed at 1667 * *@results. 1668 * 1669 * The implementation is naive. 1670 * 1671 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1672 * rcu_read_lock. In this case, rather than the returned results being 1673 * an atomic snapshot of the tree at a single point in time, the 1674 * semantics of an RCU protected gang lookup are as though multiple 1675 * radix_tree_lookups have been issued in individual locks, and results 1676 * stored in 'results'. 1677 */ 1678 unsigned int 1679 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1680 unsigned long first_index, unsigned int max_items) 1681 { 1682 struct radix_tree_iter iter; 1683 void **slot; 1684 unsigned int ret = 0; 1685 1686 if (unlikely(!max_items)) 1687 return 0; 1688 1689 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1690 results[ret] = rcu_dereference_raw(*slot); 1691 if (!results[ret]) 1692 continue; 1693 if (radix_tree_is_internal_node(results[ret])) { 1694 slot = radix_tree_iter_retry(&iter); 1695 continue; 1696 } 1697 if (++ret == max_items) 1698 break; 1699 } 1700 1701 return ret; 1702 } 1703 EXPORT_SYMBOL(radix_tree_gang_lookup); 1704 1705 /** 1706 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1707 * @root: radix tree root 1708 * @results: where the results of the lookup are placed 1709 * @indices: where their indices should be placed (but usually NULL) 1710 * @first_index: start the lookup from this key 1711 * @max_items: place up to this many items at *results 1712 * 1713 * Performs an index-ascending scan of the tree for present items. Places 1714 * their slots at *@results and returns the number of items which were 1715 * placed at *@results. 1716 * 1717 * The implementation is naive. 1718 * 1719 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1720 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1721 * protection, radix_tree_deref_slot may fail requiring a retry. 1722 */ 1723 unsigned int 1724 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1725 void ***results, unsigned long *indices, 1726 unsigned long first_index, unsigned int max_items) 1727 { 1728 struct radix_tree_iter iter; 1729 void **slot; 1730 unsigned int ret = 0; 1731 1732 if (unlikely(!max_items)) 1733 return 0; 1734 1735 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1736 results[ret] = slot; 1737 if (indices) 1738 indices[ret] = iter.index; 1739 if (++ret == max_items) 1740 break; 1741 } 1742 1743 return ret; 1744 } 1745 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1746 1747 /** 1748 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1749 * based on a tag 1750 * @root: radix tree root 1751 * @results: where the results of the lookup are placed 1752 * @first_index: start the lookup from this key 1753 * @max_items: place up to this many items at *results 1754 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1755 * 1756 * Performs an index-ascending scan of the tree for present items which 1757 * have the tag indexed by @tag set. Places the items at *@results and 1758 * returns the number of items which were placed at *@results. 1759 */ 1760 unsigned int 1761 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1762 unsigned long first_index, unsigned int max_items, 1763 unsigned int tag) 1764 { 1765 struct radix_tree_iter iter; 1766 void **slot; 1767 unsigned int ret = 0; 1768 1769 if (unlikely(!max_items)) 1770 return 0; 1771 1772 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1773 results[ret] = rcu_dereference_raw(*slot); 1774 if (!results[ret]) 1775 continue; 1776 if (radix_tree_is_internal_node(results[ret])) { 1777 slot = radix_tree_iter_retry(&iter); 1778 continue; 1779 } 1780 if (++ret == max_items) 1781 break; 1782 } 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1787 1788 /** 1789 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1790 * radix tree based on a tag 1791 * @root: radix tree root 1792 * @results: where the results of the lookup are placed 1793 * @first_index: start the lookup from this key 1794 * @max_items: place up to this many items at *results 1795 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1796 * 1797 * Performs an index-ascending scan of the tree for present items which 1798 * have the tag indexed by @tag set. Places the slots at *@results and 1799 * returns the number of slots which were placed at *@results. 1800 */ 1801 unsigned int 1802 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1803 unsigned long first_index, unsigned int max_items, 1804 unsigned int tag) 1805 { 1806 struct radix_tree_iter iter; 1807 void **slot; 1808 unsigned int ret = 0; 1809 1810 if (unlikely(!max_items)) 1811 return 0; 1812 1813 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1814 results[ret] = slot; 1815 if (++ret == max_items) 1816 break; 1817 } 1818 1819 return ret; 1820 } 1821 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1822 1823 /** 1824 * __radix_tree_delete_node - try to free node after clearing a slot 1825 * @root: radix tree root 1826 * @node: node containing @index 1827 * 1828 * After clearing the slot at @index in @node from radix tree 1829 * rooted at @root, call this function to attempt freeing the 1830 * node and shrinking the tree. 1831 */ 1832 void __radix_tree_delete_node(struct radix_tree_root *root, 1833 struct radix_tree_node *node) 1834 { 1835 delete_node(root, node, NULL, NULL); 1836 } 1837 1838 /** 1839 * radix_tree_delete_item - delete an item from a radix tree 1840 * @root: radix tree root 1841 * @index: index key 1842 * @item: expected item 1843 * 1844 * Remove @item at @index from the radix tree rooted at @root. 1845 * 1846 * Returns the address of the deleted item, or NULL if it was not present 1847 * or the entry at the given @index was not @item. 1848 */ 1849 void *radix_tree_delete_item(struct radix_tree_root *root, 1850 unsigned long index, void *item) 1851 { 1852 struct radix_tree_node *node; 1853 unsigned int offset; 1854 void **slot; 1855 void *entry; 1856 int tag; 1857 1858 entry = __radix_tree_lookup(root, index, &node, &slot); 1859 if (!entry) 1860 return NULL; 1861 1862 if (item && entry != item) 1863 return NULL; 1864 1865 if (!node) { 1866 root_tag_clear_all(root); 1867 root->rnode = NULL; 1868 return entry; 1869 } 1870 1871 offset = get_slot_offset(node, slot); 1872 1873 /* Clear all tags associated with the item to be deleted. */ 1874 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1875 node_tag_clear(root, node, tag, offset); 1876 1877 __radix_tree_replace(root, node, slot, NULL, NULL, NULL); 1878 1879 return entry; 1880 } 1881 EXPORT_SYMBOL(radix_tree_delete_item); 1882 1883 /** 1884 * radix_tree_delete - delete an item from a radix tree 1885 * @root: radix tree root 1886 * @index: index key 1887 * 1888 * Remove the item at @index from the radix tree rooted at @root. 1889 * 1890 * Returns the address of the deleted item, or NULL if it was not present. 1891 */ 1892 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1893 { 1894 return radix_tree_delete_item(root, index, NULL); 1895 } 1896 EXPORT_SYMBOL(radix_tree_delete); 1897 1898 void radix_tree_clear_tags(struct radix_tree_root *root, 1899 struct radix_tree_node *node, 1900 void **slot) 1901 { 1902 if (node) { 1903 unsigned int tag, offset = get_slot_offset(node, slot); 1904 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1905 node_tag_clear(root, node, tag, offset); 1906 } else { 1907 /* Clear root node tags */ 1908 root->gfp_mask &= __GFP_BITS_MASK; 1909 } 1910 } 1911 1912 /** 1913 * radix_tree_tagged - test whether any items in the tree are tagged 1914 * @root: radix tree root 1915 * @tag: tag to test 1916 */ 1917 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1918 { 1919 return root_tag_get(root, tag); 1920 } 1921 EXPORT_SYMBOL(radix_tree_tagged); 1922 1923 static void 1924 radix_tree_node_ctor(void *arg) 1925 { 1926 struct radix_tree_node *node = arg; 1927 1928 memset(node, 0, sizeof(*node)); 1929 INIT_LIST_HEAD(&node->private_list); 1930 } 1931 1932 static __init unsigned long __maxindex(unsigned int height) 1933 { 1934 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1935 int shift = RADIX_TREE_INDEX_BITS - width; 1936 1937 if (shift < 0) 1938 return ~0UL; 1939 if (shift >= BITS_PER_LONG) 1940 return 0UL; 1941 return ~0UL >> shift; 1942 } 1943 1944 static __init void radix_tree_init_maxnodes(void) 1945 { 1946 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1947 unsigned int i, j; 1948 1949 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1950 height_to_maxindex[i] = __maxindex(i); 1951 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1952 for (j = i; j > 0; j--) 1953 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1954 } 1955 } 1956 1957 static int radix_tree_cpu_dead(unsigned int cpu) 1958 { 1959 struct radix_tree_preload *rtp; 1960 struct radix_tree_node *node; 1961 1962 /* Free per-cpu pool of preloaded nodes */ 1963 rtp = &per_cpu(radix_tree_preloads, cpu); 1964 while (rtp->nr) { 1965 node = rtp->nodes; 1966 rtp->nodes = node->private_data; 1967 kmem_cache_free(radix_tree_node_cachep, node); 1968 rtp->nr--; 1969 } 1970 return 0; 1971 } 1972 1973 void __init radix_tree_init(void) 1974 { 1975 int ret; 1976 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1977 sizeof(struct radix_tree_node), 0, 1978 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1979 radix_tree_node_ctor); 1980 radix_tree_init_maxnodes(); 1981 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead", 1982 NULL, radix_tree_cpu_dead); 1983 WARN_ON(ret < 0); 1984 } 1985