xref: /openbmc/linux/lib/radix-tree.c (revision e4781421e883340b796da5a724bda7226817990b)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  * Copyright (C) 2016 Intel, Matthew Wilcox
8  * Copyright (C) 2016 Intel, Ross Zwisler
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/errno.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/export.h>
30 #include <linux/radix-tree.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/kmemleak.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h>		/* in_interrupt() */
39 
40 
41 /* Number of nodes in fully populated tree of given height */
42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	unsigned nr;
67 	/* nodes->private_data points to next preallocated node */
68 	struct radix_tree_node *nodes;
69 };
70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
71 
72 static inline struct radix_tree_node *entry_to_node(void *ptr)
73 {
74 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
75 }
76 
77 static inline void *node_to_entry(void *ptr)
78 {
79 	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
80 }
81 
82 #define RADIX_TREE_RETRY	node_to_entry(NULL)
83 
84 #ifdef CONFIG_RADIX_TREE_MULTIORDER
85 /* Sibling slots point directly to another slot in the same node */
86 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
87 {
88 	void **ptr = node;
89 	return (parent->slots <= ptr) &&
90 			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
91 }
92 #else
93 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
94 {
95 	return false;
96 }
97 #endif
98 
99 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
100 						 void **slot)
101 {
102 	return slot - parent->slots;
103 }
104 
105 static unsigned int radix_tree_descend(struct radix_tree_node *parent,
106 			struct radix_tree_node **nodep, unsigned long index)
107 {
108 	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
109 	void **entry = rcu_dereference_raw(parent->slots[offset]);
110 
111 #ifdef CONFIG_RADIX_TREE_MULTIORDER
112 	if (radix_tree_is_internal_node(entry)) {
113 		if (is_sibling_entry(parent, entry)) {
114 			void **sibentry = (void **) entry_to_node(entry);
115 			offset = get_slot_offset(parent, sibentry);
116 			entry = rcu_dereference_raw(*sibentry);
117 		}
118 	}
119 #endif
120 
121 	*nodep = (void *)entry;
122 	return offset;
123 }
124 
125 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
126 {
127 	return root->gfp_mask & __GFP_BITS_MASK;
128 }
129 
130 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 		int offset)
132 {
133 	__set_bit(offset, node->tags[tag]);
134 }
135 
136 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 		int offset)
138 {
139 	__clear_bit(offset, node->tags[tag]);
140 }
141 
142 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
143 		int offset)
144 {
145 	return test_bit(offset, node->tags[tag]);
146 }
147 
148 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
149 {
150 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
151 }
152 
153 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
154 {
155 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
156 }
157 
158 static inline void root_tag_clear_all(struct radix_tree_root *root)
159 {
160 	root->gfp_mask &= __GFP_BITS_MASK;
161 }
162 
163 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
164 {
165 	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
166 }
167 
168 static inline unsigned root_tags_get(struct radix_tree_root *root)
169 {
170 	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
171 }
172 
173 /*
174  * Returns 1 if any slot in the node has this tag set.
175  * Otherwise returns 0.
176  */
177 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
178 {
179 	unsigned idx;
180 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
181 		if (node->tags[tag][idx])
182 			return 1;
183 	}
184 	return 0;
185 }
186 
187 /**
188  * radix_tree_find_next_bit - find the next set bit in a memory region
189  *
190  * @addr: The address to base the search on
191  * @size: The bitmap size in bits
192  * @offset: The bitnumber to start searching at
193  *
194  * Unrollable variant of find_next_bit() for constant size arrays.
195  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
196  * Returns next bit offset, or size if nothing found.
197  */
198 static __always_inline unsigned long
199 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
200 			 unsigned long offset)
201 {
202 	const unsigned long *addr = node->tags[tag];
203 
204 	if (offset < RADIX_TREE_MAP_SIZE) {
205 		unsigned long tmp;
206 
207 		addr += offset / BITS_PER_LONG;
208 		tmp = *addr >> (offset % BITS_PER_LONG);
209 		if (tmp)
210 			return __ffs(tmp) + offset;
211 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
212 		while (offset < RADIX_TREE_MAP_SIZE) {
213 			tmp = *++addr;
214 			if (tmp)
215 				return __ffs(tmp) + offset;
216 			offset += BITS_PER_LONG;
217 		}
218 	}
219 	return RADIX_TREE_MAP_SIZE;
220 }
221 
222 static unsigned int iter_offset(const struct radix_tree_iter *iter)
223 {
224 	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
225 }
226 
227 /*
228  * The maximum index which can be stored in a radix tree
229  */
230 static inline unsigned long shift_maxindex(unsigned int shift)
231 {
232 	return (RADIX_TREE_MAP_SIZE << shift) - 1;
233 }
234 
235 static inline unsigned long node_maxindex(struct radix_tree_node *node)
236 {
237 	return shift_maxindex(node->shift);
238 }
239 
240 #ifndef __KERNEL__
241 static void dump_node(struct radix_tree_node *node, unsigned long index)
242 {
243 	unsigned long i;
244 
245 	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
246 		node, node->offset, index, index | node_maxindex(node),
247 		node->parent,
248 		node->tags[0][0], node->tags[1][0], node->tags[2][0],
249 		node->shift, node->count, node->exceptional);
250 
251 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
252 		unsigned long first = index | (i << node->shift);
253 		unsigned long last = first | ((1UL << node->shift) - 1);
254 		void *entry = node->slots[i];
255 		if (!entry)
256 			continue;
257 		if (entry == RADIX_TREE_RETRY) {
258 			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
259 					i, first, last, node);
260 		} else if (!radix_tree_is_internal_node(entry)) {
261 			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
262 					entry, i, first, last, node);
263 		} else if (is_sibling_entry(node, entry)) {
264 			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
265 					entry, i, first, last, node,
266 					*(void **)entry_to_node(entry));
267 		} else {
268 			dump_node(entry_to_node(entry), first);
269 		}
270 	}
271 }
272 
273 /* For debug */
274 static void radix_tree_dump(struct radix_tree_root *root)
275 {
276 	pr_debug("radix root: %p rnode %p tags %x\n",
277 			root, root->rnode,
278 			root->gfp_mask >> __GFP_BITS_SHIFT);
279 	if (!radix_tree_is_internal_node(root->rnode))
280 		return;
281 	dump_node(entry_to_node(root->rnode), 0);
282 }
283 #endif
284 
285 /*
286  * This assumes that the caller has performed appropriate preallocation, and
287  * that the caller has pinned this thread of control to the current CPU.
288  */
289 static struct radix_tree_node *
290 radix_tree_node_alloc(struct radix_tree_root *root,
291 			struct radix_tree_node *parent,
292 			unsigned int shift, unsigned int offset,
293 			unsigned int count, unsigned int exceptional)
294 {
295 	struct radix_tree_node *ret = NULL;
296 	gfp_t gfp_mask = root_gfp_mask(root);
297 
298 	/*
299 	 * Preload code isn't irq safe and it doesn't make sense to use
300 	 * preloading during an interrupt anyway as all the allocations have
301 	 * to be atomic. So just do normal allocation when in interrupt.
302 	 */
303 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
304 		struct radix_tree_preload *rtp;
305 
306 		/*
307 		 * Even if the caller has preloaded, try to allocate from the
308 		 * cache first for the new node to get accounted to the memory
309 		 * cgroup.
310 		 */
311 		ret = kmem_cache_alloc(radix_tree_node_cachep,
312 				       gfp_mask | __GFP_NOWARN);
313 		if (ret)
314 			goto out;
315 
316 		/*
317 		 * Provided the caller has preloaded here, we will always
318 		 * succeed in getting a node here (and never reach
319 		 * kmem_cache_alloc)
320 		 */
321 		rtp = this_cpu_ptr(&radix_tree_preloads);
322 		if (rtp->nr) {
323 			ret = rtp->nodes;
324 			rtp->nodes = ret->private_data;
325 			ret->private_data = NULL;
326 			rtp->nr--;
327 		}
328 		/*
329 		 * Update the allocation stack trace as this is more useful
330 		 * for debugging.
331 		 */
332 		kmemleak_update_trace(ret);
333 		goto out;
334 	}
335 	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
336 out:
337 	BUG_ON(radix_tree_is_internal_node(ret));
338 	if (ret) {
339 		ret->parent = parent;
340 		ret->shift = shift;
341 		ret->offset = offset;
342 		ret->count = count;
343 		ret->exceptional = exceptional;
344 	}
345 	return ret;
346 }
347 
348 static void radix_tree_node_rcu_free(struct rcu_head *head)
349 {
350 	struct radix_tree_node *node =
351 			container_of(head, struct radix_tree_node, rcu_head);
352 
353 	/*
354 	 * Must only free zeroed nodes into the slab.  We can be left with
355 	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
356 	 * and tags here.
357 	 */
358 	memset(node->slots, 0, sizeof(node->slots));
359 	memset(node->tags, 0, sizeof(node->tags));
360 	INIT_LIST_HEAD(&node->private_list);
361 
362 	kmem_cache_free(radix_tree_node_cachep, node);
363 }
364 
365 static inline void
366 radix_tree_node_free(struct radix_tree_node *node)
367 {
368 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
369 }
370 
371 /*
372  * Load up this CPU's radix_tree_node buffer with sufficient objects to
373  * ensure that the addition of a single element in the tree cannot fail.  On
374  * success, return zero, with preemption disabled.  On error, return -ENOMEM
375  * with preemption not disabled.
376  *
377  * To make use of this facility, the radix tree must be initialised without
378  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
379  */
380 static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
381 {
382 	struct radix_tree_preload *rtp;
383 	struct radix_tree_node *node;
384 	int ret = -ENOMEM;
385 
386 	/*
387 	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
388 	 * they should never be accounted to any particular memory cgroup.
389 	 */
390 	gfp_mask &= ~__GFP_ACCOUNT;
391 
392 	preempt_disable();
393 	rtp = this_cpu_ptr(&radix_tree_preloads);
394 	while (rtp->nr < nr) {
395 		preempt_enable();
396 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
397 		if (node == NULL)
398 			goto out;
399 		preempt_disable();
400 		rtp = this_cpu_ptr(&radix_tree_preloads);
401 		if (rtp->nr < nr) {
402 			node->private_data = rtp->nodes;
403 			rtp->nodes = node;
404 			rtp->nr++;
405 		} else {
406 			kmem_cache_free(radix_tree_node_cachep, node);
407 		}
408 	}
409 	ret = 0;
410 out:
411 	return ret;
412 }
413 
414 /*
415  * Load up this CPU's radix_tree_node buffer with sufficient objects to
416  * ensure that the addition of a single element in the tree cannot fail.  On
417  * success, return zero, with preemption disabled.  On error, return -ENOMEM
418  * with preemption not disabled.
419  *
420  * To make use of this facility, the radix tree must be initialised without
421  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
422  */
423 int radix_tree_preload(gfp_t gfp_mask)
424 {
425 	/* Warn on non-sensical use... */
426 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
427 	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
428 }
429 EXPORT_SYMBOL(radix_tree_preload);
430 
431 /*
432  * The same as above function, except we don't guarantee preloading happens.
433  * We do it, if we decide it helps. On success, return zero with preemption
434  * disabled. On error, return -ENOMEM with preemption not disabled.
435  */
436 int radix_tree_maybe_preload(gfp_t gfp_mask)
437 {
438 	if (gfpflags_allow_blocking(gfp_mask))
439 		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
440 	/* Preloading doesn't help anything with this gfp mask, skip it */
441 	preempt_disable();
442 	return 0;
443 }
444 EXPORT_SYMBOL(radix_tree_maybe_preload);
445 
446 #ifdef CONFIG_RADIX_TREE_MULTIORDER
447 /*
448  * Preload with enough objects to ensure that we can split a single entry
449  * of order @old_order into many entries of size @new_order
450  */
451 int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
452 							gfp_t gfp_mask)
453 {
454 	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
455 	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
456 				(new_order / RADIX_TREE_MAP_SHIFT);
457 	unsigned nr = 0;
458 
459 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
460 	BUG_ON(new_order >= old_order);
461 
462 	while (layers--)
463 		nr = nr * RADIX_TREE_MAP_SIZE + 1;
464 	return __radix_tree_preload(gfp_mask, top * nr);
465 }
466 #endif
467 
468 /*
469  * The same as function above, but preload number of nodes required to insert
470  * (1 << order) continuous naturally-aligned elements.
471  */
472 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
473 {
474 	unsigned long nr_subtrees;
475 	int nr_nodes, subtree_height;
476 
477 	/* Preloading doesn't help anything with this gfp mask, skip it */
478 	if (!gfpflags_allow_blocking(gfp_mask)) {
479 		preempt_disable();
480 		return 0;
481 	}
482 
483 	/*
484 	 * Calculate number and height of fully populated subtrees it takes to
485 	 * store (1 << order) elements.
486 	 */
487 	nr_subtrees = 1 << order;
488 	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
489 			subtree_height++)
490 		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
491 
492 	/*
493 	 * The worst case is zero height tree with a single item at index 0 and
494 	 * then inserting items starting at ULONG_MAX - (1 << order).
495 	 *
496 	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
497 	 * 0-index item.
498 	 */
499 	nr_nodes = RADIX_TREE_MAX_PATH;
500 
501 	/* Plus branch to fully populated subtrees. */
502 	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
503 
504 	/* Root node is shared. */
505 	nr_nodes--;
506 
507 	/* Plus nodes required to build subtrees. */
508 	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
509 
510 	return __radix_tree_preload(gfp_mask, nr_nodes);
511 }
512 
513 static unsigned radix_tree_load_root(struct radix_tree_root *root,
514 		struct radix_tree_node **nodep, unsigned long *maxindex)
515 {
516 	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
517 
518 	*nodep = node;
519 
520 	if (likely(radix_tree_is_internal_node(node))) {
521 		node = entry_to_node(node);
522 		*maxindex = node_maxindex(node);
523 		return node->shift + RADIX_TREE_MAP_SHIFT;
524 	}
525 
526 	*maxindex = 0;
527 	return 0;
528 }
529 
530 /*
531  *	Extend a radix tree so it can store key @index.
532  */
533 static int radix_tree_extend(struct radix_tree_root *root,
534 				unsigned long index, unsigned int shift)
535 {
536 	struct radix_tree_node *slot;
537 	unsigned int maxshift;
538 	int tag;
539 
540 	/* Figure out what the shift should be.  */
541 	maxshift = shift;
542 	while (index > shift_maxindex(maxshift))
543 		maxshift += RADIX_TREE_MAP_SHIFT;
544 
545 	slot = root->rnode;
546 	if (!slot)
547 		goto out;
548 
549 	do {
550 		struct radix_tree_node *node = radix_tree_node_alloc(root,
551 							NULL, shift, 0, 1, 0);
552 		if (!node)
553 			return -ENOMEM;
554 
555 		/* Propagate the aggregated tag info into the new root */
556 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
557 			if (root_tag_get(root, tag))
558 				tag_set(node, tag, 0);
559 		}
560 
561 		BUG_ON(shift > BITS_PER_LONG);
562 		if (radix_tree_is_internal_node(slot)) {
563 			entry_to_node(slot)->parent = node;
564 		} else if (radix_tree_exceptional_entry(slot)) {
565 			/* Moving an exceptional root->rnode to a node */
566 			node->exceptional = 1;
567 		}
568 		node->slots[0] = slot;
569 		slot = node_to_entry(node);
570 		rcu_assign_pointer(root->rnode, slot);
571 		shift += RADIX_TREE_MAP_SHIFT;
572 	} while (shift <= maxshift);
573 out:
574 	return maxshift + RADIX_TREE_MAP_SHIFT;
575 }
576 
577 /**
578  *	radix_tree_shrink    -    shrink radix tree to minimum height
579  *	@root		radix tree root
580  */
581 static inline void radix_tree_shrink(struct radix_tree_root *root,
582 				     radix_tree_update_node_t update_node,
583 				     void *private)
584 {
585 	for (;;) {
586 		struct radix_tree_node *node = root->rnode;
587 		struct radix_tree_node *child;
588 
589 		if (!radix_tree_is_internal_node(node))
590 			break;
591 		node = entry_to_node(node);
592 
593 		/*
594 		 * The candidate node has more than one child, or its child
595 		 * is not at the leftmost slot, or the child is a multiorder
596 		 * entry, we cannot shrink.
597 		 */
598 		if (node->count != 1)
599 			break;
600 		child = node->slots[0];
601 		if (!child)
602 			break;
603 		if (!radix_tree_is_internal_node(child) && node->shift)
604 			break;
605 
606 		if (radix_tree_is_internal_node(child))
607 			entry_to_node(child)->parent = NULL;
608 
609 		/*
610 		 * We don't need rcu_assign_pointer(), since we are simply
611 		 * moving the node from one part of the tree to another: if it
612 		 * was safe to dereference the old pointer to it
613 		 * (node->slots[0]), it will be safe to dereference the new
614 		 * one (root->rnode) as far as dependent read barriers go.
615 		 */
616 		root->rnode = child;
617 
618 		/*
619 		 * We have a dilemma here. The node's slot[0] must not be
620 		 * NULLed in case there are concurrent lookups expecting to
621 		 * find the item. However if this was a bottom-level node,
622 		 * then it may be subject to the slot pointer being visible
623 		 * to callers dereferencing it. If item corresponding to
624 		 * slot[0] is subsequently deleted, these callers would expect
625 		 * their slot to become empty sooner or later.
626 		 *
627 		 * For example, lockless pagecache will look up a slot, deref
628 		 * the page pointer, and if the page has 0 refcount it means it
629 		 * was concurrently deleted from pagecache so try the deref
630 		 * again. Fortunately there is already a requirement for logic
631 		 * to retry the entire slot lookup -- the indirect pointer
632 		 * problem (replacing direct root node with an indirect pointer
633 		 * also results in a stale slot). So tag the slot as indirect
634 		 * to force callers to retry.
635 		 */
636 		node->count = 0;
637 		if (!radix_tree_is_internal_node(child)) {
638 			node->slots[0] = RADIX_TREE_RETRY;
639 			if (update_node)
640 				update_node(node, private);
641 		}
642 
643 		radix_tree_node_free(node);
644 	}
645 }
646 
647 static void delete_node(struct radix_tree_root *root,
648 			struct radix_tree_node *node,
649 			radix_tree_update_node_t update_node, void *private)
650 {
651 	do {
652 		struct radix_tree_node *parent;
653 
654 		if (node->count) {
655 			if (node == entry_to_node(root->rnode))
656 				radix_tree_shrink(root, update_node, private);
657 			return;
658 		}
659 
660 		parent = node->parent;
661 		if (parent) {
662 			parent->slots[node->offset] = NULL;
663 			parent->count--;
664 		} else {
665 			root_tag_clear_all(root);
666 			root->rnode = NULL;
667 		}
668 
669 		radix_tree_node_free(node);
670 
671 		node = parent;
672 	} while (node);
673 }
674 
675 /**
676  *	__radix_tree_create	-	create a slot in a radix tree
677  *	@root:		radix tree root
678  *	@index:		index key
679  *	@order:		index occupies 2^order aligned slots
680  *	@nodep:		returns node
681  *	@slotp:		returns slot
682  *
683  *	Create, if necessary, and return the node and slot for an item
684  *	at position @index in the radix tree @root.
685  *
686  *	Until there is more than one item in the tree, no nodes are
687  *	allocated and @root->rnode is used as a direct slot instead of
688  *	pointing to a node, in which case *@nodep will be NULL.
689  *
690  *	Returns -ENOMEM, or 0 for success.
691  */
692 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
693 			unsigned order, struct radix_tree_node **nodep,
694 			void ***slotp)
695 {
696 	struct radix_tree_node *node = NULL, *child;
697 	void **slot = (void **)&root->rnode;
698 	unsigned long maxindex;
699 	unsigned int shift, offset = 0;
700 	unsigned long max = index | ((1UL << order) - 1);
701 
702 	shift = radix_tree_load_root(root, &child, &maxindex);
703 
704 	/* Make sure the tree is high enough.  */
705 	if (order > 0 && max == ((1UL << order) - 1))
706 		max++;
707 	if (max > maxindex) {
708 		int error = radix_tree_extend(root, max, shift);
709 		if (error < 0)
710 			return error;
711 		shift = error;
712 		child = root->rnode;
713 	}
714 
715 	while (shift > order) {
716 		shift -= RADIX_TREE_MAP_SHIFT;
717 		if (child == NULL) {
718 			/* Have to add a child node.  */
719 			child = radix_tree_node_alloc(root, node, shift,
720 							offset, 0, 0);
721 			if (!child)
722 				return -ENOMEM;
723 			rcu_assign_pointer(*slot, node_to_entry(child));
724 			if (node)
725 				node->count++;
726 		} else if (!radix_tree_is_internal_node(child))
727 			break;
728 
729 		/* Go a level down */
730 		node = entry_to_node(child);
731 		offset = radix_tree_descend(node, &child, index);
732 		slot = &node->slots[offset];
733 	}
734 
735 	if (nodep)
736 		*nodep = node;
737 	if (slotp)
738 		*slotp = slot;
739 	return 0;
740 }
741 
742 #ifdef CONFIG_RADIX_TREE_MULTIORDER
743 /*
744  * Free any nodes below this node.  The tree is presumed to not need
745  * shrinking, and any user data in the tree is presumed to not need a
746  * destructor called on it.  If we need to add a destructor, we can
747  * add that functionality later.  Note that we may not clear tags or
748  * slots from the tree as an RCU walker may still have a pointer into
749  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
750  * but we'll still have to clear those in rcu_free.
751  */
752 static void radix_tree_free_nodes(struct radix_tree_node *node)
753 {
754 	unsigned offset = 0;
755 	struct radix_tree_node *child = entry_to_node(node);
756 
757 	for (;;) {
758 		void *entry = child->slots[offset];
759 		if (radix_tree_is_internal_node(entry) &&
760 					!is_sibling_entry(child, entry)) {
761 			child = entry_to_node(entry);
762 			offset = 0;
763 			continue;
764 		}
765 		offset++;
766 		while (offset == RADIX_TREE_MAP_SIZE) {
767 			struct radix_tree_node *old = child;
768 			offset = child->offset + 1;
769 			child = child->parent;
770 			radix_tree_node_free(old);
771 			if (old == entry_to_node(node))
772 				return;
773 		}
774 	}
775 }
776 
777 static inline int insert_entries(struct radix_tree_node *node, void **slot,
778 				void *item, unsigned order, bool replace)
779 {
780 	struct radix_tree_node *child;
781 	unsigned i, n, tag, offset, tags = 0;
782 
783 	if (node) {
784 		if (order > node->shift)
785 			n = 1 << (order - node->shift);
786 		else
787 			n = 1;
788 		offset = get_slot_offset(node, slot);
789 	} else {
790 		n = 1;
791 		offset = 0;
792 	}
793 
794 	if (n > 1) {
795 		offset = offset & ~(n - 1);
796 		slot = &node->slots[offset];
797 	}
798 	child = node_to_entry(slot);
799 
800 	for (i = 0; i < n; i++) {
801 		if (slot[i]) {
802 			if (replace) {
803 				node->count--;
804 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
805 					if (tag_get(node, tag, offset + i))
806 						tags |= 1 << tag;
807 			} else
808 				return -EEXIST;
809 		}
810 	}
811 
812 	for (i = 0; i < n; i++) {
813 		struct radix_tree_node *old = slot[i];
814 		if (i) {
815 			rcu_assign_pointer(slot[i], child);
816 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
817 				if (tags & (1 << tag))
818 					tag_clear(node, tag, offset + i);
819 		} else {
820 			rcu_assign_pointer(slot[i], item);
821 			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
822 				if (tags & (1 << tag))
823 					tag_set(node, tag, offset);
824 		}
825 		if (radix_tree_is_internal_node(old) &&
826 					!is_sibling_entry(node, old) &&
827 					(old != RADIX_TREE_RETRY))
828 			radix_tree_free_nodes(old);
829 		if (radix_tree_exceptional_entry(old))
830 			node->exceptional--;
831 	}
832 	if (node) {
833 		node->count += n;
834 		if (radix_tree_exceptional_entry(item))
835 			node->exceptional += n;
836 	}
837 	return n;
838 }
839 #else
840 static inline int insert_entries(struct radix_tree_node *node, void **slot,
841 				void *item, unsigned order, bool replace)
842 {
843 	if (*slot)
844 		return -EEXIST;
845 	rcu_assign_pointer(*slot, item);
846 	if (node) {
847 		node->count++;
848 		if (radix_tree_exceptional_entry(item))
849 			node->exceptional++;
850 	}
851 	return 1;
852 }
853 #endif
854 
855 /**
856  *	__radix_tree_insert    -    insert into a radix tree
857  *	@root:		radix tree root
858  *	@index:		index key
859  *	@order:		key covers the 2^order indices around index
860  *	@item:		item to insert
861  *
862  *	Insert an item into the radix tree at position @index.
863  */
864 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
865 			unsigned order, void *item)
866 {
867 	struct radix_tree_node *node;
868 	void **slot;
869 	int error;
870 
871 	BUG_ON(radix_tree_is_internal_node(item));
872 
873 	error = __radix_tree_create(root, index, order, &node, &slot);
874 	if (error)
875 		return error;
876 
877 	error = insert_entries(node, slot, item, order, false);
878 	if (error < 0)
879 		return error;
880 
881 	if (node) {
882 		unsigned offset = get_slot_offset(node, slot);
883 		BUG_ON(tag_get(node, 0, offset));
884 		BUG_ON(tag_get(node, 1, offset));
885 		BUG_ON(tag_get(node, 2, offset));
886 	} else {
887 		BUG_ON(root_tags_get(root));
888 	}
889 
890 	return 0;
891 }
892 EXPORT_SYMBOL(__radix_tree_insert);
893 
894 /**
895  *	__radix_tree_lookup	-	lookup an item in a radix tree
896  *	@root:		radix tree root
897  *	@index:		index key
898  *	@nodep:		returns node
899  *	@slotp:		returns slot
900  *
901  *	Lookup and return the item at position @index in the radix
902  *	tree @root.
903  *
904  *	Until there is more than one item in the tree, no nodes are
905  *	allocated and @root->rnode is used as a direct slot instead of
906  *	pointing to a node, in which case *@nodep will be NULL.
907  */
908 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
909 			  struct radix_tree_node **nodep, void ***slotp)
910 {
911 	struct radix_tree_node *node, *parent;
912 	unsigned long maxindex;
913 	void **slot;
914 
915  restart:
916 	parent = NULL;
917 	slot = (void **)&root->rnode;
918 	radix_tree_load_root(root, &node, &maxindex);
919 	if (index > maxindex)
920 		return NULL;
921 
922 	while (radix_tree_is_internal_node(node)) {
923 		unsigned offset;
924 
925 		if (node == RADIX_TREE_RETRY)
926 			goto restart;
927 		parent = entry_to_node(node);
928 		offset = radix_tree_descend(parent, &node, index);
929 		slot = parent->slots + offset;
930 	}
931 
932 	if (nodep)
933 		*nodep = parent;
934 	if (slotp)
935 		*slotp = slot;
936 	return node;
937 }
938 
939 /**
940  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
941  *	@root:		radix tree root
942  *	@index:		index key
943  *
944  *	Returns:  the slot corresponding to the position @index in the
945  *	radix tree @root. This is useful for update-if-exists operations.
946  *
947  *	This function can be called under rcu_read_lock iff the slot is not
948  *	modified by radix_tree_replace_slot, otherwise it must be called
949  *	exclusive from other writers. Any dereference of the slot must be done
950  *	using radix_tree_deref_slot.
951  */
952 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
953 {
954 	void **slot;
955 
956 	if (!__radix_tree_lookup(root, index, NULL, &slot))
957 		return NULL;
958 	return slot;
959 }
960 EXPORT_SYMBOL(radix_tree_lookup_slot);
961 
962 /**
963  *	radix_tree_lookup    -    perform lookup operation on a radix tree
964  *	@root:		radix tree root
965  *	@index:		index key
966  *
967  *	Lookup the item at the position @index in the radix tree @root.
968  *
969  *	This function can be called under rcu_read_lock, however the caller
970  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
971  *	them safely). No RCU barriers are required to access or modify the
972  *	returned item, however.
973  */
974 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
975 {
976 	return __radix_tree_lookup(root, index, NULL, NULL);
977 }
978 EXPORT_SYMBOL(radix_tree_lookup);
979 
980 static inline int slot_count(struct radix_tree_node *node,
981 						void **slot)
982 {
983 	int n = 1;
984 #ifdef CONFIG_RADIX_TREE_MULTIORDER
985 	void *ptr = node_to_entry(slot);
986 	unsigned offset = get_slot_offset(node, slot);
987 	int i;
988 
989 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
990 		if (node->slots[offset + i] != ptr)
991 			break;
992 		n++;
993 	}
994 #endif
995 	return n;
996 }
997 
998 static void replace_slot(struct radix_tree_root *root,
999 			 struct radix_tree_node *node,
1000 			 void **slot, void *item,
1001 			 bool warn_typeswitch)
1002 {
1003 	void *old = rcu_dereference_raw(*slot);
1004 	int count, exceptional;
1005 
1006 	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1007 
1008 	count = !!item - !!old;
1009 	exceptional = !!radix_tree_exceptional_entry(item) -
1010 		      !!radix_tree_exceptional_entry(old);
1011 
1012 	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1013 
1014 	if (node) {
1015 		node->count += count;
1016 		if (exceptional) {
1017 			exceptional *= slot_count(node, slot);
1018 			node->exceptional += exceptional;
1019 		}
1020 	}
1021 
1022 	rcu_assign_pointer(*slot, item);
1023 }
1024 
1025 static inline void delete_sibling_entries(struct radix_tree_node *node,
1026 						void **slot)
1027 {
1028 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1029 	bool exceptional = radix_tree_exceptional_entry(*slot);
1030 	void *ptr = node_to_entry(slot);
1031 	unsigned offset = get_slot_offset(node, slot);
1032 	int i;
1033 
1034 	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1035 		if (node->slots[offset + i] != ptr)
1036 			break;
1037 		node->slots[offset + i] = NULL;
1038 		node->count--;
1039 		if (exceptional)
1040 			node->exceptional--;
1041 	}
1042 #endif
1043 }
1044 
1045 /**
1046  * __radix_tree_replace		- replace item in a slot
1047  * @root:		radix tree root
1048  * @node:		pointer to tree node
1049  * @slot:		pointer to slot in @node
1050  * @item:		new item to store in the slot.
1051  * @update_node:	callback for changing leaf nodes
1052  * @private:		private data to pass to @update_node
1053  *
1054  * For use with __radix_tree_lookup().  Caller must hold tree write locked
1055  * across slot lookup and replacement.
1056  */
1057 void __radix_tree_replace(struct radix_tree_root *root,
1058 			  struct radix_tree_node *node,
1059 			  void **slot, void *item,
1060 			  radix_tree_update_node_t update_node, void *private)
1061 {
1062 	if (!item)
1063 		delete_sibling_entries(node, slot);
1064 	/*
1065 	 * This function supports replacing exceptional entries and
1066 	 * deleting entries, but that needs accounting against the
1067 	 * node unless the slot is root->rnode.
1068 	 */
1069 	replace_slot(root, node, slot, item,
1070 		     !node && slot != (void **)&root->rnode);
1071 
1072 	if (!node)
1073 		return;
1074 
1075 	if (update_node)
1076 		update_node(node, private);
1077 
1078 	delete_node(root, node, update_node, private);
1079 }
1080 
1081 /**
1082  * radix_tree_replace_slot	- replace item in a slot
1083  * @root:	radix tree root
1084  * @slot:	pointer to slot
1085  * @item:	new item to store in the slot.
1086  *
1087  * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1088  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1089  * across slot lookup and replacement.
1090  *
1091  * NOTE: This cannot be used to switch between non-entries (empty slots),
1092  * regular entries, and exceptional entries, as that requires accounting
1093  * inside the radix tree node. When switching from one type of entry or
1094  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1095  * radix_tree_iter_replace().
1096  */
1097 void radix_tree_replace_slot(struct radix_tree_root *root,
1098 			     void **slot, void *item)
1099 {
1100 	replace_slot(root, NULL, slot, item, true);
1101 }
1102 
1103 /**
1104  * radix_tree_iter_replace - replace item in a slot
1105  * @root:	radix tree root
1106  * @slot:	pointer to slot
1107  * @item:	new item to store in the slot.
1108  *
1109  * For use with radix_tree_split() and radix_tree_for_each_slot().
1110  * Caller must hold tree write locked across split and replacement.
1111  */
1112 void radix_tree_iter_replace(struct radix_tree_root *root,
1113 		const struct radix_tree_iter *iter, void **slot, void *item)
1114 {
1115 	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1116 }
1117 
1118 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1119 /**
1120  * radix_tree_join - replace multiple entries with one multiorder entry
1121  * @root: radix tree root
1122  * @index: an index inside the new entry
1123  * @order: order of the new entry
1124  * @item: new entry
1125  *
1126  * Call this function to replace several entries with one larger entry.
1127  * The existing entries are presumed to not need freeing as a result of
1128  * this call.
1129  *
1130  * The replacement entry will have all the tags set on it that were set
1131  * on any of the entries it is replacing.
1132  */
1133 int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1134 			unsigned order, void *item)
1135 {
1136 	struct radix_tree_node *node;
1137 	void **slot;
1138 	int error;
1139 
1140 	BUG_ON(radix_tree_is_internal_node(item));
1141 
1142 	error = __radix_tree_create(root, index, order, &node, &slot);
1143 	if (!error)
1144 		error = insert_entries(node, slot, item, order, true);
1145 	if (error > 0)
1146 		error = 0;
1147 
1148 	return error;
1149 }
1150 
1151 /**
1152  * radix_tree_split - Split an entry into smaller entries
1153  * @root: radix tree root
1154  * @index: An index within the large entry
1155  * @order: Order of new entries
1156  *
1157  * Call this function as the first step in replacing a multiorder entry
1158  * with several entries of lower order.  After this function returns,
1159  * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1160  * and call radix_tree_iter_replace() to set up each new entry.
1161  *
1162  * The tags from this entry are replicated to all the new entries.
1163  *
1164  * The radix tree should be locked against modification during the entire
1165  * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1166  * should prompt RCU walkers to restart the lookup from the root.
1167  */
1168 int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1169 				unsigned order)
1170 {
1171 	struct radix_tree_node *parent, *node, *child;
1172 	void **slot;
1173 	unsigned int offset, end;
1174 	unsigned n, tag, tags = 0;
1175 
1176 	if (!__radix_tree_lookup(root, index, &parent, &slot))
1177 		return -ENOENT;
1178 	if (!parent)
1179 		return -ENOENT;
1180 
1181 	offset = get_slot_offset(parent, slot);
1182 
1183 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1184 		if (tag_get(parent, tag, offset))
1185 			tags |= 1 << tag;
1186 
1187 	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1188 		if (!is_sibling_entry(parent, parent->slots[end]))
1189 			break;
1190 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1191 			if (tags & (1 << tag))
1192 				tag_set(parent, tag, end);
1193 		/* rcu_assign_pointer ensures tags are set before RETRY */
1194 		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1195 	}
1196 	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1197 	parent->exceptional -= (end - offset);
1198 
1199 	if (order == parent->shift)
1200 		return 0;
1201 	if (order > parent->shift) {
1202 		while (offset < end)
1203 			offset += insert_entries(parent, &parent->slots[offset],
1204 					RADIX_TREE_RETRY, order, true);
1205 		return 0;
1206 	}
1207 
1208 	node = parent;
1209 
1210 	for (;;) {
1211 		if (node->shift > order) {
1212 			child = radix_tree_node_alloc(root, node,
1213 					node->shift - RADIX_TREE_MAP_SHIFT,
1214 					offset, 0, 0);
1215 			if (!child)
1216 				goto nomem;
1217 			if (node != parent) {
1218 				node->count++;
1219 				node->slots[offset] = node_to_entry(child);
1220 				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1221 					if (tags & (1 << tag))
1222 						tag_set(node, tag, offset);
1223 			}
1224 
1225 			node = child;
1226 			offset = 0;
1227 			continue;
1228 		}
1229 
1230 		n = insert_entries(node, &node->slots[offset],
1231 					RADIX_TREE_RETRY, order, false);
1232 		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1233 
1234 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1235 			if (tags & (1 << tag))
1236 				tag_set(node, tag, offset);
1237 		offset += n;
1238 
1239 		while (offset == RADIX_TREE_MAP_SIZE) {
1240 			if (node == parent)
1241 				break;
1242 			offset = node->offset;
1243 			child = node;
1244 			node = node->parent;
1245 			rcu_assign_pointer(node->slots[offset],
1246 						node_to_entry(child));
1247 			offset++;
1248 		}
1249 		if ((node == parent) && (offset == end))
1250 			return 0;
1251 	}
1252 
1253  nomem:
1254 	/* Shouldn't happen; did user forget to preload? */
1255 	/* TODO: free all the allocated nodes */
1256 	WARN_ON(1);
1257 	return -ENOMEM;
1258 }
1259 #endif
1260 
1261 /**
1262  *	radix_tree_tag_set - set a tag on a radix tree node
1263  *	@root:		radix tree root
1264  *	@index:		index key
1265  *	@tag:		tag index
1266  *
1267  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1268  *	corresponding to @index in the radix tree.  From
1269  *	the root all the way down to the leaf node.
1270  *
1271  *	Returns the address of the tagged item.  Setting a tag on a not-present
1272  *	item is a bug.
1273  */
1274 void *radix_tree_tag_set(struct radix_tree_root *root,
1275 			unsigned long index, unsigned int tag)
1276 {
1277 	struct radix_tree_node *node, *parent;
1278 	unsigned long maxindex;
1279 
1280 	radix_tree_load_root(root, &node, &maxindex);
1281 	BUG_ON(index > maxindex);
1282 
1283 	while (radix_tree_is_internal_node(node)) {
1284 		unsigned offset;
1285 
1286 		parent = entry_to_node(node);
1287 		offset = radix_tree_descend(parent, &node, index);
1288 		BUG_ON(!node);
1289 
1290 		if (!tag_get(parent, tag, offset))
1291 			tag_set(parent, tag, offset);
1292 	}
1293 
1294 	/* set the root's tag bit */
1295 	if (!root_tag_get(root, tag))
1296 		root_tag_set(root, tag);
1297 
1298 	return node;
1299 }
1300 EXPORT_SYMBOL(radix_tree_tag_set);
1301 
1302 static void node_tag_clear(struct radix_tree_root *root,
1303 				struct radix_tree_node *node,
1304 				unsigned int tag, unsigned int offset)
1305 {
1306 	while (node) {
1307 		if (!tag_get(node, tag, offset))
1308 			return;
1309 		tag_clear(node, tag, offset);
1310 		if (any_tag_set(node, tag))
1311 			return;
1312 
1313 		offset = node->offset;
1314 		node = node->parent;
1315 	}
1316 
1317 	/* clear the root's tag bit */
1318 	if (root_tag_get(root, tag))
1319 		root_tag_clear(root, tag);
1320 }
1321 
1322 static void node_tag_set(struct radix_tree_root *root,
1323 				struct radix_tree_node *node,
1324 				unsigned int tag, unsigned int offset)
1325 {
1326 	while (node) {
1327 		if (tag_get(node, tag, offset))
1328 			return;
1329 		tag_set(node, tag, offset);
1330 		offset = node->offset;
1331 		node = node->parent;
1332 	}
1333 
1334 	if (!root_tag_get(root, tag))
1335 		root_tag_set(root, tag);
1336 }
1337 
1338 /**
1339  * radix_tree_iter_tag_set - set a tag on the current iterator entry
1340  * @root:	radix tree root
1341  * @iter:	iterator state
1342  * @tag:	tag to set
1343  */
1344 void radix_tree_iter_tag_set(struct radix_tree_root *root,
1345 			const struct radix_tree_iter *iter, unsigned int tag)
1346 {
1347 	node_tag_set(root, iter->node, tag, iter_offset(iter));
1348 }
1349 
1350 /**
1351  *	radix_tree_tag_clear - clear a tag on a radix tree node
1352  *	@root:		radix tree root
1353  *	@index:		index key
1354  *	@tag:		tag index
1355  *
1356  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1357  *	corresponding to @index in the radix tree.  If this causes
1358  *	the leaf node to have no tags set then clear the tag in the
1359  *	next-to-leaf node, etc.
1360  *
1361  *	Returns the address of the tagged item on success, else NULL.  ie:
1362  *	has the same return value and semantics as radix_tree_lookup().
1363  */
1364 void *radix_tree_tag_clear(struct radix_tree_root *root,
1365 			unsigned long index, unsigned int tag)
1366 {
1367 	struct radix_tree_node *node, *parent;
1368 	unsigned long maxindex;
1369 	int uninitialized_var(offset);
1370 
1371 	radix_tree_load_root(root, &node, &maxindex);
1372 	if (index > maxindex)
1373 		return NULL;
1374 
1375 	parent = NULL;
1376 
1377 	while (radix_tree_is_internal_node(node)) {
1378 		parent = entry_to_node(node);
1379 		offset = radix_tree_descend(parent, &node, index);
1380 	}
1381 
1382 	if (node)
1383 		node_tag_clear(root, parent, tag, offset);
1384 
1385 	return node;
1386 }
1387 EXPORT_SYMBOL(radix_tree_tag_clear);
1388 
1389 /**
1390  * radix_tree_tag_get - get a tag on a radix tree node
1391  * @root:		radix tree root
1392  * @index:		index key
1393  * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1394  *
1395  * Return values:
1396  *
1397  *  0: tag not present or not set
1398  *  1: tag set
1399  *
1400  * Note that the return value of this function may not be relied on, even if
1401  * the RCU lock is held, unless tag modification and node deletion are excluded
1402  * from concurrency.
1403  */
1404 int radix_tree_tag_get(struct radix_tree_root *root,
1405 			unsigned long index, unsigned int tag)
1406 {
1407 	struct radix_tree_node *node, *parent;
1408 	unsigned long maxindex;
1409 
1410 	if (!root_tag_get(root, tag))
1411 		return 0;
1412 
1413 	radix_tree_load_root(root, &node, &maxindex);
1414 	if (index > maxindex)
1415 		return 0;
1416 	if (node == NULL)
1417 		return 0;
1418 
1419 	while (radix_tree_is_internal_node(node)) {
1420 		unsigned offset;
1421 
1422 		parent = entry_to_node(node);
1423 		offset = radix_tree_descend(parent, &node, index);
1424 
1425 		if (!node)
1426 			return 0;
1427 		if (!tag_get(parent, tag, offset))
1428 			return 0;
1429 		if (node == RADIX_TREE_RETRY)
1430 			break;
1431 	}
1432 
1433 	return 1;
1434 }
1435 EXPORT_SYMBOL(radix_tree_tag_get);
1436 
1437 static inline void __set_iter_shift(struct radix_tree_iter *iter,
1438 					unsigned int shift)
1439 {
1440 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1441 	iter->shift = shift;
1442 #endif
1443 }
1444 
1445 /* Construct iter->tags bit-mask from node->tags[tag] array */
1446 static void set_iter_tags(struct radix_tree_iter *iter,
1447 				struct radix_tree_node *node, unsigned offset,
1448 				unsigned tag)
1449 {
1450 	unsigned tag_long = offset / BITS_PER_LONG;
1451 	unsigned tag_bit  = offset % BITS_PER_LONG;
1452 
1453 	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1454 
1455 	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1456 	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1457 		/* Pick tags from next element */
1458 		if (tag_bit)
1459 			iter->tags |= node->tags[tag][tag_long + 1] <<
1460 						(BITS_PER_LONG - tag_bit);
1461 		/* Clip chunk size, here only BITS_PER_LONG tags */
1462 		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1463 	}
1464 }
1465 
1466 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1467 static void **skip_siblings(struct radix_tree_node **nodep,
1468 			void **slot, struct radix_tree_iter *iter)
1469 {
1470 	void *sib = node_to_entry(slot - 1);
1471 
1472 	while (iter->index < iter->next_index) {
1473 		*nodep = rcu_dereference_raw(*slot);
1474 		if (*nodep && *nodep != sib)
1475 			return slot;
1476 		slot++;
1477 		iter->index = __radix_tree_iter_add(iter, 1);
1478 		iter->tags >>= 1;
1479 	}
1480 
1481 	*nodep = NULL;
1482 	return NULL;
1483 }
1484 
1485 void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1486 					unsigned flags)
1487 {
1488 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1489 	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1490 
1491 	slot = skip_siblings(&node, slot, iter);
1492 
1493 	while (radix_tree_is_internal_node(node)) {
1494 		unsigned offset;
1495 		unsigned long next_index;
1496 
1497 		if (node == RADIX_TREE_RETRY)
1498 			return slot;
1499 		node = entry_to_node(node);
1500 		iter->node = node;
1501 		iter->shift = node->shift;
1502 
1503 		if (flags & RADIX_TREE_ITER_TAGGED) {
1504 			offset = radix_tree_find_next_bit(node, tag, 0);
1505 			if (offset == RADIX_TREE_MAP_SIZE)
1506 				return NULL;
1507 			slot = &node->slots[offset];
1508 			iter->index = __radix_tree_iter_add(iter, offset);
1509 			set_iter_tags(iter, node, offset, tag);
1510 			node = rcu_dereference_raw(*slot);
1511 		} else {
1512 			offset = 0;
1513 			slot = &node->slots[0];
1514 			for (;;) {
1515 				node = rcu_dereference_raw(*slot);
1516 				if (node)
1517 					break;
1518 				slot++;
1519 				offset++;
1520 				if (offset == RADIX_TREE_MAP_SIZE)
1521 					return NULL;
1522 			}
1523 			iter->index = __radix_tree_iter_add(iter, offset);
1524 		}
1525 		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1526 			goto none;
1527 		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1528 		if (next_index < iter->next_index)
1529 			iter->next_index = next_index;
1530 	}
1531 
1532 	return slot;
1533  none:
1534 	iter->next_index = 0;
1535 	return NULL;
1536 }
1537 EXPORT_SYMBOL(__radix_tree_next_slot);
1538 #else
1539 static void **skip_siblings(struct radix_tree_node **nodep,
1540 			void **slot, struct radix_tree_iter *iter)
1541 {
1542 	return slot;
1543 }
1544 #endif
1545 
1546 void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1547 {
1548 	struct radix_tree_node *node;
1549 
1550 	slot++;
1551 	iter->index = __radix_tree_iter_add(iter, 1);
1552 	node = rcu_dereference_raw(*slot);
1553 	skip_siblings(&node, slot, iter);
1554 	iter->next_index = iter->index;
1555 	iter->tags = 0;
1556 	return NULL;
1557 }
1558 EXPORT_SYMBOL(radix_tree_iter_resume);
1559 
1560 /**
1561  * radix_tree_next_chunk - find next chunk of slots for iteration
1562  *
1563  * @root:	radix tree root
1564  * @iter:	iterator state
1565  * @flags:	RADIX_TREE_ITER_* flags and tag index
1566  * Returns:	pointer to chunk first slot, or NULL if iteration is over
1567  */
1568 void **radix_tree_next_chunk(struct radix_tree_root *root,
1569 			     struct radix_tree_iter *iter, unsigned flags)
1570 {
1571 	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1572 	struct radix_tree_node *node, *child;
1573 	unsigned long index, offset, maxindex;
1574 
1575 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1576 		return NULL;
1577 
1578 	/*
1579 	 * Catch next_index overflow after ~0UL. iter->index never overflows
1580 	 * during iterating; it can be zero only at the beginning.
1581 	 * And we cannot overflow iter->next_index in a single step,
1582 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1583 	 *
1584 	 * This condition also used by radix_tree_next_slot() to stop
1585 	 * contiguous iterating, and forbid switching to the next chunk.
1586 	 */
1587 	index = iter->next_index;
1588 	if (!index && iter->index)
1589 		return NULL;
1590 
1591  restart:
1592 	radix_tree_load_root(root, &child, &maxindex);
1593 	if (index > maxindex)
1594 		return NULL;
1595 	if (!child)
1596 		return NULL;
1597 
1598 	if (!radix_tree_is_internal_node(child)) {
1599 		/* Single-slot tree */
1600 		iter->index = index;
1601 		iter->next_index = maxindex + 1;
1602 		iter->tags = 1;
1603 		iter->node = NULL;
1604 		__set_iter_shift(iter, 0);
1605 		return (void **)&root->rnode;
1606 	}
1607 
1608 	do {
1609 		node = entry_to_node(child);
1610 		offset = radix_tree_descend(node, &child, index);
1611 
1612 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1613 				!tag_get(node, tag, offset) : !child) {
1614 			/* Hole detected */
1615 			if (flags & RADIX_TREE_ITER_CONTIG)
1616 				return NULL;
1617 
1618 			if (flags & RADIX_TREE_ITER_TAGGED)
1619 				offset = radix_tree_find_next_bit(node, tag,
1620 						offset + 1);
1621 			else
1622 				while (++offset	< RADIX_TREE_MAP_SIZE) {
1623 					void *slot = node->slots[offset];
1624 					if (is_sibling_entry(node, slot))
1625 						continue;
1626 					if (slot)
1627 						break;
1628 				}
1629 			index &= ~node_maxindex(node);
1630 			index += offset << node->shift;
1631 			/* Overflow after ~0UL */
1632 			if (!index)
1633 				return NULL;
1634 			if (offset == RADIX_TREE_MAP_SIZE)
1635 				goto restart;
1636 			child = rcu_dereference_raw(node->slots[offset]);
1637 		}
1638 
1639 		if (!child)
1640 			goto restart;
1641 		if (child == RADIX_TREE_RETRY)
1642 			break;
1643 	} while (radix_tree_is_internal_node(child));
1644 
1645 	/* Update the iterator state */
1646 	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1647 	iter->next_index = (index | node_maxindex(node)) + 1;
1648 	iter->node = node;
1649 	__set_iter_shift(iter, node->shift);
1650 
1651 	if (flags & RADIX_TREE_ITER_TAGGED)
1652 		set_iter_tags(iter, node, offset, tag);
1653 
1654 	return node->slots + offset;
1655 }
1656 EXPORT_SYMBOL(radix_tree_next_chunk);
1657 
1658 /**
1659  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1660  *	@root:		radix tree root
1661  *	@results:	where the results of the lookup are placed
1662  *	@first_index:	start the lookup from this key
1663  *	@max_items:	place up to this many items at *results
1664  *
1665  *	Performs an index-ascending scan of the tree for present items.  Places
1666  *	them at *@results and returns the number of items which were placed at
1667  *	*@results.
1668  *
1669  *	The implementation is naive.
1670  *
1671  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1672  *	rcu_read_lock. In this case, rather than the returned results being
1673  *	an atomic snapshot of the tree at a single point in time, the
1674  *	semantics of an RCU protected gang lookup are as though multiple
1675  *	radix_tree_lookups have been issued in individual locks, and results
1676  *	stored in 'results'.
1677  */
1678 unsigned int
1679 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1680 			unsigned long first_index, unsigned int max_items)
1681 {
1682 	struct radix_tree_iter iter;
1683 	void **slot;
1684 	unsigned int ret = 0;
1685 
1686 	if (unlikely(!max_items))
1687 		return 0;
1688 
1689 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1690 		results[ret] = rcu_dereference_raw(*slot);
1691 		if (!results[ret])
1692 			continue;
1693 		if (radix_tree_is_internal_node(results[ret])) {
1694 			slot = radix_tree_iter_retry(&iter);
1695 			continue;
1696 		}
1697 		if (++ret == max_items)
1698 			break;
1699 	}
1700 
1701 	return ret;
1702 }
1703 EXPORT_SYMBOL(radix_tree_gang_lookup);
1704 
1705 /**
1706  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1707  *	@root:		radix tree root
1708  *	@results:	where the results of the lookup are placed
1709  *	@indices:	where their indices should be placed (but usually NULL)
1710  *	@first_index:	start the lookup from this key
1711  *	@max_items:	place up to this many items at *results
1712  *
1713  *	Performs an index-ascending scan of the tree for present items.  Places
1714  *	their slots at *@results and returns the number of items which were
1715  *	placed at *@results.
1716  *
1717  *	The implementation is naive.
1718  *
1719  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1720  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1721  *	protection, radix_tree_deref_slot may fail requiring a retry.
1722  */
1723 unsigned int
1724 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1725 			void ***results, unsigned long *indices,
1726 			unsigned long first_index, unsigned int max_items)
1727 {
1728 	struct radix_tree_iter iter;
1729 	void **slot;
1730 	unsigned int ret = 0;
1731 
1732 	if (unlikely(!max_items))
1733 		return 0;
1734 
1735 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1736 		results[ret] = slot;
1737 		if (indices)
1738 			indices[ret] = iter.index;
1739 		if (++ret == max_items)
1740 			break;
1741 	}
1742 
1743 	return ret;
1744 }
1745 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1746 
1747 /**
1748  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1749  *	                             based on a tag
1750  *	@root:		radix tree root
1751  *	@results:	where the results of the lookup are placed
1752  *	@first_index:	start the lookup from this key
1753  *	@max_items:	place up to this many items at *results
1754  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1755  *
1756  *	Performs an index-ascending scan of the tree for present items which
1757  *	have the tag indexed by @tag set.  Places the items at *@results and
1758  *	returns the number of items which were placed at *@results.
1759  */
1760 unsigned int
1761 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1762 		unsigned long first_index, unsigned int max_items,
1763 		unsigned int tag)
1764 {
1765 	struct radix_tree_iter iter;
1766 	void **slot;
1767 	unsigned int ret = 0;
1768 
1769 	if (unlikely(!max_items))
1770 		return 0;
1771 
1772 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1773 		results[ret] = rcu_dereference_raw(*slot);
1774 		if (!results[ret])
1775 			continue;
1776 		if (radix_tree_is_internal_node(results[ret])) {
1777 			slot = radix_tree_iter_retry(&iter);
1778 			continue;
1779 		}
1780 		if (++ret == max_items)
1781 			break;
1782 	}
1783 
1784 	return ret;
1785 }
1786 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1787 
1788 /**
1789  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1790  *					  radix tree based on a tag
1791  *	@root:		radix tree root
1792  *	@results:	where the results of the lookup are placed
1793  *	@first_index:	start the lookup from this key
1794  *	@max_items:	place up to this many items at *results
1795  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1796  *
1797  *	Performs an index-ascending scan of the tree for present items which
1798  *	have the tag indexed by @tag set.  Places the slots at *@results and
1799  *	returns the number of slots which were placed at *@results.
1800  */
1801 unsigned int
1802 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1803 		unsigned long first_index, unsigned int max_items,
1804 		unsigned int tag)
1805 {
1806 	struct radix_tree_iter iter;
1807 	void **slot;
1808 	unsigned int ret = 0;
1809 
1810 	if (unlikely(!max_items))
1811 		return 0;
1812 
1813 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1814 		results[ret] = slot;
1815 		if (++ret == max_items)
1816 			break;
1817 	}
1818 
1819 	return ret;
1820 }
1821 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1822 
1823 /**
1824  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1825  *	@root:		radix tree root
1826  *	@node:		node containing @index
1827  *
1828  *	After clearing the slot at @index in @node from radix tree
1829  *	rooted at @root, call this function to attempt freeing the
1830  *	node and shrinking the tree.
1831  */
1832 void __radix_tree_delete_node(struct radix_tree_root *root,
1833 			      struct radix_tree_node *node)
1834 {
1835 	delete_node(root, node, NULL, NULL);
1836 }
1837 
1838 /**
1839  *	radix_tree_delete_item    -    delete an item from a radix tree
1840  *	@root:		radix tree root
1841  *	@index:		index key
1842  *	@item:		expected item
1843  *
1844  *	Remove @item at @index from the radix tree rooted at @root.
1845  *
1846  *	Returns the address of the deleted item, or NULL if it was not present
1847  *	or the entry at the given @index was not @item.
1848  */
1849 void *radix_tree_delete_item(struct radix_tree_root *root,
1850 			     unsigned long index, void *item)
1851 {
1852 	struct radix_tree_node *node;
1853 	unsigned int offset;
1854 	void **slot;
1855 	void *entry;
1856 	int tag;
1857 
1858 	entry = __radix_tree_lookup(root, index, &node, &slot);
1859 	if (!entry)
1860 		return NULL;
1861 
1862 	if (item && entry != item)
1863 		return NULL;
1864 
1865 	if (!node) {
1866 		root_tag_clear_all(root);
1867 		root->rnode = NULL;
1868 		return entry;
1869 	}
1870 
1871 	offset = get_slot_offset(node, slot);
1872 
1873 	/* Clear all tags associated with the item to be deleted.  */
1874 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1875 		node_tag_clear(root, node, tag, offset);
1876 
1877 	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1878 
1879 	return entry;
1880 }
1881 EXPORT_SYMBOL(radix_tree_delete_item);
1882 
1883 /**
1884  *	radix_tree_delete    -    delete an item from a radix tree
1885  *	@root:		radix tree root
1886  *	@index:		index key
1887  *
1888  *	Remove the item at @index from the radix tree rooted at @root.
1889  *
1890  *	Returns the address of the deleted item, or NULL if it was not present.
1891  */
1892 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1893 {
1894 	return radix_tree_delete_item(root, index, NULL);
1895 }
1896 EXPORT_SYMBOL(radix_tree_delete);
1897 
1898 void radix_tree_clear_tags(struct radix_tree_root *root,
1899 			   struct radix_tree_node *node,
1900 			   void **slot)
1901 {
1902 	if (node) {
1903 		unsigned int tag, offset = get_slot_offset(node, slot);
1904 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1905 			node_tag_clear(root, node, tag, offset);
1906 	} else {
1907 		/* Clear root node tags */
1908 		root->gfp_mask &= __GFP_BITS_MASK;
1909 	}
1910 }
1911 
1912 /**
1913  *	radix_tree_tagged - test whether any items in the tree are tagged
1914  *	@root:		radix tree root
1915  *	@tag:		tag to test
1916  */
1917 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1918 {
1919 	return root_tag_get(root, tag);
1920 }
1921 EXPORT_SYMBOL(radix_tree_tagged);
1922 
1923 static void
1924 radix_tree_node_ctor(void *arg)
1925 {
1926 	struct radix_tree_node *node = arg;
1927 
1928 	memset(node, 0, sizeof(*node));
1929 	INIT_LIST_HEAD(&node->private_list);
1930 }
1931 
1932 static __init unsigned long __maxindex(unsigned int height)
1933 {
1934 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1935 	int shift = RADIX_TREE_INDEX_BITS - width;
1936 
1937 	if (shift < 0)
1938 		return ~0UL;
1939 	if (shift >= BITS_PER_LONG)
1940 		return 0UL;
1941 	return ~0UL >> shift;
1942 }
1943 
1944 static __init void radix_tree_init_maxnodes(void)
1945 {
1946 	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1947 	unsigned int i, j;
1948 
1949 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1950 		height_to_maxindex[i] = __maxindex(i);
1951 	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1952 		for (j = i; j > 0; j--)
1953 			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1954 	}
1955 }
1956 
1957 static int radix_tree_cpu_dead(unsigned int cpu)
1958 {
1959 	struct radix_tree_preload *rtp;
1960 	struct radix_tree_node *node;
1961 
1962 	/* Free per-cpu pool of preloaded nodes */
1963 	rtp = &per_cpu(radix_tree_preloads, cpu);
1964 	while (rtp->nr) {
1965 		node = rtp->nodes;
1966 		rtp->nodes = node->private_data;
1967 		kmem_cache_free(radix_tree_node_cachep, node);
1968 		rtp->nr--;
1969 	}
1970 	return 0;
1971 }
1972 
1973 void __init radix_tree_init(void)
1974 {
1975 	int ret;
1976 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1977 			sizeof(struct radix_tree_node), 0,
1978 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1979 			radix_tree_node_ctor);
1980 	radix_tree_init_maxnodes();
1981 	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1982 					NULL, radix_tree_cpu_dead);
1983 	WARN_ON(ret < 0);
1984 }
1985