xref: /openbmc/linux/lib/radix-tree.c (revision c4ee0af3)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2, or (at
11  * your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35 #include <linux/hardirq.h>		/* in_interrupt() */
36 
37 
38 #ifdef __KERNEL__
39 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
40 #else
41 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
42 #endif
43 
44 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
45 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
46 
47 #define RADIX_TREE_TAG_LONGS	\
48 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
49 
50 struct radix_tree_node {
51 	unsigned int	height;		/* Height from the bottom */
52 	unsigned int	count;
53 	union {
54 		struct radix_tree_node *parent;	/* Used when ascending tree */
55 		struct rcu_head	rcu_head;	/* Used when freeing node */
56 	};
57 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
58 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
59 };
60 
61 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 					  RADIX_TREE_MAP_SHIFT))
64 
65 /*
66  * The height_to_maxindex array needs to be one deeper than the maximum
67  * path as height 0 holds only 1 entry.
68  */
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
70 
71 /*
72  * Radix tree node cache.
73  */
74 static struct kmem_cache *radix_tree_node_cachep;
75 
76 /*
77  * The radix tree is variable-height, so an insert operation not only has
78  * to build the branch to its corresponding item, it also has to build the
79  * branch to existing items if the size has to be increased (by
80  * radix_tree_extend).
81  *
82  * The worst case is a zero height tree with just a single item at index 0,
83  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
84  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
85  * Hence:
86  */
87 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
88 
89 /*
90  * Per-cpu pool of preloaded nodes
91  */
92 struct radix_tree_preload {
93 	int nr;
94 	struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
95 };
96 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
97 
98 static inline void *ptr_to_indirect(void *ptr)
99 {
100 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
101 }
102 
103 static inline void *indirect_to_ptr(void *ptr)
104 {
105 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
106 }
107 
108 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
109 {
110 	return root->gfp_mask & __GFP_BITS_MASK;
111 }
112 
113 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
114 		int offset)
115 {
116 	__set_bit(offset, node->tags[tag]);
117 }
118 
119 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
120 		int offset)
121 {
122 	__clear_bit(offset, node->tags[tag]);
123 }
124 
125 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
126 		int offset)
127 {
128 	return test_bit(offset, node->tags[tag]);
129 }
130 
131 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
132 {
133 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
134 }
135 
136 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
137 {
138 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
139 }
140 
141 static inline void root_tag_clear_all(struct radix_tree_root *root)
142 {
143 	root->gfp_mask &= __GFP_BITS_MASK;
144 }
145 
146 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
147 {
148 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
149 }
150 
151 /*
152  * Returns 1 if any slot in the node has this tag set.
153  * Otherwise returns 0.
154  */
155 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
156 {
157 	int idx;
158 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
159 		if (node->tags[tag][idx])
160 			return 1;
161 	}
162 	return 0;
163 }
164 
165 /**
166  * radix_tree_find_next_bit - find the next set bit in a memory region
167  *
168  * @addr: The address to base the search on
169  * @size: The bitmap size in bits
170  * @offset: The bitnumber to start searching at
171  *
172  * Unrollable variant of find_next_bit() for constant size arrays.
173  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
174  * Returns next bit offset, or size if nothing found.
175  */
176 static __always_inline unsigned long
177 radix_tree_find_next_bit(const unsigned long *addr,
178 			 unsigned long size, unsigned long offset)
179 {
180 	if (!__builtin_constant_p(size))
181 		return find_next_bit(addr, size, offset);
182 
183 	if (offset < size) {
184 		unsigned long tmp;
185 
186 		addr += offset / BITS_PER_LONG;
187 		tmp = *addr >> (offset % BITS_PER_LONG);
188 		if (tmp)
189 			return __ffs(tmp) + offset;
190 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
191 		while (offset < size) {
192 			tmp = *++addr;
193 			if (tmp)
194 				return __ffs(tmp) + offset;
195 			offset += BITS_PER_LONG;
196 		}
197 	}
198 	return size;
199 }
200 
201 /*
202  * This assumes that the caller has performed appropriate preallocation, and
203  * that the caller has pinned this thread of control to the current CPU.
204  */
205 static struct radix_tree_node *
206 radix_tree_node_alloc(struct radix_tree_root *root)
207 {
208 	struct radix_tree_node *ret = NULL;
209 	gfp_t gfp_mask = root_gfp_mask(root);
210 
211 	/*
212 	 * Preload code isn't irq safe and it doesn't make sence to use
213 	 * preloading in the interrupt anyway as all the allocations have to
214 	 * be atomic. So just do normal allocation when in interrupt.
215 	 */
216 	if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
217 		struct radix_tree_preload *rtp;
218 
219 		/*
220 		 * Provided the caller has preloaded here, we will always
221 		 * succeed in getting a node here (and never reach
222 		 * kmem_cache_alloc)
223 		 */
224 		rtp = &__get_cpu_var(radix_tree_preloads);
225 		if (rtp->nr) {
226 			ret = rtp->nodes[rtp->nr - 1];
227 			rtp->nodes[rtp->nr - 1] = NULL;
228 			rtp->nr--;
229 		}
230 	}
231 	if (ret == NULL)
232 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
233 
234 	BUG_ON(radix_tree_is_indirect_ptr(ret));
235 	return ret;
236 }
237 
238 static void radix_tree_node_rcu_free(struct rcu_head *head)
239 {
240 	struct radix_tree_node *node =
241 			container_of(head, struct radix_tree_node, rcu_head);
242 	int i;
243 
244 	/*
245 	 * must only free zeroed nodes into the slab. radix_tree_shrink
246 	 * can leave us with a non-NULL entry in the first slot, so clear
247 	 * that here to make sure.
248 	 */
249 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
250 		tag_clear(node, i, 0);
251 
252 	node->slots[0] = NULL;
253 	node->count = 0;
254 
255 	kmem_cache_free(radix_tree_node_cachep, node);
256 }
257 
258 static inline void
259 radix_tree_node_free(struct radix_tree_node *node)
260 {
261 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
262 }
263 
264 /*
265  * Load up this CPU's radix_tree_node buffer with sufficient objects to
266  * ensure that the addition of a single element in the tree cannot fail.  On
267  * success, return zero, with preemption disabled.  On error, return -ENOMEM
268  * with preemption not disabled.
269  *
270  * To make use of this facility, the radix tree must be initialised without
271  * __GFP_WAIT being passed to INIT_RADIX_TREE().
272  */
273 static int __radix_tree_preload(gfp_t gfp_mask)
274 {
275 	struct radix_tree_preload *rtp;
276 	struct radix_tree_node *node;
277 	int ret = -ENOMEM;
278 
279 	preempt_disable();
280 	rtp = &__get_cpu_var(radix_tree_preloads);
281 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
282 		preempt_enable();
283 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
284 		if (node == NULL)
285 			goto out;
286 		preempt_disable();
287 		rtp = &__get_cpu_var(radix_tree_preloads);
288 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
289 			rtp->nodes[rtp->nr++] = node;
290 		else
291 			kmem_cache_free(radix_tree_node_cachep, node);
292 	}
293 	ret = 0;
294 out:
295 	return ret;
296 }
297 
298 /*
299  * Load up this CPU's radix_tree_node buffer with sufficient objects to
300  * ensure that the addition of a single element in the tree cannot fail.  On
301  * success, return zero, with preemption disabled.  On error, return -ENOMEM
302  * with preemption not disabled.
303  *
304  * To make use of this facility, the radix tree must be initialised without
305  * __GFP_WAIT being passed to INIT_RADIX_TREE().
306  */
307 int radix_tree_preload(gfp_t gfp_mask)
308 {
309 	/* Warn on non-sensical use... */
310 	WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
311 	return __radix_tree_preload(gfp_mask);
312 }
313 EXPORT_SYMBOL(radix_tree_preload);
314 
315 /*
316  * The same as above function, except we don't guarantee preloading happens.
317  * We do it, if we decide it helps. On success, return zero with preemption
318  * disabled. On error, return -ENOMEM with preemption not disabled.
319  */
320 int radix_tree_maybe_preload(gfp_t gfp_mask)
321 {
322 	if (gfp_mask & __GFP_WAIT)
323 		return __radix_tree_preload(gfp_mask);
324 	/* Preloading doesn't help anything with this gfp mask, skip it */
325 	preempt_disable();
326 	return 0;
327 }
328 EXPORT_SYMBOL(radix_tree_maybe_preload);
329 
330 /*
331  *	Return the maximum key which can be store into a
332  *	radix tree with height HEIGHT.
333  */
334 static inline unsigned long radix_tree_maxindex(unsigned int height)
335 {
336 	return height_to_maxindex[height];
337 }
338 
339 /*
340  *	Extend a radix tree so it can store key @index.
341  */
342 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
343 {
344 	struct radix_tree_node *node;
345 	struct radix_tree_node *slot;
346 	unsigned int height;
347 	int tag;
348 
349 	/* Figure out what the height should be.  */
350 	height = root->height + 1;
351 	while (index > radix_tree_maxindex(height))
352 		height++;
353 
354 	if (root->rnode == NULL) {
355 		root->height = height;
356 		goto out;
357 	}
358 
359 	do {
360 		unsigned int newheight;
361 		if (!(node = radix_tree_node_alloc(root)))
362 			return -ENOMEM;
363 
364 		/* Propagate the aggregated tag info into the new root */
365 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
366 			if (root_tag_get(root, tag))
367 				tag_set(node, tag, 0);
368 		}
369 
370 		/* Increase the height.  */
371 		newheight = root->height+1;
372 		node->height = newheight;
373 		node->count = 1;
374 		node->parent = NULL;
375 		slot = root->rnode;
376 		if (newheight > 1) {
377 			slot = indirect_to_ptr(slot);
378 			slot->parent = node;
379 		}
380 		node->slots[0] = slot;
381 		node = ptr_to_indirect(node);
382 		rcu_assign_pointer(root->rnode, node);
383 		root->height = newheight;
384 	} while (height > root->height);
385 out:
386 	return 0;
387 }
388 
389 /**
390  *	radix_tree_insert    -    insert into a radix tree
391  *	@root:		radix tree root
392  *	@index:		index key
393  *	@item:		item to insert
394  *
395  *	Insert an item into the radix tree at position @index.
396  */
397 int radix_tree_insert(struct radix_tree_root *root,
398 			unsigned long index, void *item)
399 {
400 	struct radix_tree_node *node = NULL, *slot;
401 	unsigned int height, shift;
402 	int offset;
403 	int error;
404 
405 	BUG_ON(radix_tree_is_indirect_ptr(item));
406 
407 	/* Make sure the tree is high enough.  */
408 	if (index > radix_tree_maxindex(root->height)) {
409 		error = radix_tree_extend(root, index);
410 		if (error)
411 			return error;
412 	}
413 
414 	slot = indirect_to_ptr(root->rnode);
415 
416 	height = root->height;
417 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
418 
419 	offset = 0;			/* uninitialised var warning */
420 	while (height > 0) {
421 		if (slot == NULL) {
422 			/* Have to add a child node.  */
423 			if (!(slot = radix_tree_node_alloc(root)))
424 				return -ENOMEM;
425 			slot->height = height;
426 			slot->parent = node;
427 			if (node) {
428 				rcu_assign_pointer(node->slots[offset], slot);
429 				node->count++;
430 			} else
431 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
432 		}
433 
434 		/* Go a level down */
435 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
436 		node = slot;
437 		slot = node->slots[offset];
438 		shift -= RADIX_TREE_MAP_SHIFT;
439 		height--;
440 	}
441 
442 	if (slot != NULL)
443 		return -EEXIST;
444 
445 	if (node) {
446 		node->count++;
447 		rcu_assign_pointer(node->slots[offset], item);
448 		BUG_ON(tag_get(node, 0, offset));
449 		BUG_ON(tag_get(node, 1, offset));
450 	} else {
451 		rcu_assign_pointer(root->rnode, item);
452 		BUG_ON(root_tag_get(root, 0));
453 		BUG_ON(root_tag_get(root, 1));
454 	}
455 
456 	return 0;
457 }
458 EXPORT_SYMBOL(radix_tree_insert);
459 
460 /*
461  * is_slot == 1 : search for the slot.
462  * is_slot == 0 : search for the node.
463  */
464 static void *radix_tree_lookup_element(struct radix_tree_root *root,
465 				unsigned long index, int is_slot)
466 {
467 	unsigned int height, shift;
468 	struct radix_tree_node *node, **slot;
469 
470 	node = rcu_dereference_raw(root->rnode);
471 	if (node == NULL)
472 		return NULL;
473 
474 	if (!radix_tree_is_indirect_ptr(node)) {
475 		if (index > 0)
476 			return NULL;
477 		return is_slot ? (void *)&root->rnode : node;
478 	}
479 	node = indirect_to_ptr(node);
480 
481 	height = node->height;
482 	if (index > radix_tree_maxindex(height))
483 		return NULL;
484 
485 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
486 
487 	do {
488 		slot = (struct radix_tree_node **)
489 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
490 		node = rcu_dereference_raw(*slot);
491 		if (node == NULL)
492 			return NULL;
493 
494 		shift -= RADIX_TREE_MAP_SHIFT;
495 		height--;
496 	} while (height > 0);
497 
498 	return is_slot ? (void *)slot : indirect_to_ptr(node);
499 }
500 
501 /**
502  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
503  *	@root:		radix tree root
504  *	@index:		index key
505  *
506  *	Returns:  the slot corresponding to the position @index in the
507  *	radix tree @root. This is useful for update-if-exists operations.
508  *
509  *	This function can be called under rcu_read_lock iff the slot is not
510  *	modified by radix_tree_replace_slot, otherwise it must be called
511  *	exclusive from other writers. Any dereference of the slot must be done
512  *	using radix_tree_deref_slot.
513  */
514 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
515 {
516 	return (void **)radix_tree_lookup_element(root, index, 1);
517 }
518 EXPORT_SYMBOL(radix_tree_lookup_slot);
519 
520 /**
521  *	radix_tree_lookup    -    perform lookup operation on a radix tree
522  *	@root:		radix tree root
523  *	@index:		index key
524  *
525  *	Lookup the item at the position @index in the radix tree @root.
526  *
527  *	This function can be called under rcu_read_lock, however the caller
528  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
529  *	them safely). No RCU barriers are required to access or modify the
530  *	returned item, however.
531  */
532 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
533 {
534 	return radix_tree_lookup_element(root, index, 0);
535 }
536 EXPORT_SYMBOL(radix_tree_lookup);
537 
538 /**
539  *	radix_tree_tag_set - set a tag on a radix tree node
540  *	@root:		radix tree root
541  *	@index:		index key
542  *	@tag: 		tag index
543  *
544  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
545  *	corresponding to @index in the radix tree.  From
546  *	the root all the way down to the leaf node.
547  *
548  *	Returns the address of the tagged item.   Setting a tag on a not-present
549  *	item is a bug.
550  */
551 void *radix_tree_tag_set(struct radix_tree_root *root,
552 			unsigned long index, unsigned int tag)
553 {
554 	unsigned int height, shift;
555 	struct radix_tree_node *slot;
556 
557 	height = root->height;
558 	BUG_ON(index > radix_tree_maxindex(height));
559 
560 	slot = indirect_to_ptr(root->rnode);
561 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
562 
563 	while (height > 0) {
564 		int offset;
565 
566 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
567 		if (!tag_get(slot, tag, offset))
568 			tag_set(slot, tag, offset);
569 		slot = slot->slots[offset];
570 		BUG_ON(slot == NULL);
571 		shift -= RADIX_TREE_MAP_SHIFT;
572 		height--;
573 	}
574 
575 	/* set the root's tag bit */
576 	if (slot && !root_tag_get(root, tag))
577 		root_tag_set(root, tag);
578 
579 	return slot;
580 }
581 EXPORT_SYMBOL(radix_tree_tag_set);
582 
583 /**
584  *	radix_tree_tag_clear - clear a tag on a radix tree node
585  *	@root:		radix tree root
586  *	@index:		index key
587  *	@tag: 		tag index
588  *
589  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
590  *	corresponding to @index in the radix tree.  If
591  *	this causes the leaf node to have no tags set then clear the tag in the
592  *	next-to-leaf node, etc.
593  *
594  *	Returns the address of the tagged item on success, else NULL.  ie:
595  *	has the same return value and semantics as radix_tree_lookup().
596  */
597 void *radix_tree_tag_clear(struct radix_tree_root *root,
598 			unsigned long index, unsigned int tag)
599 {
600 	struct radix_tree_node *node = NULL;
601 	struct radix_tree_node *slot = NULL;
602 	unsigned int height, shift;
603 	int uninitialized_var(offset);
604 
605 	height = root->height;
606 	if (index > radix_tree_maxindex(height))
607 		goto out;
608 
609 	shift = height * RADIX_TREE_MAP_SHIFT;
610 	slot = indirect_to_ptr(root->rnode);
611 
612 	while (shift) {
613 		if (slot == NULL)
614 			goto out;
615 
616 		shift -= RADIX_TREE_MAP_SHIFT;
617 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
618 		node = slot;
619 		slot = slot->slots[offset];
620 	}
621 
622 	if (slot == NULL)
623 		goto out;
624 
625 	while (node) {
626 		if (!tag_get(node, tag, offset))
627 			goto out;
628 		tag_clear(node, tag, offset);
629 		if (any_tag_set(node, tag))
630 			goto out;
631 
632 		index >>= RADIX_TREE_MAP_SHIFT;
633 		offset = index & RADIX_TREE_MAP_MASK;
634 		node = node->parent;
635 	}
636 
637 	/* clear the root's tag bit */
638 	if (root_tag_get(root, tag))
639 		root_tag_clear(root, tag);
640 
641 out:
642 	return slot;
643 }
644 EXPORT_SYMBOL(radix_tree_tag_clear);
645 
646 /**
647  * radix_tree_tag_get - get a tag on a radix tree node
648  * @root:		radix tree root
649  * @index:		index key
650  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
651  *
652  * Return values:
653  *
654  *  0: tag not present or not set
655  *  1: tag set
656  *
657  * Note that the return value of this function may not be relied on, even if
658  * the RCU lock is held, unless tag modification and node deletion are excluded
659  * from concurrency.
660  */
661 int radix_tree_tag_get(struct radix_tree_root *root,
662 			unsigned long index, unsigned int tag)
663 {
664 	unsigned int height, shift;
665 	struct radix_tree_node *node;
666 
667 	/* check the root's tag bit */
668 	if (!root_tag_get(root, tag))
669 		return 0;
670 
671 	node = rcu_dereference_raw(root->rnode);
672 	if (node == NULL)
673 		return 0;
674 
675 	if (!radix_tree_is_indirect_ptr(node))
676 		return (index == 0);
677 	node = indirect_to_ptr(node);
678 
679 	height = node->height;
680 	if (index > radix_tree_maxindex(height))
681 		return 0;
682 
683 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
684 
685 	for ( ; ; ) {
686 		int offset;
687 
688 		if (node == NULL)
689 			return 0;
690 
691 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
692 		if (!tag_get(node, tag, offset))
693 			return 0;
694 		if (height == 1)
695 			return 1;
696 		node = rcu_dereference_raw(node->slots[offset]);
697 		shift -= RADIX_TREE_MAP_SHIFT;
698 		height--;
699 	}
700 }
701 EXPORT_SYMBOL(radix_tree_tag_get);
702 
703 /**
704  * radix_tree_next_chunk - find next chunk of slots for iteration
705  *
706  * @root:	radix tree root
707  * @iter:	iterator state
708  * @flags:	RADIX_TREE_ITER_* flags and tag index
709  * Returns:	pointer to chunk first slot, or NULL if iteration is over
710  */
711 void **radix_tree_next_chunk(struct radix_tree_root *root,
712 			     struct radix_tree_iter *iter, unsigned flags)
713 {
714 	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
715 	struct radix_tree_node *rnode, *node;
716 	unsigned long index, offset;
717 
718 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
719 		return NULL;
720 
721 	/*
722 	 * Catch next_index overflow after ~0UL. iter->index never overflows
723 	 * during iterating; it can be zero only at the beginning.
724 	 * And we cannot overflow iter->next_index in a single step,
725 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
726 	 *
727 	 * This condition also used by radix_tree_next_slot() to stop
728 	 * contiguous iterating, and forbid swithing to the next chunk.
729 	 */
730 	index = iter->next_index;
731 	if (!index && iter->index)
732 		return NULL;
733 
734 	rnode = rcu_dereference_raw(root->rnode);
735 	if (radix_tree_is_indirect_ptr(rnode)) {
736 		rnode = indirect_to_ptr(rnode);
737 	} else if (rnode && !index) {
738 		/* Single-slot tree */
739 		iter->index = 0;
740 		iter->next_index = 1;
741 		iter->tags = 1;
742 		return (void **)&root->rnode;
743 	} else
744 		return NULL;
745 
746 restart:
747 	shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT;
748 	offset = index >> shift;
749 
750 	/* Index outside of the tree */
751 	if (offset >= RADIX_TREE_MAP_SIZE)
752 		return NULL;
753 
754 	node = rnode;
755 	while (1) {
756 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
757 				!test_bit(offset, node->tags[tag]) :
758 				!node->slots[offset]) {
759 			/* Hole detected */
760 			if (flags & RADIX_TREE_ITER_CONTIG)
761 				return NULL;
762 
763 			if (flags & RADIX_TREE_ITER_TAGGED)
764 				offset = radix_tree_find_next_bit(
765 						node->tags[tag],
766 						RADIX_TREE_MAP_SIZE,
767 						offset + 1);
768 			else
769 				while (++offset	< RADIX_TREE_MAP_SIZE) {
770 					if (node->slots[offset])
771 						break;
772 				}
773 			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
774 			index += offset << shift;
775 			/* Overflow after ~0UL */
776 			if (!index)
777 				return NULL;
778 			if (offset == RADIX_TREE_MAP_SIZE)
779 				goto restart;
780 		}
781 
782 		/* This is leaf-node */
783 		if (!shift)
784 			break;
785 
786 		node = rcu_dereference_raw(node->slots[offset]);
787 		if (node == NULL)
788 			goto restart;
789 		shift -= RADIX_TREE_MAP_SHIFT;
790 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
791 	}
792 
793 	/* Update the iterator state */
794 	iter->index = index;
795 	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
796 
797 	/* Construct iter->tags bit-mask from node->tags[tag] array */
798 	if (flags & RADIX_TREE_ITER_TAGGED) {
799 		unsigned tag_long, tag_bit;
800 
801 		tag_long = offset / BITS_PER_LONG;
802 		tag_bit  = offset % BITS_PER_LONG;
803 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
804 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
805 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
806 			/* Pick tags from next element */
807 			if (tag_bit)
808 				iter->tags |= node->tags[tag][tag_long + 1] <<
809 						(BITS_PER_LONG - tag_bit);
810 			/* Clip chunk size, here only BITS_PER_LONG tags */
811 			iter->next_index = index + BITS_PER_LONG;
812 		}
813 	}
814 
815 	return node->slots + offset;
816 }
817 EXPORT_SYMBOL(radix_tree_next_chunk);
818 
819 /**
820  * radix_tree_range_tag_if_tagged - for each item in given range set given
821  *				   tag if item has another tag set
822  * @root:		radix tree root
823  * @first_indexp:	pointer to a starting index of a range to scan
824  * @last_index:		last index of a range to scan
825  * @nr_to_tag:		maximum number items to tag
826  * @iftag:		tag index to test
827  * @settag:		tag index to set if tested tag is set
828  *
829  * This function scans range of radix tree from first_index to last_index
830  * (inclusive).  For each item in the range if iftag is set, the function sets
831  * also settag. The function stops either after tagging nr_to_tag items or
832  * after reaching last_index.
833  *
834  * The tags must be set from the leaf level only and propagated back up the
835  * path to the root. We must do this so that we resolve the full path before
836  * setting any tags on intermediate nodes. If we set tags as we descend, then
837  * we can get to the leaf node and find that the index that has the iftag
838  * set is outside the range we are scanning. This reults in dangling tags and
839  * can lead to problems with later tag operations (e.g. livelocks on lookups).
840  *
841  * The function returns number of leaves where the tag was set and sets
842  * *first_indexp to the first unscanned index.
843  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
844  * be prepared to handle that.
845  */
846 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
847 		unsigned long *first_indexp, unsigned long last_index,
848 		unsigned long nr_to_tag,
849 		unsigned int iftag, unsigned int settag)
850 {
851 	unsigned int height = root->height;
852 	struct radix_tree_node *node = NULL;
853 	struct radix_tree_node *slot;
854 	unsigned int shift;
855 	unsigned long tagged = 0;
856 	unsigned long index = *first_indexp;
857 
858 	last_index = min(last_index, radix_tree_maxindex(height));
859 	if (index > last_index)
860 		return 0;
861 	if (!nr_to_tag)
862 		return 0;
863 	if (!root_tag_get(root, iftag)) {
864 		*first_indexp = last_index + 1;
865 		return 0;
866 	}
867 	if (height == 0) {
868 		*first_indexp = last_index + 1;
869 		root_tag_set(root, settag);
870 		return 1;
871 	}
872 
873 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
874 	slot = indirect_to_ptr(root->rnode);
875 
876 	for (;;) {
877 		unsigned long upindex;
878 		int offset;
879 
880 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
881 		if (!slot->slots[offset])
882 			goto next;
883 		if (!tag_get(slot, iftag, offset))
884 			goto next;
885 		if (shift) {
886 			/* Go down one level */
887 			shift -= RADIX_TREE_MAP_SHIFT;
888 			node = slot;
889 			slot = slot->slots[offset];
890 			continue;
891 		}
892 
893 		/* tag the leaf */
894 		tagged++;
895 		tag_set(slot, settag, offset);
896 
897 		/* walk back up the path tagging interior nodes */
898 		upindex = index;
899 		while (node) {
900 			upindex >>= RADIX_TREE_MAP_SHIFT;
901 			offset = upindex & RADIX_TREE_MAP_MASK;
902 
903 			/* stop if we find a node with the tag already set */
904 			if (tag_get(node, settag, offset))
905 				break;
906 			tag_set(node, settag, offset);
907 			node = node->parent;
908 		}
909 
910 		/*
911 		 * Small optimization: now clear that node pointer.
912 		 * Since all of this slot's ancestors now have the tag set
913 		 * from setting it above, we have no further need to walk
914 		 * back up the tree setting tags, until we update slot to
915 		 * point to another radix_tree_node.
916 		 */
917 		node = NULL;
918 
919 next:
920 		/* Go to next item at level determined by 'shift' */
921 		index = ((index >> shift) + 1) << shift;
922 		/* Overflow can happen when last_index is ~0UL... */
923 		if (index > last_index || !index)
924 			break;
925 		if (tagged >= nr_to_tag)
926 			break;
927 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
928 			/*
929 			 * We've fully scanned this node. Go up. Because
930 			 * last_index is guaranteed to be in the tree, what
931 			 * we do below cannot wander astray.
932 			 */
933 			slot = slot->parent;
934 			shift += RADIX_TREE_MAP_SHIFT;
935 		}
936 	}
937 	/*
938 	 * We need not to tag the root tag if there is no tag which is set with
939 	 * settag within the range from *first_indexp to last_index.
940 	 */
941 	if (tagged > 0)
942 		root_tag_set(root, settag);
943 	*first_indexp = index;
944 
945 	return tagged;
946 }
947 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
948 
949 
950 /**
951  *	radix_tree_next_hole    -    find the next hole (not-present entry)
952  *	@root:		tree root
953  *	@index:		index key
954  *	@max_scan:	maximum range to search
955  *
956  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
957  *	indexed hole.
958  *
959  *	Returns: the index of the hole if found, otherwise returns an index
960  *	outside of the set specified (in which case 'return - index >= max_scan'
961  *	will be true). In rare cases of index wrap-around, 0 will be returned.
962  *
963  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
964  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
965  *	the tree at a single point in time. For example, if a hole is created
966  *	at index 5, then subsequently a hole is created at index 10,
967  *	radix_tree_next_hole covering both indexes may return 10 if called
968  *	under rcu_read_lock.
969  */
970 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
971 				unsigned long index, unsigned long max_scan)
972 {
973 	unsigned long i;
974 
975 	for (i = 0; i < max_scan; i++) {
976 		if (!radix_tree_lookup(root, index))
977 			break;
978 		index++;
979 		if (index == 0)
980 			break;
981 	}
982 
983 	return index;
984 }
985 EXPORT_SYMBOL(radix_tree_next_hole);
986 
987 /**
988  *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
989  *	@root:		tree root
990  *	@index:		index key
991  *	@max_scan:	maximum range to search
992  *
993  *	Search backwards in the range [max(index-max_scan+1, 0), index]
994  *	for the first hole.
995  *
996  *	Returns: the index of the hole if found, otherwise returns an index
997  *	outside of the set specified (in which case 'index - return >= max_scan'
998  *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
999  *
1000  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
1001  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
1002  *	the tree at a single point in time. For example, if a hole is created
1003  *	at index 10, then subsequently a hole is created at index 5,
1004  *	radix_tree_prev_hole covering both indexes may return 5 if called under
1005  *	rcu_read_lock.
1006  */
1007 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
1008 				   unsigned long index, unsigned long max_scan)
1009 {
1010 	unsigned long i;
1011 
1012 	for (i = 0; i < max_scan; i++) {
1013 		if (!radix_tree_lookup(root, index))
1014 			break;
1015 		index--;
1016 		if (index == ULONG_MAX)
1017 			break;
1018 	}
1019 
1020 	return index;
1021 }
1022 EXPORT_SYMBOL(radix_tree_prev_hole);
1023 
1024 /**
1025  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1026  *	@root:		radix tree root
1027  *	@results:	where the results of the lookup are placed
1028  *	@first_index:	start the lookup from this key
1029  *	@max_items:	place up to this many items at *results
1030  *
1031  *	Performs an index-ascending scan of the tree for present items.  Places
1032  *	them at *@results and returns the number of items which were placed at
1033  *	*@results.
1034  *
1035  *	The implementation is naive.
1036  *
1037  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1038  *	rcu_read_lock. In this case, rather than the returned results being
1039  *	an atomic snapshot of the tree at a single point in time, the semantics
1040  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
1041  *	have been issued in individual locks, and results stored in 'results'.
1042  */
1043 unsigned int
1044 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1045 			unsigned long first_index, unsigned int max_items)
1046 {
1047 	struct radix_tree_iter iter;
1048 	void **slot;
1049 	unsigned int ret = 0;
1050 
1051 	if (unlikely(!max_items))
1052 		return 0;
1053 
1054 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1055 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1056 		if (!results[ret])
1057 			continue;
1058 		if (++ret == max_items)
1059 			break;
1060 	}
1061 
1062 	return ret;
1063 }
1064 EXPORT_SYMBOL(radix_tree_gang_lookup);
1065 
1066 /**
1067  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1068  *	@root:		radix tree root
1069  *	@results:	where the results of the lookup are placed
1070  *	@indices:	where their indices should be placed (but usually NULL)
1071  *	@first_index:	start the lookup from this key
1072  *	@max_items:	place up to this many items at *results
1073  *
1074  *	Performs an index-ascending scan of the tree for present items.  Places
1075  *	their slots at *@results and returns the number of items which were
1076  *	placed at *@results.
1077  *
1078  *	The implementation is naive.
1079  *
1080  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1081  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1082  *	protection, radix_tree_deref_slot may fail requiring a retry.
1083  */
1084 unsigned int
1085 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1086 			void ***results, unsigned long *indices,
1087 			unsigned long first_index, unsigned int max_items)
1088 {
1089 	struct radix_tree_iter iter;
1090 	void **slot;
1091 	unsigned int ret = 0;
1092 
1093 	if (unlikely(!max_items))
1094 		return 0;
1095 
1096 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1097 		results[ret] = slot;
1098 		if (indices)
1099 			indices[ret] = iter.index;
1100 		if (++ret == max_items)
1101 			break;
1102 	}
1103 
1104 	return ret;
1105 }
1106 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1107 
1108 /**
1109  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1110  *	                             based on a tag
1111  *	@root:		radix tree root
1112  *	@results:	where the results of the lookup are placed
1113  *	@first_index:	start the lookup from this key
1114  *	@max_items:	place up to this many items at *results
1115  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1116  *
1117  *	Performs an index-ascending scan of the tree for present items which
1118  *	have the tag indexed by @tag set.  Places the items at *@results and
1119  *	returns the number of items which were placed at *@results.
1120  */
1121 unsigned int
1122 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1123 		unsigned long first_index, unsigned int max_items,
1124 		unsigned int tag)
1125 {
1126 	struct radix_tree_iter iter;
1127 	void **slot;
1128 	unsigned int ret = 0;
1129 
1130 	if (unlikely(!max_items))
1131 		return 0;
1132 
1133 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1134 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1135 		if (!results[ret])
1136 			continue;
1137 		if (++ret == max_items)
1138 			break;
1139 	}
1140 
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1144 
1145 /**
1146  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1147  *					  radix tree based on a tag
1148  *	@root:		radix tree root
1149  *	@results:	where the results of the lookup are placed
1150  *	@first_index:	start the lookup from this key
1151  *	@max_items:	place up to this many items at *results
1152  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1153  *
1154  *	Performs an index-ascending scan of the tree for present items which
1155  *	have the tag indexed by @tag set.  Places the slots at *@results and
1156  *	returns the number of slots which were placed at *@results.
1157  */
1158 unsigned int
1159 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1160 		unsigned long first_index, unsigned int max_items,
1161 		unsigned int tag)
1162 {
1163 	struct radix_tree_iter iter;
1164 	void **slot;
1165 	unsigned int ret = 0;
1166 
1167 	if (unlikely(!max_items))
1168 		return 0;
1169 
1170 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1171 		results[ret] = slot;
1172 		if (++ret == max_items)
1173 			break;
1174 	}
1175 
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1179 
1180 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1181 #include <linux/sched.h> /* for cond_resched() */
1182 
1183 /*
1184  * This linear search is at present only useful to shmem_unuse_inode().
1185  */
1186 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1187 			      unsigned long index, unsigned long *found_index)
1188 {
1189 	unsigned int shift, height;
1190 	unsigned long i;
1191 
1192 	height = slot->height;
1193 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1194 
1195 	for ( ; height > 1; height--) {
1196 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1197 		for (;;) {
1198 			if (slot->slots[i] != NULL)
1199 				break;
1200 			index &= ~((1UL << shift) - 1);
1201 			index += 1UL << shift;
1202 			if (index == 0)
1203 				goto out;	/* 32-bit wraparound */
1204 			i++;
1205 			if (i == RADIX_TREE_MAP_SIZE)
1206 				goto out;
1207 		}
1208 
1209 		shift -= RADIX_TREE_MAP_SHIFT;
1210 		slot = rcu_dereference_raw(slot->slots[i]);
1211 		if (slot == NULL)
1212 			goto out;
1213 	}
1214 
1215 	/* Bottom level: check items */
1216 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1217 		if (slot->slots[i] == item) {
1218 			*found_index = index + i;
1219 			index = 0;
1220 			goto out;
1221 		}
1222 	}
1223 	index += RADIX_TREE_MAP_SIZE;
1224 out:
1225 	return index;
1226 }
1227 
1228 /**
1229  *	radix_tree_locate_item - search through radix tree for item
1230  *	@root:		radix tree root
1231  *	@item:		item to be found
1232  *
1233  *	Returns index where item was found, or -1 if not found.
1234  *	Caller must hold no lock (since this time-consuming function needs
1235  *	to be preemptible), and must check afterwards if item is still there.
1236  */
1237 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1238 {
1239 	struct radix_tree_node *node;
1240 	unsigned long max_index;
1241 	unsigned long cur_index = 0;
1242 	unsigned long found_index = -1;
1243 
1244 	do {
1245 		rcu_read_lock();
1246 		node = rcu_dereference_raw(root->rnode);
1247 		if (!radix_tree_is_indirect_ptr(node)) {
1248 			rcu_read_unlock();
1249 			if (node == item)
1250 				found_index = 0;
1251 			break;
1252 		}
1253 
1254 		node = indirect_to_ptr(node);
1255 		max_index = radix_tree_maxindex(node->height);
1256 		if (cur_index > max_index)
1257 			break;
1258 
1259 		cur_index = __locate(node, item, cur_index, &found_index);
1260 		rcu_read_unlock();
1261 		cond_resched();
1262 	} while (cur_index != 0 && cur_index <= max_index);
1263 
1264 	return found_index;
1265 }
1266 #else
1267 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1268 {
1269 	return -1;
1270 }
1271 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1272 
1273 /**
1274  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1275  *	@root		radix tree root
1276  */
1277 static inline void radix_tree_shrink(struct radix_tree_root *root)
1278 {
1279 	/* try to shrink tree height */
1280 	while (root->height > 0) {
1281 		struct radix_tree_node *to_free = root->rnode;
1282 		struct radix_tree_node *slot;
1283 
1284 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1285 		to_free = indirect_to_ptr(to_free);
1286 
1287 		/*
1288 		 * The candidate node has more than one child, or its child
1289 		 * is not at the leftmost slot, we cannot shrink.
1290 		 */
1291 		if (to_free->count != 1)
1292 			break;
1293 		if (!to_free->slots[0])
1294 			break;
1295 
1296 		/*
1297 		 * We don't need rcu_assign_pointer(), since we are simply
1298 		 * moving the node from one part of the tree to another: if it
1299 		 * was safe to dereference the old pointer to it
1300 		 * (to_free->slots[0]), it will be safe to dereference the new
1301 		 * one (root->rnode) as far as dependent read barriers go.
1302 		 */
1303 		slot = to_free->slots[0];
1304 		if (root->height > 1) {
1305 			slot->parent = NULL;
1306 			slot = ptr_to_indirect(slot);
1307 		}
1308 		root->rnode = slot;
1309 		root->height--;
1310 
1311 		/*
1312 		 * We have a dilemma here. The node's slot[0] must not be
1313 		 * NULLed in case there are concurrent lookups expecting to
1314 		 * find the item. However if this was a bottom-level node,
1315 		 * then it may be subject to the slot pointer being visible
1316 		 * to callers dereferencing it. If item corresponding to
1317 		 * slot[0] is subsequently deleted, these callers would expect
1318 		 * their slot to become empty sooner or later.
1319 		 *
1320 		 * For example, lockless pagecache will look up a slot, deref
1321 		 * the page pointer, and if the page is 0 refcount it means it
1322 		 * was concurrently deleted from pagecache so try the deref
1323 		 * again. Fortunately there is already a requirement for logic
1324 		 * to retry the entire slot lookup -- the indirect pointer
1325 		 * problem (replacing direct root node with an indirect pointer
1326 		 * also results in a stale slot). So tag the slot as indirect
1327 		 * to force callers to retry.
1328 		 */
1329 		if (root->height == 0)
1330 			*((unsigned long *)&to_free->slots[0]) |=
1331 						RADIX_TREE_INDIRECT_PTR;
1332 
1333 		radix_tree_node_free(to_free);
1334 	}
1335 }
1336 
1337 /**
1338  *	radix_tree_delete    -    delete an item from a radix tree
1339  *	@root:		radix tree root
1340  *	@index:		index key
1341  *
1342  *	Remove the item at @index from the radix tree rooted at @root.
1343  *
1344  *	Returns the address of the deleted item, or NULL if it was not present.
1345  */
1346 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1347 {
1348 	struct radix_tree_node *node = NULL;
1349 	struct radix_tree_node *slot = NULL;
1350 	struct radix_tree_node *to_free;
1351 	unsigned int height, shift;
1352 	int tag;
1353 	int uninitialized_var(offset);
1354 
1355 	height = root->height;
1356 	if (index > radix_tree_maxindex(height))
1357 		goto out;
1358 
1359 	slot = root->rnode;
1360 	if (height == 0) {
1361 		root_tag_clear_all(root);
1362 		root->rnode = NULL;
1363 		goto out;
1364 	}
1365 	slot = indirect_to_ptr(slot);
1366 	shift = height * RADIX_TREE_MAP_SHIFT;
1367 
1368 	do {
1369 		if (slot == NULL)
1370 			goto out;
1371 
1372 		shift -= RADIX_TREE_MAP_SHIFT;
1373 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1374 		node = slot;
1375 		slot = slot->slots[offset];
1376 	} while (shift);
1377 
1378 	if (slot == NULL)
1379 		goto out;
1380 
1381 	/*
1382 	 * Clear all tags associated with the item to be deleted.
1383 	 * This way of doing it would be inefficient, but seldom is any set.
1384 	 */
1385 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1386 		if (tag_get(node, tag, offset))
1387 			radix_tree_tag_clear(root, index, tag);
1388 	}
1389 
1390 	to_free = NULL;
1391 	/* Now free the nodes we do not need anymore */
1392 	while (node) {
1393 		node->slots[offset] = NULL;
1394 		node->count--;
1395 		/*
1396 		 * Queue the node for deferred freeing after the
1397 		 * last reference to it disappears (set NULL, above).
1398 		 */
1399 		if (to_free)
1400 			radix_tree_node_free(to_free);
1401 
1402 		if (node->count) {
1403 			if (node == indirect_to_ptr(root->rnode))
1404 				radix_tree_shrink(root);
1405 			goto out;
1406 		}
1407 
1408 		/* Node with zero slots in use so free it */
1409 		to_free = node;
1410 
1411 		index >>= RADIX_TREE_MAP_SHIFT;
1412 		offset = index & RADIX_TREE_MAP_MASK;
1413 		node = node->parent;
1414 	}
1415 
1416 	root_tag_clear_all(root);
1417 	root->height = 0;
1418 	root->rnode = NULL;
1419 	if (to_free)
1420 		radix_tree_node_free(to_free);
1421 
1422 out:
1423 	return slot;
1424 }
1425 EXPORT_SYMBOL(radix_tree_delete);
1426 
1427 /**
1428  *	radix_tree_tagged - test whether any items in the tree are tagged
1429  *	@root:		radix tree root
1430  *	@tag:		tag to test
1431  */
1432 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1433 {
1434 	return root_tag_get(root, tag);
1435 }
1436 EXPORT_SYMBOL(radix_tree_tagged);
1437 
1438 static void
1439 radix_tree_node_ctor(void *node)
1440 {
1441 	memset(node, 0, sizeof(struct radix_tree_node));
1442 }
1443 
1444 static __init unsigned long __maxindex(unsigned int height)
1445 {
1446 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1447 	int shift = RADIX_TREE_INDEX_BITS - width;
1448 
1449 	if (shift < 0)
1450 		return ~0UL;
1451 	if (shift >= BITS_PER_LONG)
1452 		return 0UL;
1453 	return ~0UL >> shift;
1454 }
1455 
1456 static __init void radix_tree_init_maxindex(void)
1457 {
1458 	unsigned int i;
1459 
1460 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1461 		height_to_maxindex[i] = __maxindex(i);
1462 }
1463 
1464 static int radix_tree_callback(struct notifier_block *nfb,
1465                             unsigned long action,
1466                             void *hcpu)
1467 {
1468        int cpu = (long)hcpu;
1469        struct radix_tree_preload *rtp;
1470 
1471        /* Free per-cpu pool of perloaded nodes */
1472        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1473                rtp = &per_cpu(radix_tree_preloads, cpu);
1474                while (rtp->nr) {
1475                        kmem_cache_free(radix_tree_node_cachep,
1476                                        rtp->nodes[rtp->nr-1]);
1477                        rtp->nodes[rtp->nr-1] = NULL;
1478                        rtp->nr--;
1479                }
1480        }
1481        return NOTIFY_OK;
1482 }
1483 
1484 void __init radix_tree_init(void)
1485 {
1486 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1487 			sizeof(struct radix_tree_node), 0,
1488 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1489 			radix_tree_node_ctor);
1490 	radix_tree_init_maxindex();
1491 	hotcpu_notifier(radix_tree_callback, 0);
1492 }
1493