xref: /openbmc/linux/lib/radix-tree.c (revision afb46f79)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2, or (at
11  * your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/string.h>
33 #include <linux/bitops.h>
34 #include <linux/rcupdate.h>
35 #include <linux/hardirq.h>		/* in_interrupt() */
36 
37 
38 /*
39  * The height_to_maxindex array needs to be one deeper than the maximum
40  * path as height 0 holds only 1 entry.
41  */
42 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
43 
44 /*
45  * Radix tree node cache.
46  */
47 static struct kmem_cache *radix_tree_node_cachep;
48 
49 /*
50  * The radix tree is variable-height, so an insert operation not only has
51  * to build the branch to its corresponding item, it also has to build the
52  * branch to existing items if the size has to be increased (by
53  * radix_tree_extend).
54  *
55  * The worst case is a zero height tree with just a single item at index 0,
56  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
57  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
58  * Hence:
59  */
60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
61 
62 /*
63  * Per-cpu pool of preloaded nodes
64  */
65 struct radix_tree_preload {
66 	int nr;
67 	struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
68 };
69 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
70 
71 static inline void *ptr_to_indirect(void *ptr)
72 {
73 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
74 }
75 
76 static inline void *indirect_to_ptr(void *ptr)
77 {
78 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
79 }
80 
81 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
82 {
83 	return root->gfp_mask & __GFP_BITS_MASK;
84 }
85 
86 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
87 		int offset)
88 {
89 	__set_bit(offset, node->tags[tag]);
90 }
91 
92 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
93 		int offset)
94 {
95 	__clear_bit(offset, node->tags[tag]);
96 }
97 
98 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
99 		int offset)
100 {
101 	return test_bit(offset, node->tags[tag]);
102 }
103 
104 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
105 {
106 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
107 }
108 
109 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
110 {
111 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
112 }
113 
114 static inline void root_tag_clear_all(struct radix_tree_root *root)
115 {
116 	root->gfp_mask &= __GFP_BITS_MASK;
117 }
118 
119 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
120 {
121 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
122 }
123 
124 /*
125  * Returns 1 if any slot in the node has this tag set.
126  * Otherwise returns 0.
127  */
128 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
129 {
130 	int idx;
131 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
132 		if (node->tags[tag][idx])
133 			return 1;
134 	}
135 	return 0;
136 }
137 
138 /**
139  * radix_tree_find_next_bit - find the next set bit in a memory region
140  *
141  * @addr: The address to base the search on
142  * @size: The bitmap size in bits
143  * @offset: The bitnumber to start searching at
144  *
145  * Unrollable variant of find_next_bit() for constant size arrays.
146  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
147  * Returns next bit offset, or size if nothing found.
148  */
149 static __always_inline unsigned long
150 radix_tree_find_next_bit(const unsigned long *addr,
151 			 unsigned long size, unsigned long offset)
152 {
153 	if (!__builtin_constant_p(size))
154 		return find_next_bit(addr, size, offset);
155 
156 	if (offset < size) {
157 		unsigned long tmp;
158 
159 		addr += offset / BITS_PER_LONG;
160 		tmp = *addr >> (offset % BITS_PER_LONG);
161 		if (tmp)
162 			return __ffs(tmp) + offset;
163 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
164 		while (offset < size) {
165 			tmp = *++addr;
166 			if (tmp)
167 				return __ffs(tmp) + offset;
168 			offset += BITS_PER_LONG;
169 		}
170 	}
171 	return size;
172 }
173 
174 /*
175  * This assumes that the caller has performed appropriate preallocation, and
176  * that the caller has pinned this thread of control to the current CPU.
177  */
178 static struct radix_tree_node *
179 radix_tree_node_alloc(struct radix_tree_root *root)
180 {
181 	struct radix_tree_node *ret = NULL;
182 	gfp_t gfp_mask = root_gfp_mask(root);
183 
184 	/*
185 	 * Preload code isn't irq safe and it doesn't make sence to use
186 	 * preloading in the interrupt anyway as all the allocations have to
187 	 * be atomic. So just do normal allocation when in interrupt.
188 	 */
189 	if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
190 		struct radix_tree_preload *rtp;
191 
192 		/*
193 		 * Provided the caller has preloaded here, we will always
194 		 * succeed in getting a node here (and never reach
195 		 * kmem_cache_alloc)
196 		 */
197 		rtp = &__get_cpu_var(radix_tree_preloads);
198 		if (rtp->nr) {
199 			ret = rtp->nodes[rtp->nr - 1];
200 			rtp->nodes[rtp->nr - 1] = NULL;
201 			rtp->nr--;
202 		}
203 	}
204 	if (ret == NULL)
205 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
206 
207 	BUG_ON(radix_tree_is_indirect_ptr(ret));
208 	return ret;
209 }
210 
211 static void radix_tree_node_rcu_free(struct rcu_head *head)
212 {
213 	struct radix_tree_node *node =
214 			container_of(head, struct radix_tree_node, rcu_head);
215 	int i;
216 
217 	/*
218 	 * must only free zeroed nodes into the slab. radix_tree_shrink
219 	 * can leave us with a non-NULL entry in the first slot, so clear
220 	 * that here to make sure.
221 	 */
222 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
223 		tag_clear(node, i, 0);
224 
225 	node->slots[0] = NULL;
226 	node->count = 0;
227 
228 	kmem_cache_free(radix_tree_node_cachep, node);
229 }
230 
231 static inline void
232 radix_tree_node_free(struct radix_tree_node *node)
233 {
234 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
235 }
236 
237 /*
238  * Load up this CPU's radix_tree_node buffer with sufficient objects to
239  * ensure that the addition of a single element in the tree cannot fail.  On
240  * success, return zero, with preemption disabled.  On error, return -ENOMEM
241  * with preemption not disabled.
242  *
243  * To make use of this facility, the radix tree must be initialised without
244  * __GFP_WAIT being passed to INIT_RADIX_TREE().
245  */
246 static int __radix_tree_preload(gfp_t gfp_mask)
247 {
248 	struct radix_tree_preload *rtp;
249 	struct radix_tree_node *node;
250 	int ret = -ENOMEM;
251 
252 	preempt_disable();
253 	rtp = &__get_cpu_var(radix_tree_preloads);
254 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
255 		preempt_enable();
256 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
257 		if (node == NULL)
258 			goto out;
259 		preempt_disable();
260 		rtp = &__get_cpu_var(radix_tree_preloads);
261 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
262 			rtp->nodes[rtp->nr++] = node;
263 		else
264 			kmem_cache_free(radix_tree_node_cachep, node);
265 	}
266 	ret = 0;
267 out:
268 	return ret;
269 }
270 
271 /*
272  * Load up this CPU's radix_tree_node buffer with sufficient objects to
273  * ensure that the addition of a single element in the tree cannot fail.  On
274  * success, return zero, with preemption disabled.  On error, return -ENOMEM
275  * with preemption not disabled.
276  *
277  * To make use of this facility, the radix tree must be initialised without
278  * __GFP_WAIT being passed to INIT_RADIX_TREE().
279  */
280 int radix_tree_preload(gfp_t gfp_mask)
281 {
282 	/* Warn on non-sensical use... */
283 	WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
284 	return __radix_tree_preload(gfp_mask);
285 }
286 EXPORT_SYMBOL(radix_tree_preload);
287 
288 /*
289  * The same as above function, except we don't guarantee preloading happens.
290  * We do it, if we decide it helps. On success, return zero with preemption
291  * disabled. On error, return -ENOMEM with preemption not disabled.
292  */
293 int radix_tree_maybe_preload(gfp_t gfp_mask)
294 {
295 	if (gfp_mask & __GFP_WAIT)
296 		return __radix_tree_preload(gfp_mask);
297 	/* Preloading doesn't help anything with this gfp mask, skip it */
298 	preempt_disable();
299 	return 0;
300 }
301 EXPORT_SYMBOL(radix_tree_maybe_preload);
302 
303 /*
304  *	Return the maximum key which can be store into a
305  *	radix tree with height HEIGHT.
306  */
307 static inline unsigned long radix_tree_maxindex(unsigned int height)
308 {
309 	return height_to_maxindex[height];
310 }
311 
312 /*
313  *	Extend a radix tree so it can store key @index.
314  */
315 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
316 {
317 	struct radix_tree_node *node;
318 	struct radix_tree_node *slot;
319 	unsigned int height;
320 	int tag;
321 
322 	/* Figure out what the height should be.  */
323 	height = root->height + 1;
324 	while (index > radix_tree_maxindex(height))
325 		height++;
326 
327 	if (root->rnode == NULL) {
328 		root->height = height;
329 		goto out;
330 	}
331 
332 	do {
333 		unsigned int newheight;
334 		if (!(node = radix_tree_node_alloc(root)))
335 			return -ENOMEM;
336 
337 		/* Propagate the aggregated tag info into the new root */
338 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
339 			if (root_tag_get(root, tag))
340 				tag_set(node, tag, 0);
341 		}
342 
343 		/* Increase the height.  */
344 		newheight = root->height+1;
345 		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
346 		node->path = newheight;
347 		node->count = 1;
348 		node->parent = NULL;
349 		slot = root->rnode;
350 		if (newheight > 1) {
351 			slot = indirect_to_ptr(slot);
352 			slot->parent = node;
353 		}
354 		node->slots[0] = slot;
355 		node = ptr_to_indirect(node);
356 		rcu_assign_pointer(root->rnode, node);
357 		root->height = newheight;
358 	} while (height > root->height);
359 out:
360 	return 0;
361 }
362 
363 /**
364  *	__radix_tree_create	-	create a slot in a radix tree
365  *	@root:		radix tree root
366  *	@index:		index key
367  *	@nodep:		returns node
368  *	@slotp:		returns slot
369  *
370  *	Create, if necessary, and return the node and slot for an item
371  *	at position @index in the radix tree @root.
372  *
373  *	Until there is more than one item in the tree, no nodes are
374  *	allocated and @root->rnode is used as a direct slot instead of
375  *	pointing to a node, in which case *@nodep will be NULL.
376  *
377  *	Returns -ENOMEM, or 0 for success.
378  */
379 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
380 			struct radix_tree_node **nodep, void ***slotp)
381 {
382 	struct radix_tree_node *node = NULL, *slot;
383 	unsigned int height, shift, offset;
384 	int error;
385 
386 	/* Make sure the tree is high enough.  */
387 	if (index > radix_tree_maxindex(root->height)) {
388 		error = radix_tree_extend(root, index);
389 		if (error)
390 			return error;
391 	}
392 
393 	slot = indirect_to_ptr(root->rnode);
394 
395 	height = root->height;
396 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
397 
398 	offset = 0;			/* uninitialised var warning */
399 	while (height > 0) {
400 		if (slot == NULL) {
401 			/* Have to add a child node.  */
402 			if (!(slot = radix_tree_node_alloc(root)))
403 				return -ENOMEM;
404 			slot->path = height;
405 			slot->parent = node;
406 			if (node) {
407 				rcu_assign_pointer(node->slots[offset], slot);
408 				node->count++;
409 				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
410 			} else
411 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
412 		}
413 
414 		/* Go a level down */
415 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
416 		node = slot;
417 		slot = node->slots[offset];
418 		shift -= RADIX_TREE_MAP_SHIFT;
419 		height--;
420 	}
421 
422 	if (nodep)
423 		*nodep = node;
424 	if (slotp)
425 		*slotp = node ? node->slots + offset : (void **)&root->rnode;
426 	return 0;
427 }
428 
429 /**
430  *	radix_tree_insert    -    insert into a radix tree
431  *	@root:		radix tree root
432  *	@index:		index key
433  *	@item:		item to insert
434  *
435  *	Insert an item into the radix tree at position @index.
436  */
437 int radix_tree_insert(struct radix_tree_root *root,
438 			unsigned long index, void *item)
439 {
440 	struct radix_tree_node *node;
441 	void **slot;
442 	int error;
443 
444 	BUG_ON(radix_tree_is_indirect_ptr(item));
445 
446 	error = __radix_tree_create(root, index, &node, &slot);
447 	if (error)
448 		return error;
449 	if (*slot != NULL)
450 		return -EEXIST;
451 	rcu_assign_pointer(*slot, item);
452 
453 	if (node) {
454 		node->count++;
455 		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
456 		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
457 	} else {
458 		BUG_ON(root_tag_get(root, 0));
459 		BUG_ON(root_tag_get(root, 1));
460 	}
461 
462 	return 0;
463 }
464 EXPORT_SYMBOL(radix_tree_insert);
465 
466 /**
467  *	__radix_tree_lookup	-	lookup an item in a radix tree
468  *	@root:		radix tree root
469  *	@index:		index key
470  *	@nodep:		returns node
471  *	@slotp:		returns slot
472  *
473  *	Lookup and return the item at position @index in the radix
474  *	tree @root.
475  *
476  *	Until there is more than one item in the tree, no nodes are
477  *	allocated and @root->rnode is used as a direct slot instead of
478  *	pointing to a node, in which case *@nodep will be NULL.
479  */
480 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
481 			  struct radix_tree_node **nodep, void ***slotp)
482 {
483 	struct radix_tree_node *node, *parent;
484 	unsigned int height, shift;
485 	void **slot;
486 
487 	node = rcu_dereference_raw(root->rnode);
488 	if (node == NULL)
489 		return NULL;
490 
491 	if (!radix_tree_is_indirect_ptr(node)) {
492 		if (index > 0)
493 			return NULL;
494 
495 		if (nodep)
496 			*nodep = NULL;
497 		if (slotp)
498 			*slotp = (void **)&root->rnode;
499 		return node;
500 	}
501 	node = indirect_to_ptr(node);
502 
503 	height = node->path & RADIX_TREE_HEIGHT_MASK;
504 	if (index > radix_tree_maxindex(height))
505 		return NULL;
506 
507 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
508 
509 	do {
510 		parent = node;
511 		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
512 		node = rcu_dereference_raw(*slot);
513 		if (node == NULL)
514 			return NULL;
515 
516 		shift -= RADIX_TREE_MAP_SHIFT;
517 		height--;
518 	} while (height > 0);
519 
520 	if (nodep)
521 		*nodep = parent;
522 	if (slotp)
523 		*slotp = slot;
524 	return node;
525 }
526 
527 /**
528  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
529  *	@root:		radix tree root
530  *	@index:		index key
531  *
532  *	Returns:  the slot corresponding to the position @index in the
533  *	radix tree @root. This is useful for update-if-exists operations.
534  *
535  *	This function can be called under rcu_read_lock iff the slot is not
536  *	modified by radix_tree_replace_slot, otherwise it must be called
537  *	exclusive from other writers. Any dereference of the slot must be done
538  *	using radix_tree_deref_slot.
539  */
540 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
541 {
542 	void **slot;
543 
544 	if (!__radix_tree_lookup(root, index, NULL, &slot))
545 		return NULL;
546 	return slot;
547 }
548 EXPORT_SYMBOL(radix_tree_lookup_slot);
549 
550 /**
551  *	radix_tree_lookup    -    perform lookup operation on a radix tree
552  *	@root:		radix tree root
553  *	@index:		index key
554  *
555  *	Lookup the item at the position @index in the radix tree @root.
556  *
557  *	This function can be called under rcu_read_lock, however the caller
558  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
559  *	them safely). No RCU barriers are required to access or modify the
560  *	returned item, however.
561  */
562 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
563 {
564 	return __radix_tree_lookup(root, index, NULL, NULL);
565 }
566 EXPORT_SYMBOL(radix_tree_lookup);
567 
568 /**
569  *	radix_tree_tag_set - set a tag on a radix tree node
570  *	@root:		radix tree root
571  *	@index:		index key
572  *	@tag: 		tag index
573  *
574  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
575  *	corresponding to @index in the radix tree.  From
576  *	the root all the way down to the leaf node.
577  *
578  *	Returns the address of the tagged item.   Setting a tag on a not-present
579  *	item is a bug.
580  */
581 void *radix_tree_tag_set(struct radix_tree_root *root,
582 			unsigned long index, unsigned int tag)
583 {
584 	unsigned int height, shift;
585 	struct radix_tree_node *slot;
586 
587 	height = root->height;
588 	BUG_ON(index > radix_tree_maxindex(height));
589 
590 	slot = indirect_to_ptr(root->rnode);
591 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
592 
593 	while (height > 0) {
594 		int offset;
595 
596 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
597 		if (!tag_get(slot, tag, offset))
598 			tag_set(slot, tag, offset);
599 		slot = slot->slots[offset];
600 		BUG_ON(slot == NULL);
601 		shift -= RADIX_TREE_MAP_SHIFT;
602 		height--;
603 	}
604 
605 	/* set the root's tag bit */
606 	if (slot && !root_tag_get(root, tag))
607 		root_tag_set(root, tag);
608 
609 	return slot;
610 }
611 EXPORT_SYMBOL(radix_tree_tag_set);
612 
613 /**
614  *	radix_tree_tag_clear - clear a tag on a radix tree node
615  *	@root:		radix tree root
616  *	@index:		index key
617  *	@tag: 		tag index
618  *
619  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
620  *	corresponding to @index in the radix tree.  If
621  *	this causes the leaf node to have no tags set then clear the tag in the
622  *	next-to-leaf node, etc.
623  *
624  *	Returns the address of the tagged item on success, else NULL.  ie:
625  *	has the same return value and semantics as radix_tree_lookup().
626  */
627 void *radix_tree_tag_clear(struct radix_tree_root *root,
628 			unsigned long index, unsigned int tag)
629 {
630 	struct radix_tree_node *node = NULL;
631 	struct radix_tree_node *slot = NULL;
632 	unsigned int height, shift;
633 	int uninitialized_var(offset);
634 
635 	height = root->height;
636 	if (index > radix_tree_maxindex(height))
637 		goto out;
638 
639 	shift = height * RADIX_TREE_MAP_SHIFT;
640 	slot = indirect_to_ptr(root->rnode);
641 
642 	while (shift) {
643 		if (slot == NULL)
644 			goto out;
645 
646 		shift -= RADIX_TREE_MAP_SHIFT;
647 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
648 		node = slot;
649 		slot = slot->slots[offset];
650 	}
651 
652 	if (slot == NULL)
653 		goto out;
654 
655 	while (node) {
656 		if (!tag_get(node, tag, offset))
657 			goto out;
658 		tag_clear(node, tag, offset);
659 		if (any_tag_set(node, tag))
660 			goto out;
661 
662 		index >>= RADIX_TREE_MAP_SHIFT;
663 		offset = index & RADIX_TREE_MAP_MASK;
664 		node = node->parent;
665 	}
666 
667 	/* clear the root's tag bit */
668 	if (root_tag_get(root, tag))
669 		root_tag_clear(root, tag);
670 
671 out:
672 	return slot;
673 }
674 EXPORT_SYMBOL(radix_tree_tag_clear);
675 
676 /**
677  * radix_tree_tag_get - get a tag on a radix tree node
678  * @root:		radix tree root
679  * @index:		index key
680  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
681  *
682  * Return values:
683  *
684  *  0: tag not present or not set
685  *  1: tag set
686  *
687  * Note that the return value of this function may not be relied on, even if
688  * the RCU lock is held, unless tag modification and node deletion are excluded
689  * from concurrency.
690  */
691 int radix_tree_tag_get(struct radix_tree_root *root,
692 			unsigned long index, unsigned int tag)
693 {
694 	unsigned int height, shift;
695 	struct radix_tree_node *node;
696 
697 	/* check the root's tag bit */
698 	if (!root_tag_get(root, tag))
699 		return 0;
700 
701 	node = rcu_dereference_raw(root->rnode);
702 	if (node == NULL)
703 		return 0;
704 
705 	if (!radix_tree_is_indirect_ptr(node))
706 		return (index == 0);
707 	node = indirect_to_ptr(node);
708 
709 	height = node->path & RADIX_TREE_HEIGHT_MASK;
710 	if (index > radix_tree_maxindex(height))
711 		return 0;
712 
713 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
714 
715 	for ( ; ; ) {
716 		int offset;
717 
718 		if (node == NULL)
719 			return 0;
720 
721 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
722 		if (!tag_get(node, tag, offset))
723 			return 0;
724 		if (height == 1)
725 			return 1;
726 		node = rcu_dereference_raw(node->slots[offset]);
727 		shift -= RADIX_TREE_MAP_SHIFT;
728 		height--;
729 	}
730 }
731 EXPORT_SYMBOL(radix_tree_tag_get);
732 
733 /**
734  * radix_tree_next_chunk - find next chunk of slots for iteration
735  *
736  * @root:	radix tree root
737  * @iter:	iterator state
738  * @flags:	RADIX_TREE_ITER_* flags and tag index
739  * Returns:	pointer to chunk first slot, or NULL if iteration is over
740  */
741 void **radix_tree_next_chunk(struct radix_tree_root *root,
742 			     struct radix_tree_iter *iter, unsigned flags)
743 {
744 	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
745 	struct radix_tree_node *rnode, *node;
746 	unsigned long index, offset, height;
747 
748 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
749 		return NULL;
750 
751 	/*
752 	 * Catch next_index overflow after ~0UL. iter->index never overflows
753 	 * during iterating; it can be zero only at the beginning.
754 	 * And we cannot overflow iter->next_index in a single step,
755 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
756 	 *
757 	 * This condition also used by radix_tree_next_slot() to stop
758 	 * contiguous iterating, and forbid swithing to the next chunk.
759 	 */
760 	index = iter->next_index;
761 	if (!index && iter->index)
762 		return NULL;
763 
764 	rnode = rcu_dereference_raw(root->rnode);
765 	if (radix_tree_is_indirect_ptr(rnode)) {
766 		rnode = indirect_to_ptr(rnode);
767 	} else if (rnode && !index) {
768 		/* Single-slot tree */
769 		iter->index = 0;
770 		iter->next_index = 1;
771 		iter->tags = 1;
772 		return (void **)&root->rnode;
773 	} else
774 		return NULL;
775 
776 restart:
777 	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
778 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
779 	offset = index >> shift;
780 
781 	/* Index outside of the tree */
782 	if (offset >= RADIX_TREE_MAP_SIZE)
783 		return NULL;
784 
785 	node = rnode;
786 	while (1) {
787 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
788 				!test_bit(offset, node->tags[tag]) :
789 				!node->slots[offset]) {
790 			/* Hole detected */
791 			if (flags & RADIX_TREE_ITER_CONTIG)
792 				return NULL;
793 
794 			if (flags & RADIX_TREE_ITER_TAGGED)
795 				offset = radix_tree_find_next_bit(
796 						node->tags[tag],
797 						RADIX_TREE_MAP_SIZE,
798 						offset + 1);
799 			else
800 				while (++offset	< RADIX_TREE_MAP_SIZE) {
801 					if (node->slots[offset])
802 						break;
803 				}
804 			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
805 			index += offset << shift;
806 			/* Overflow after ~0UL */
807 			if (!index)
808 				return NULL;
809 			if (offset == RADIX_TREE_MAP_SIZE)
810 				goto restart;
811 		}
812 
813 		/* This is leaf-node */
814 		if (!shift)
815 			break;
816 
817 		node = rcu_dereference_raw(node->slots[offset]);
818 		if (node == NULL)
819 			goto restart;
820 		shift -= RADIX_TREE_MAP_SHIFT;
821 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
822 	}
823 
824 	/* Update the iterator state */
825 	iter->index = index;
826 	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
827 
828 	/* Construct iter->tags bit-mask from node->tags[tag] array */
829 	if (flags & RADIX_TREE_ITER_TAGGED) {
830 		unsigned tag_long, tag_bit;
831 
832 		tag_long = offset / BITS_PER_LONG;
833 		tag_bit  = offset % BITS_PER_LONG;
834 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
835 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
836 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
837 			/* Pick tags from next element */
838 			if (tag_bit)
839 				iter->tags |= node->tags[tag][tag_long + 1] <<
840 						(BITS_PER_LONG - tag_bit);
841 			/* Clip chunk size, here only BITS_PER_LONG tags */
842 			iter->next_index = index + BITS_PER_LONG;
843 		}
844 	}
845 
846 	return node->slots + offset;
847 }
848 EXPORT_SYMBOL(radix_tree_next_chunk);
849 
850 /**
851  * radix_tree_range_tag_if_tagged - for each item in given range set given
852  *				   tag if item has another tag set
853  * @root:		radix tree root
854  * @first_indexp:	pointer to a starting index of a range to scan
855  * @last_index:		last index of a range to scan
856  * @nr_to_tag:		maximum number items to tag
857  * @iftag:		tag index to test
858  * @settag:		tag index to set if tested tag is set
859  *
860  * This function scans range of radix tree from first_index to last_index
861  * (inclusive).  For each item in the range if iftag is set, the function sets
862  * also settag. The function stops either after tagging nr_to_tag items or
863  * after reaching last_index.
864  *
865  * The tags must be set from the leaf level only and propagated back up the
866  * path to the root. We must do this so that we resolve the full path before
867  * setting any tags on intermediate nodes. If we set tags as we descend, then
868  * we can get to the leaf node and find that the index that has the iftag
869  * set is outside the range we are scanning. This reults in dangling tags and
870  * can lead to problems with later tag operations (e.g. livelocks on lookups).
871  *
872  * The function returns number of leaves where the tag was set and sets
873  * *first_indexp to the first unscanned index.
874  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
875  * be prepared to handle that.
876  */
877 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
878 		unsigned long *first_indexp, unsigned long last_index,
879 		unsigned long nr_to_tag,
880 		unsigned int iftag, unsigned int settag)
881 {
882 	unsigned int height = root->height;
883 	struct radix_tree_node *node = NULL;
884 	struct radix_tree_node *slot;
885 	unsigned int shift;
886 	unsigned long tagged = 0;
887 	unsigned long index = *first_indexp;
888 
889 	last_index = min(last_index, radix_tree_maxindex(height));
890 	if (index > last_index)
891 		return 0;
892 	if (!nr_to_tag)
893 		return 0;
894 	if (!root_tag_get(root, iftag)) {
895 		*first_indexp = last_index + 1;
896 		return 0;
897 	}
898 	if (height == 0) {
899 		*first_indexp = last_index + 1;
900 		root_tag_set(root, settag);
901 		return 1;
902 	}
903 
904 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
905 	slot = indirect_to_ptr(root->rnode);
906 
907 	for (;;) {
908 		unsigned long upindex;
909 		int offset;
910 
911 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
912 		if (!slot->slots[offset])
913 			goto next;
914 		if (!tag_get(slot, iftag, offset))
915 			goto next;
916 		if (shift) {
917 			/* Go down one level */
918 			shift -= RADIX_TREE_MAP_SHIFT;
919 			node = slot;
920 			slot = slot->slots[offset];
921 			continue;
922 		}
923 
924 		/* tag the leaf */
925 		tagged++;
926 		tag_set(slot, settag, offset);
927 
928 		/* walk back up the path tagging interior nodes */
929 		upindex = index;
930 		while (node) {
931 			upindex >>= RADIX_TREE_MAP_SHIFT;
932 			offset = upindex & RADIX_TREE_MAP_MASK;
933 
934 			/* stop if we find a node with the tag already set */
935 			if (tag_get(node, settag, offset))
936 				break;
937 			tag_set(node, settag, offset);
938 			node = node->parent;
939 		}
940 
941 		/*
942 		 * Small optimization: now clear that node pointer.
943 		 * Since all of this slot's ancestors now have the tag set
944 		 * from setting it above, we have no further need to walk
945 		 * back up the tree setting tags, until we update slot to
946 		 * point to another radix_tree_node.
947 		 */
948 		node = NULL;
949 
950 next:
951 		/* Go to next item at level determined by 'shift' */
952 		index = ((index >> shift) + 1) << shift;
953 		/* Overflow can happen when last_index is ~0UL... */
954 		if (index > last_index || !index)
955 			break;
956 		if (tagged >= nr_to_tag)
957 			break;
958 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
959 			/*
960 			 * We've fully scanned this node. Go up. Because
961 			 * last_index is guaranteed to be in the tree, what
962 			 * we do below cannot wander astray.
963 			 */
964 			slot = slot->parent;
965 			shift += RADIX_TREE_MAP_SHIFT;
966 		}
967 	}
968 	/*
969 	 * We need not to tag the root tag if there is no tag which is set with
970 	 * settag within the range from *first_indexp to last_index.
971 	 */
972 	if (tagged > 0)
973 		root_tag_set(root, settag);
974 	*first_indexp = index;
975 
976 	return tagged;
977 }
978 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
979 
980 /**
981  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
982  *	@root:		radix tree root
983  *	@results:	where the results of the lookup are placed
984  *	@first_index:	start the lookup from this key
985  *	@max_items:	place up to this many items at *results
986  *
987  *	Performs an index-ascending scan of the tree for present items.  Places
988  *	them at *@results and returns the number of items which were placed at
989  *	*@results.
990  *
991  *	The implementation is naive.
992  *
993  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
994  *	rcu_read_lock. In this case, rather than the returned results being
995  *	an atomic snapshot of the tree at a single point in time, the semantics
996  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
997  *	have been issued in individual locks, and results stored in 'results'.
998  */
999 unsigned int
1000 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1001 			unsigned long first_index, unsigned int max_items)
1002 {
1003 	struct radix_tree_iter iter;
1004 	void **slot;
1005 	unsigned int ret = 0;
1006 
1007 	if (unlikely(!max_items))
1008 		return 0;
1009 
1010 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1011 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1012 		if (!results[ret])
1013 			continue;
1014 		if (++ret == max_items)
1015 			break;
1016 	}
1017 
1018 	return ret;
1019 }
1020 EXPORT_SYMBOL(radix_tree_gang_lookup);
1021 
1022 /**
1023  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1024  *	@root:		radix tree root
1025  *	@results:	where the results of the lookup are placed
1026  *	@indices:	where their indices should be placed (but usually NULL)
1027  *	@first_index:	start the lookup from this key
1028  *	@max_items:	place up to this many items at *results
1029  *
1030  *	Performs an index-ascending scan of the tree for present items.  Places
1031  *	their slots at *@results and returns the number of items which were
1032  *	placed at *@results.
1033  *
1034  *	The implementation is naive.
1035  *
1036  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1037  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1038  *	protection, radix_tree_deref_slot may fail requiring a retry.
1039  */
1040 unsigned int
1041 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1042 			void ***results, unsigned long *indices,
1043 			unsigned long first_index, unsigned int max_items)
1044 {
1045 	struct radix_tree_iter iter;
1046 	void **slot;
1047 	unsigned int ret = 0;
1048 
1049 	if (unlikely(!max_items))
1050 		return 0;
1051 
1052 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1053 		results[ret] = slot;
1054 		if (indices)
1055 			indices[ret] = iter.index;
1056 		if (++ret == max_items)
1057 			break;
1058 	}
1059 
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1063 
1064 /**
1065  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1066  *	                             based on a tag
1067  *	@root:		radix tree root
1068  *	@results:	where the results of the lookup are placed
1069  *	@first_index:	start the lookup from this key
1070  *	@max_items:	place up to this many items at *results
1071  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1072  *
1073  *	Performs an index-ascending scan of the tree for present items which
1074  *	have the tag indexed by @tag set.  Places the items at *@results and
1075  *	returns the number of items which were placed at *@results.
1076  */
1077 unsigned int
1078 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1079 		unsigned long first_index, unsigned int max_items,
1080 		unsigned int tag)
1081 {
1082 	struct radix_tree_iter iter;
1083 	void **slot;
1084 	unsigned int ret = 0;
1085 
1086 	if (unlikely(!max_items))
1087 		return 0;
1088 
1089 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1090 		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1091 		if (!results[ret])
1092 			continue;
1093 		if (++ret == max_items)
1094 			break;
1095 	}
1096 
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1100 
1101 /**
1102  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1103  *					  radix tree based on a tag
1104  *	@root:		radix tree root
1105  *	@results:	where the results of the lookup are placed
1106  *	@first_index:	start the lookup from this key
1107  *	@max_items:	place up to this many items at *results
1108  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1109  *
1110  *	Performs an index-ascending scan of the tree for present items which
1111  *	have the tag indexed by @tag set.  Places the slots at *@results and
1112  *	returns the number of slots which were placed at *@results.
1113  */
1114 unsigned int
1115 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1116 		unsigned long first_index, unsigned int max_items,
1117 		unsigned int tag)
1118 {
1119 	struct radix_tree_iter iter;
1120 	void **slot;
1121 	unsigned int ret = 0;
1122 
1123 	if (unlikely(!max_items))
1124 		return 0;
1125 
1126 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1127 		results[ret] = slot;
1128 		if (++ret == max_items)
1129 			break;
1130 	}
1131 
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1135 
1136 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1137 #include <linux/sched.h> /* for cond_resched() */
1138 
1139 /*
1140  * This linear search is at present only useful to shmem_unuse_inode().
1141  */
1142 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1143 			      unsigned long index, unsigned long *found_index)
1144 {
1145 	unsigned int shift, height;
1146 	unsigned long i;
1147 
1148 	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1149 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1150 
1151 	for ( ; height > 1; height--) {
1152 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1153 		for (;;) {
1154 			if (slot->slots[i] != NULL)
1155 				break;
1156 			index &= ~((1UL << shift) - 1);
1157 			index += 1UL << shift;
1158 			if (index == 0)
1159 				goto out;	/* 32-bit wraparound */
1160 			i++;
1161 			if (i == RADIX_TREE_MAP_SIZE)
1162 				goto out;
1163 		}
1164 
1165 		shift -= RADIX_TREE_MAP_SHIFT;
1166 		slot = rcu_dereference_raw(slot->slots[i]);
1167 		if (slot == NULL)
1168 			goto out;
1169 	}
1170 
1171 	/* Bottom level: check items */
1172 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1173 		if (slot->slots[i] == item) {
1174 			*found_index = index + i;
1175 			index = 0;
1176 			goto out;
1177 		}
1178 	}
1179 	index += RADIX_TREE_MAP_SIZE;
1180 out:
1181 	return index;
1182 }
1183 
1184 /**
1185  *	radix_tree_locate_item - search through radix tree for item
1186  *	@root:		radix tree root
1187  *	@item:		item to be found
1188  *
1189  *	Returns index where item was found, or -1 if not found.
1190  *	Caller must hold no lock (since this time-consuming function needs
1191  *	to be preemptible), and must check afterwards if item is still there.
1192  */
1193 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1194 {
1195 	struct radix_tree_node *node;
1196 	unsigned long max_index;
1197 	unsigned long cur_index = 0;
1198 	unsigned long found_index = -1;
1199 
1200 	do {
1201 		rcu_read_lock();
1202 		node = rcu_dereference_raw(root->rnode);
1203 		if (!radix_tree_is_indirect_ptr(node)) {
1204 			rcu_read_unlock();
1205 			if (node == item)
1206 				found_index = 0;
1207 			break;
1208 		}
1209 
1210 		node = indirect_to_ptr(node);
1211 		max_index = radix_tree_maxindex(node->path &
1212 						RADIX_TREE_HEIGHT_MASK);
1213 		if (cur_index > max_index) {
1214 			rcu_read_unlock();
1215 			break;
1216 		}
1217 
1218 		cur_index = __locate(node, item, cur_index, &found_index);
1219 		rcu_read_unlock();
1220 		cond_resched();
1221 	} while (cur_index != 0 && cur_index <= max_index);
1222 
1223 	return found_index;
1224 }
1225 #else
1226 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1227 {
1228 	return -1;
1229 }
1230 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1231 
1232 /**
1233  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1234  *	@root		radix tree root
1235  */
1236 static inline void radix_tree_shrink(struct radix_tree_root *root)
1237 {
1238 	/* try to shrink tree height */
1239 	while (root->height > 0) {
1240 		struct radix_tree_node *to_free = root->rnode;
1241 		struct radix_tree_node *slot;
1242 
1243 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1244 		to_free = indirect_to_ptr(to_free);
1245 
1246 		/*
1247 		 * The candidate node has more than one child, or its child
1248 		 * is not at the leftmost slot, we cannot shrink.
1249 		 */
1250 		if (to_free->count != 1)
1251 			break;
1252 		if (!to_free->slots[0])
1253 			break;
1254 
1255 		/*
1256 		 * We don't need rcu_assign_pointer(), since we are simply
1257 		 * moving the node from one part of the tree to another: if it
1258 		 * was safe to dereference the old pointer to it
1259 		 * (to_free->slots[0]), it will be safe to dereference the new
1260 		 * one (root->rnode) as far as dependent read barriers go.
1261 		 */
1262 		slot = to_free->slots[0];
1263 		if (root->height > 1) {
1264 			slot->parent = NULL;
1265 			slot = ptr_to_indirect(slot);
1266 		}
1267 		root->rnode = slot;
1268 		root->height--;
1269 
1270 		/*
1271 		 * We have a dilemma here. The node's slot[0] must not be
1272 		 * NULLed in case there are concurrent lookups expecting to
1273 		 * find the item. However if this was a bottom-level node,
1274 		 * then it may be subject to the slot pointer being visible
1275 		 * to callers dereferencing it. If item corresponding to
1276 		 * slot[0] is subsequently deleted, these callers would expect
1277 		 * their slot to become empty sooner or later.
1278 		 *
1279 		 * For example, lockless pagecache will look up a slot, deref
1280 		 * the page pointer, and if the page is 0 refcount it means it
1281 		 * was concurrently deleted from pagecache so try the deref
1282 		 * again. Fortunately there is already a requirement for logic
1283 		 * to retry the entire slot lookup -- the indirect pointer
1284 		 * problem (replacing direct root node with an indirect pointer
1285 		 * also results in a stale slot). So tag the slot as indirect
1286 		 * to force callers to retry.
1287 		 */
1288 		if (root->height == 0)
1289 			*((unsigned long *)&to_free->slots[0]) |=
1290 						RADIX_TREE_INDIRECT_PTR;
1291 
1292 		radix_tree_node_free(to_free);
1293 	}
1294 }
1295 
1296 /**
1297  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1298  *	@root:		radix tree root
1299  *	@index:		index key
1300  *	@node:		node containing @index
1301  *
1302  *	After clearing the slot at @index in @node from radix tree
1303  *	rooted at @root, call this function to attempt freeing the
1304  *	node and shrinking the tree.
1305  *
1306  *	Returns %true if @node was freed, %false otherwise.
1307  */
1308 bool __radix_tree_delete_node(struct radix_tree_root *root,
1309 			      struct radix_tree_node *node)
1310 {
1311 	bool deleted = false;
1312 
1313 	do {
1314 		struct radix_tree_node *parent;
1315 
1316 		if (node->count) {
1317 			if (node == indirect_to_ptr(root->rnode)) {
1318 				radix_tree_shrink(root);
1319 				if (root->height == 0)
1320 					deleted = true;
1321 			}
1322 			return deleted;
1323 		}
1324 
1325 		parent = node->parent;
1326 		if (parent) {
1327 			unsigned int offset;
1328 
1329 			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1330 			parent->slots[offset] = NULL;
1331 			parent->count--;
1332 		} else {
1333 			root_tag_clear_all(root);
1334 			root->height = 0;
1335 			root->rnode = NULL;
1336 		}
1337 
1338 		radix_tree_node_free(node);
1339 		deleted = true;
1340 
1341 		node = parent;
1342 	} while (node);
1343 
1344 	return deleted;
1345 }
1346 
1347 /**
1348  *	radix_tree_delete_item    -    delete an item from a radix tree
1349  *	@root:		radix tree root
1350  *	@index:		index key
1351  *	@item:		expected item
1352  *
1353  *	Remove @item at @index from the radix tree rooted at @root.
1354  *
1355  *	Returns the address of the deleted item, or NULL if it was not present
1356  *	or the entry at the given @index was not @item.
1357  */
1358 void *radix_tree_delete_item(struct radix_tree_root *root,
1359 			     unsigned long index, void *item)
1360 {
1361 	struct radix_tree_node *node;
1362 	unsigned int offset;
1363 	void **slot;
1364 	void *entry;
1365 	int tag;
1366 
1367 	entry = __radix_tree_lookup(root, index, &node, &slot);
1368 	if (!entry)
1369 		return NULL;
1370 
1371 	if (item && entry != item)
1372 		return NULL;
1373 
1374 	if (!node) {
1375 		root_tag_clear_all(root);
1376 		root->rnode = NULL;
1377 		return entry;
1378 	}
1379 
1380 	offset = index & RADIX_TREE_MAP_MASK;
1381 
1382 	/*
1383 	 * Clear all tags associated with the item to be deleted.
1384 	 * This way of doing it would be inefficient, but seldom is any set.
1385 	 */
1386 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1387 		if (tag_get(node, tag, offset))
1388 			radix_tree_tag_clear(root, index, tag);
1389 	}
1390 
1391 	node->slots[offset] = NULL;
1392 	node->count--;
1393 
1394 	__radix_tree_delete_node(root, node);
1395 
1396 	return entry;
1397 }
1398 EXPORT_SYMBOL(radix_tree_delete_item);
1399 
1400 /**
1401  *	radix_tree_delete    -    delete an item from a radix tree
1402  *	@root:		radix tree root
1403  *	@index:		index key
1404  *
1405  *	Remove the item at @index from the radix tree rooted at @root.
1406  *
1407  *	Returns the address of the deleted item, or NULL if it was not present.
1408  */
1409 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1410 {
1411 	return radix_tree_delete_item(root, index, NULL);
1412 }
1413 EXPORT_SYMBOL(radix_tree_delete);
1414 
1415 /**
1416  *	radix_tree_tagged - test whether any items in the tree are tagged
1417  *	@root:		radix tree root
1418  *	@tag:		tag to test
1419  */
1420 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1421 {
1422 	return root_tag_get(root, tag);
1423 }
1424 EXPORT_SYMBOL(radix_tree_tagged);
1425 
1426 static void
1427 radix_tree_node_ctor(void *arg)
1428 {
1429 	struct radix_tree_node *node = arg;
1430 
1431 	memset(node, 0, sizeof(*node));
1432 	INIT_LIST_HEAD(&node->private_list);
1433 }
1434 
1435 static __init unsigned long __maxindex(unsigned int height)
1436 {
1437 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1438 	int shift = RADIX_TREE_INDEX_BITS - width;
1439 
1440 	if (shift < 0)
1441 		return ~0UL;
1442 	if (shift >= BITS_PER_LONG)
1443 		return 0UL;
1444 	return ~0UL >> shift;
1445 }
1446 
1447 static __init void radix_tree_init_maxindex(void)
1448 {
1449 	unsigned int i;
1450 
1451 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1452 		height_to_maxindex[i] = __maxindex(i);
1453 }
1454 
1455 static int radix_tree_callback(struct notifier_block *nfb,
1456                             unsigned long action,
1457                             void *hcpu)
1458 {
1459        int cpu = (long)hcpu;
1460        struct radix_tree_preload *rtp;
1461 
1462        /* Free per-cpu pool of perloaded nodes */
1463        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1464                rtp = &per_cpu(radix_tree_preloads, cpu);
1465                while (rtp->nr) {
1466                        kmem_cache_free(radix_tree_node_cachep,
1467                                        rtp->nodes[rtp->nr-1]);
1468                        rtp->nodes[rtp->nr-1] = NULL;
1469                        rtp->nr--;
1470                }
1471        }
1472        return NOTIFY_OK;
1473 }
1474 
1475 void __init radix_tree_init(void)
1476 {
1477 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1478 			sizeof(struct radix_tree_node), 0,
1479 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1480 			radix_tree_node_ctor);
1481 	radix_tree_init_maxindex();
1482 	hotcpu_notifier(radix_tree_callback, 0);
1483 }
1484