xref: /openbmc/linux/lib/radix-tree.c (revision a8fe58ce)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  * Copyright (C) 2012 Konstantin Khlebnikov
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2, or (at
11  * your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h>		/* in_interrupt() */
37 
38 
39 /*
40  * The height_to_maxindex array needs to be one deeper than the maximum
41  * path as height 0 holds only 1 entry.
42  */
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44 
45 /*
46  * Radix tree node cache.
47  */
48 static struct kmem_cache *radix_tree_node_cachep;
49 
50 /*
51  * The radix tree is variable-height, so an insert operation not only has
52  * to build the branch to its corresponding item, it also has to build the
53  * branch to existing items if the size has to be increased (by
54  * radix_tree_extend).
55  *
56  * The worst case is a zero height tree with just a single item at index 0,
57  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59  * Hence:
60  */
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62 
63 /*
64  * Per-cpu pool of preloaded nodes
65  */
66 struct radix_tree_preload {
67 	int nr;
68 	/* nodes->private_data points to next preallocated node */
69 	struct radix_tree_node *nodes;
70 };
71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
72 
73 static inline void *ptr_to_indirect(void *ptr)
74 {
75 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
76 }
77 
78 static inline void *indirect_to_ptr(void *ptr)
79 {
80 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
81 }
82 
83 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
84 {
85 	return root->gfp_mask & __GFP_BITS_MASK;
86 }
87 
88 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
89 		int offset)
90 {
91 	__set_bit(offset, node->tags[tag]);
92 }
93 
94 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
95 		int offset)
96 {
97 	__clear_bit(offset, node->tags[tag]);
98 }
99 
100 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
101 		int offset)
102 {
103 	return test_bit(offset, node->tags[tag]);
104 }
105 
106 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
107 {
108 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
109 }
110 
111 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
112 {
113 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
114 }
115 
116 static inline void root_tag_clear_all(struct radix_tree_root *root)
117 {
118 	root->gfp_mask &= __GFP_BITS_MASK;
119 }
120 
121 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
122 {
123 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
124 }
125 
126 /*
127  * Returns 1 if any slot in the node has this tag set.
128  * Otherwise returns 0.
129  */
130 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
131 {
132 	int idx;
133 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
134 		if (node->tags[tag][idx])
135 			return 1;
136 	}
137 	return 0;
138 }
139 
140 /**
141  * radix_tree_find_next_bit - find the next set bit in a memory region
142  *
143  * @addr: The address to base the search on
144  * @size: The bitmap size in bits
145  * @offset: The bitnumber to start searching at
146  *
147  * Unrollable variant of find_next_bit() for constant size arrays.
148  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
149  * Returns next bit offset, or size if nothing found.
150  */
151 static __always_inline unsigned long
152 radix_tree_find_next_bit(const unsigned long *addr,
153 			 unsigned long size, unsigned long offset)
154 {
155 	if (!__builtin_constant_p(size))
156 		return find_next_bit(addr, size, offset);
157 
158 	if (offset < size) {
159 		unsigned long tmp;
160 
161 		addr += offset / BITS_PER_LONG;
162 		tmp = *addr >> (offset % BITS_PER_LONG);
163 		if (tmp)
164 			return __ffs(tmp) + offset;
165 		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
166 		while (offset < size) {
167 			tmp = *++addr;
168 			if (tmp)
169 				return __ffs(tmp) + offset;
170 			offset += BITS_PER_LONG;
171 		}
172 	}
173 	return size;
174 }
175 
176 /*
177  * This assumes that the caller has performed appropriate preallocation, and
178  * that the caller has pinned this thread of control to the current CPU.
179  */
180 static struct radix_tree_node *
181 radix_tree_node_alloc(struct radix_tree_root *root)
182 {
183 	struct radix_tree_node *ret = NULL;
184 	gfp_t gfp_mask = root_gfp_mask(root);
185 
186 	/*
187 	 * Preload code isn't irq safe and it doesn't make sence to use
188 	 * preloading in the interrupt anyway as all the allocations have to
189 	 * be atomic. So just do normal allocation when in interrupt.
190 	 */
191 	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
192 		struct radix_tree_preload *rtp;
193 
194 		/*
195 		 * Provided the caller has preloaded here, we will always
196 		 * succeed in getting a node here (and never reach
197 		 * kmem_cache_alloc)
198 		 */
199 		rtp = this_cpu_ptr(&radix_tree_preloads);
200 		if (rtp->nr) {
201 			ret = rtp->nodes;
202 			rtp->nodes = ret->private_data;
203 			ret->private_data = NULL;
204 			rtp->nr--;
205 		}
206 		/*
207 		 * Update the allocation stack trace as this is more useful
208 		 * for debugging.
209 		 */
210 		kmemleak_update_trace(ret);
211 	}
212 	if (ret == NULL)
213 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
214 
215 	BUG_ON(radix_tree_is_indirect_ptr(ret));
216 	return ret;
217 }
218 
219 static void radix_tree_node_rcu_free(struct rcu_head *head)
220 {
221 	struct radix_tree_node *node =
222 			container_of(head, struct radix_tree_node, rcu_head);
223 	int i;
224 
225 	/*
226 	 * must only free zeroed nodes into the slab. radix_tree_shrink
227 	 * can leave us with a non-NULL entry in the first slot, so clear
228 	 * that here to make sure.
229 	 */
230 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
231 		tag_clear(node, i, 0);
232 
233 	node->slots[0] = NULL;
234 	node->count = 0;
235 
236 	kmem_cache_free(radix_tree_node_cachep, node);
237 }
238 
239 static inline void
240 radix_tree_node_free(struct radix_tree_node *node)
241 {
242 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
243 }
244 
245 /*
246  * Load up this CPU's radix_tree_node buffer with sufficient objects to
247  * ensure that the addition of a single element in the tree cannot fail.  On
248  * success, return zero, with preemption disabled.  On error, return -ENOMEM
249  * with preemption not disabled.
250  *
251  * To make use of this facility, the radix tree must be initialised without
252  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
253  */
254 static int __radix_tree_preload(gfp_t gfp_mask)
255 {
256 	struct radix_tree_preload *rtp;
257 	struct radix_tree_node *node;
258 	int ret = -ENOMEM;
259 
260 	preempt_disable();
261 	rtp = this_cpu_ptr(&radix_tree_preloads);
262 	while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
263 		preempt_enable();
264 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
265 		if (node == NULL)
266 			goto out;
267 		preempt_disable();
268 		rtp = this_cpu_ptr(&radix_tree_preloads);
269 		if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
270 			node->private_data = rtp->nodes;
271 			rtp->nodes = node;
272 			rtp->nr++;
273 		} else {
274 			kmem_cache_free(radix_tree_node_cachep, node);
275 		}
276 	}
277 	ret = 0;
278 out:
279 	return ret;
280 }
281 
282 /*
283  * Load up this CPU's radix_tree_node buffer with sufficient objects to
284  * ensure that the addition of a single element in the tree cannot fail.  On
285  * success, return zero, with preemption disabled.  On error, return -ENOMEM
286  * with preemption not disabled.
287  *
288  * To make use of this facility, the radix tree must be initialised without
289  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
290  */
291 int radix_tree_preload(gfp_t gfp_mask)
292 {
293 	/* Warn on non-sensical use... */
294 	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
295 	return __radix_tree_preload(gfp_mask);
296 }
297 EXPORT_SYMBOL(radix_tree_preload);
298 
299 /*
300  * The same as above function, except we don't guarantee preloading happens.
301  * We do it, if we decide it helps. On success, return zero with preemption
302  * disabled. On error, return -ENOMEM with preemption not disabled.
303  */
304 int radix_tree_maybe_preload(gfp_t gfp_mask)
305 {
306 	if (gfpflags_allow_blocking(gfp_mask))
307 		return __radix_tree_preload(gfp_mask);
308 	/* Preloading doesn't help anything with this gfp mask, skip it */
309 	preempt_disable();
310 	return 0;
311 }
312 EXPORT_SYMBOL(radix_tree_maybe_preload);
313 
314 /*
315  *	Return the maximum key which can be store into a
316  *	radix tree with height HEIGHT.
317  */
318 static inline unsigned long radix_tree_maxindex(unsigned int height)
319 {
320 	return height_to_maxindex[height];
321 }
322 
323 /*
324  *	Extend a radix tree so it can store key @index.
325  */
326 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
327 {
328 	struct radix_tree_node *node;
329 	struct radix_tree_node *slot;
330 	unsigned int height;
331 	int tag;
332 
333 	/* Figure out what the height should be.  */
334 	height = root->height + 1;
335 	while (index > radix_tree_maxindex(height))
336 		height++;
337 
338 	if (root->rnode == NULL) {
339 		root->height = height;
340 		goto out;
341 	}
342 
343 	do {
344 		unsigned int newheight;
345 		if (!(node = radix_tree_node_alloc(root)))
346 			return -ENOMEM;
347 
348 		/* Propagate the aggregated tag info into the new root */
349 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
350 			if (root_tag_get(root, tag))
351 				tag_set(node, tag, 0);
352 		}
353 
354 		/* Increase the height.  */
355 		newheight = root->height+1;
356 		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
357 		node->path = newheight;
358 		node->count = 1;
359 		node->parent = NULL;
360 		slot = root->rnode;
361 		if (newheight > 1) {
362 			slot = indirect_to_ptr(slot);
363 			slot->parent = node;
364 		}
365 		node->slots[0] = slot;
366 		node = ptr_to_indirect(node);
367 		rcu_assign_pointer(root->rnode, node);
368 		root->height = newheight;
369 	} while (height > root->height);
370 out:
371 	return 0;
372 }
373 
374 /**
375  *	__radix_tree_create	-	create a slot in a radix tree
376  *	@root:		radix tree root
377  *	@index:		index key
378  *	@nodep:		returns node
379  *	@slotp:		returns slot
380  *
381  *	Create, if necessary, and return the node and slot for an item
382  *	at position @index in the radix tree @root.
383  *
384  *	Until there is more than one item in the tree, no nodes are
385  *	allocated and @root->rnode is used as a direct slot instead of
386  *	pointing to a node, in which case *@nodep will be NULL.
387  *
388  *	Returns -ENOMEM, or 0 for success.
389  */
390 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
391 			struct radix_tree_node **nodep, void ***slotp)
392 {
393 	struct radix_tree_node *node = NULL, *slot;
394 	unsigned int height, shift, offset;
395 	int error;
396 
397 	/* Make sure the tree is high enough.  */
398 	if (index > radix_tree_maxindex(root->height)) {
399 		error = radix_tree_extend(root, index);
400 		if (error)
401 			return error;
402 	}
403 
404 	slot = indirect_to_ptr(root->rnode);
405 
406 	height = root->height;
407 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
408 
409 	offset = 0;			/* uninitialised var warning */
410 	while (height > 0) {
411 		if (slot == NULL) {
412 			/* Have to add a child node.  */
413 			if (!(slot = radix_tree_node_alloc(root)))
414 				return -ENOMEM;
415 			slot->path = height;
416 			slot->parent = node;
417 			if (node) {
418 				rcu_assign_pointer(node->slots[offset], slot);
419 				node->count++;
420 				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
421 			} else
422 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
423 		}
424 
425 		/* Go a level down */
426 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
427 		node = slot;
428 		slot = node->slots[offset];
429 		shift -= RADIX_TREE_MAP_SHIFT;
430 		height--;
431 	}
432 
433 	if (nodep)
434 		*nodep = node;
435 	if (slotp)
436 		*slotp = node ? node->slots + offset : (void **)&root->rnode;
437 	return 0;
438 }
439 
440 /**
441  *	radix_tree_insert    -    insert into a radix tree
442  *	@root:		radix tree root
443  *	@index:		index key
444  *	@item:		item to insert
445  *
446  *	Insert an item into the radix tree at position @index.
447  */
448 int radix_tree_insert(struct radix_tree_root *root,
449 			unsigned long index, void *item)
450 {
451 	struct radix_tree_node *node;
452 	void **slot;
453 	int error;
454 
455 	BUG_ON(radix_tree_is_indirect_ptr(item));
456 
457 	error = __radix_tree_create(root, index, &node, &slot);
458 	if (error)
459 		return error;
460 	if (*slot != NULL)
461 		return -EEXIST;
462 	rcu_assign_pointer(*slot, item);
463 
464 	if (node) {
465 		node->count++;
466 		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
467 		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
468 	} else {
469 		BUG_ON(root_tag_get(root, 0));
470 		BUG_ON(root_tag_get(root, 1));
471 	}
472 
473 	return 0;
474 }
475 EXPORT_SYMBOL(radix_tree_insert);
476 
477 /**
478  *	__radix_tree_lookup	-	lookup an item in a radix tree
479  *	@root:		radix tree root
480  *	@index:		index key
481  *	@nodep:		returns node
482  *	@slotp:		returns slot
483  *
484  *	Lookup and return the item at position @index in the radix
485  *	tree @root.
486  *
487  *	Until there is more than one item in the tree, no nodes are
488  *	allocated and @root->rnode is used as a direct slot instead of
489  *	pointing to a node, in which case *@nodep will be NULL.
490  */
491 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
492 			  struct radix_tree_node **nodep, void ***slotp)
493 {
494 	struct radix_tree_node *node, *parent;
495 	unsigned int height, shift;
496 	void **slot;
497 
498 	node = rcu_dereference_raw(root->rnode);
499 	if (node == NULL)
500 		return NULL;
501 
502 	if (!radix_tree_is_indirect_ptr(node)) {
503 		if (index > 0)
504 			return NULL;
505 
506 		if (nodep)
507 			*nodep = NULL;
508 		if (slotp)
509 			*slotp = (void **)&root->rnode;
510 		return node;
511 	}
512 	node = indirect_to_ptr(node);
513 
514 	height = node->path & RADIX_TREE_HEIGHT_MASK;
515 	if (index > radix_tree_maxindex(height))
516 		return NULL;
517 
518 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
519 
520 	do {
521 		parent = node;
522 		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
523 		node = rcu_dereference_raw(*slot);
524 		if (node == NULL)
525 			return NULL;
526 
527 		shift -= RADIX_TREE_MAP_SHIFT;
528 		height--;
529 	} while (height > 0);
530 
531 	if (nodep)
532 		*nodep = parent;
533 	if (slotp)
534 		*slotp = slot;
535 	return node;
536 }
537 
538 /**
539  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
540  *	@root:		radix tree root
541  *	@index:		index key
542  *
543  *	Returns:  the slot corresponding to the position @index in the
544  *	radix tree @root. This is useful for update-if-exists operations.
545  *
546  *	This function can be called under rcu_read_lock iff the slot is not
547  *	modified by radix_tree_replace_slot, otherwise it must be called
548  *	exclusive from other writers. Any dereference of the slot must be done
549  *	using radix_tree_deref_slot.
550  */
551 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
552 {
553 	void **slot;
554 
555 	if (!__radix_tree_lookup(root, index, NULL, &slot))
556 		return NULL;
557 	return slot;
558 }
559 EXPORT_SYMBOL(radix_tree_lookup_slot);
560 
561 /**
562  *	radix_tree_lookup    -    perform lookup operation on a radix tree
563  *	@root:		radix tree root
564  *	@index:		index key
565  *
566  *	Lookup the item at the position @index in the radix tree @root.
567  *
568  *	This function can be called under rcu_read_lock, however the caller
569  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
570  *	them safely). No RCU barriers are required to access or modify the
571  *	returned item, however.
572  */
573 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
574 {
575 	return __radix_tree_lookup(root, index, NULL, NULL);
576 }
577 EXPORT_SYMBOL(radix_tree_lookup);
578 
579 /**
580  *	radix_tree_tag_set - set a tag on a radix tree node
581  *	@root:		radix tree root
582  *	@index:		index key
583  *	@tag: 		tag index
584  *
585  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
586  *	corresponding to @index in the radix tree.  From
587  *	the root all the way down to the leaf node.
588  *
589  *	Returns the address of the tagged item.   Setting a tag on a not-present
590  *	item is a bug.
591  */
592 void *radix_tree_tag_set(struct radix_tree_root *root,
593 			unsigned long index, unsigned int tag)
594 {
595 	unsigned int height, shift;
596 	struct radix_tree_node *slot;
597 
598 	height = root->height;
599 	BUG_ON(index > radix_tree_maxindex(height));
600 
601 	slot = indirect_to_ptr(root->rnode);
602 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
603 
604 	while (height > 0) {
605 		int offset;
606 
607 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
608 		if (!tag_get(slot, tag, offset))
609 			tag_set(slot, tag, offset);
610 		slot = slot->slots[offset];
611 		BUG_ON(slot == NULL);
612 		shift -= RADIX_TREE_MAP_SHIFT;
613 		height--;
614 	}
615 
616 	/* set the root's tag bit */
617 	if (slot && !root_tag_get(root, tag))
618 		root_tag_set(root, tag);
619 
620 	return slot;
621 }
622 EXPORT_SYMBOL(radix_tree_tag_set);
623 
624 /**
625  *	radix_tree_tag_clear - clear a tag on a radix tree node
626  *	@root:		radix tree root
627  *	@index:		index key
628  *	@tag: 		tag index
629  *
630  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
631  *	corresponding to @index in the radix tree.  If
632  *	this causes the leaf node to have no tags set then clear the tag in the
633  *	next-to-leaf node, etc.
634  *
635  *	Returns the address of the tagged item on success, else NULL.  ie:
636  *	has the same return value and semantics as radix_tree_lookup().
637  */
638 void *radix_tree_tag_clear(struct radix_tree_root *root,
639 			unsigned long index, unsigned int tag)
640 {
641 	struct radix_tree_node *node = NULL;
642 	struct radix_tree_node *slot = NULL;
643 	unsigned int height, shift;
644 	int uninitialized_var(offset);
645 
646 	height = root->height;
647 	if (index > radix_tree_maxindex(height))
648 		goto out;
649 
650 	shift = height * RADIX_TREE_MAP_SHIFT;
651 	slot = indirect_to_ptr(root->rnode);
652 
653 	while (shift) {
654 		if (slot == NULL)
655 			goto out;
656 
657 		shift -= RADIX_TREE_MAP_SHIFT;
658 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
659 		node = slot;
660 		slot = slot->slots[offset];
661 	}
662 
663 	if (slot == NULL)
664 		goto out;
665 
666 	while (node) {
667 		if (!tag_get(node, tag, offset))
668 			goto out;
669 		tag_clear(node, tag, offset);
670 		if (any_tag_set(node, tag))
671 			goto out;
672 
673 		index >>= RADIX_TREE_MAP_SHIFT;
674 		offset = index & RADIX_TREE_MAP_MASK;
675 		node = node->parent;
676 	}
677 
678 	/* clear the root's tag bit */
679 	if (root_tag_get(root, tag))
680 		root_tag_clear(root, tag);
681 
682 out:
683 	return slot;
684 }
685 EXPORT_SYMBOL(radix_tree_tag_clear);
686 
687 /**
688  * radix_tree_tag_get - get a tag on a radix tree node
689  * @root:		radix tree root
690  * @index:		index key
691  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
692  *
693  * Return values:
694  *
695  *  0: tag not present or not set
696  *  1: tag set
697  *
698  * Note that the return value of this function may not be relied on, even if
699  * the RCU lock is held, unless tag modification and node deletion are excluded
700  * from concurrency.
701  */
702 int radix_tree_tag_get(struct radix_tree_root *root,
703 			unsigned long index, unsigned int tag)
704 {
705 	unsigned int height, shift;
706 	struct radix_tree_node *node;
707 
708 	/* check the root's tag bit */
709 	if (!root_tag_get(root, tag))
710 		return 0;
711 
712 	node = rcu_dereference_raw(root->rnode);
713 	if (node == NULL)
714 		return 0;
715 
716 	if (!radix_tree_is_indirect_ptr(node))
717 		return (index == 0);
718 	node = indirect_to_ptr(node);
719 
720 	height = node->path & RADIX_TREE_HEIGHT_MASK;
721 	if (index > radix_tree_maxindex(height))
722 		return 0;
723 
724 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
725 
726 	for ( ; ; ) {
727 		int offset;
728 
729 		if (node == NULL)
730 			return 0;
731 
732 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
733 		if (!tag_get(node, tag, offset))
734 			return 0;
735 		if (height == 1)
736 			return 1;
737 		node = rcu_dereference_raw(node->slots[offset]);
738 		shift -= RADIX_TREE_MAP_SHIFT;
739 		height--;
740 	}
741 }
742 EXPORT_SYMBOL(radix_tree_tag_get);
743 
744 /**
745  * radix_tree_next_chunk - find next chunk of slots for iteration
746  *
747  * @root:	radix tree root
748  * @iter:	iterator state
749  * @flags:	RADIX_TREE_ITER_* flags and tag index
750  * Returns:	pointer to chunk first slot, or NULL if iteration is over
751  */
752 void **radix_tree_next_chunk(struct radix_tree_root *root,
753 			     struct radix_tree_iter *iter, unsigned flags)
754 {
755 	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
756 	struct radix_tree_node *rnode, *node;
757 	unsigned long index, offset, height;
758 
759 	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
760 		return NULL;
761 
762 	/*
763 	 * Catch next_index overflow after ~0UL. iter->index never overflows
764 	 * during iterating; it can be zero only at the beginning.
765 	 * And we cannot overflow iter->next_index in a single step,
766 	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
767 	 *
768 	 * This condition also used by radix_tree_next_slot() to stop
769 	 * contiguous iterating, and forbid swithing to the next chunk.
770 	 */
771 	index = iter->next_index;
772 	if (!index && iter->index)
773 		return NULL;
774 
775 	rnode = rcu_dereference_raw(root->rnode);
776 	if (radix_tree_is_indirect_ptr(rnode)) {
777 		rnode = indirect_to_ptr(rnode);
778 	} else if (rnode && !index) {
779 		/* Single-slot tree */
780 		iter->index = 0;
781 		iter->next_index = 1;
782 		iter->tags = 1;
783 		return (void **)&root->rnode;
784 	} else
785 		return NULL;
786 
787 restart:
788 	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
789 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
790 	offset = index >> shift;
791 
792 	/* Index outside of the tree */
793 	if (offset >= RADIX_TREE_MAP_SIZE)
794 		return NULL;
795 
796 	node = rnode;
797 	while (1) {
798 		if ((flags & RADIX_TREE_ITER_TAGGED) ?
799 				!test_bit(offset, node->tags[tag]) :
800 				!node->slots[offset]) {
801 			/* Hole detected */
802 			if (flags & RADIX_TREE_ITER_CONTIG)
803 				return NULL;
804 
805 			if (flags & RADIX_TREE_ITER_TAGGED)
806 				offset = radix_tree_find_next_bit(
807 						node->tags[tag],
808 						RADIX_TREE_MAP_SIZE,
809 						offset + 1);
810 			else
811 				while (++offset	< RADIX_TREE_MAP_SIZE) {
812 					if (node->slots[offset])
813 						break;
814 				}
815 			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
816 			index += offset << shift;
817 			/* Overflow after ~0UL */
818 			if (!index)
819 				return NULL;
820 			if (offset == RADIX_TREE_MAP_SIZE)
821 				goto restart;
822 		}
823 
824 		/* This is leaf-node */
825 		if (!shift)
826 			break;
827 
828 		node = rcu_dereference_raw(node->slots[offset]);
829 		if (node == NULL)
830 			goto restart;
831 		shift -= RADIX_TREE_MAP_SHIFT;
832 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
833 	}
834 
835 	/* Update the iterator state */
836 	iter->index = index;
837 	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
838 
839 	/* Construct iter->tags bit-mask from node->tags[tag] array */
840 	if (flags & RADIX_TREE_ITER_TAGGED) {
841 		unsigned tag_long, tag_bit;
842 
843 		tag_long = offset / BITS_PER_LONG;
844 		tag_bit  = offset % BITS_PER_LONG;
845 		iter->tags = node->tags[tag][tag_long] >> tag_bit;
846 		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
847 		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
848 			/* Pick tags from next element */
849 			if (tag_bit)
850 				iter->tags |= node->tags[tag][tag_long + 1] <<
851 						(BITS_PER_LONG - tag_bit);
852 			/* Clip chunk size, here only BITS_PER_LONG tags */
853 			iter->next_index = index + BITS_PER_LONG;
854 		}
855 	}
856 
857 	return node->slots + offset;
858 }
859 EXPORT_SYMBOL(radix_tree_next_chunk);
860 
861 /**
862  * radix_tree_range_tag_if_tagged - for each item in given range set given
863  *				   tag if item has another tag set
864  * @root:		radix tree root
865  * @first_indexp:	pointer to a starting index of a range to scan
866  * @last_index:		last index of a range to scan
867  * @nr_to_tag:		maximum number items to tag
868  * @iftag:		tag index to test
869  * @settag:		tag index to set if tested tag is set
870  *
871  * This function scans range of radix tree from first_index to last_index
872  * (inclusive).  For each item in the range if iftag is set, the function sets
873  * also settag. The function stops either after tagging nr_to_tag items or
874  * after reaching last_index.
875  *
876  * The tags must be set from the leaf level only and propagated back up the
877  * path to the root. We must do this so that we resolve the full path before
878  * setting any tags on intermediate nodes. If we set tags as we descend, then
879  * we can get to the leaf node and find that the index that has the iftag
880  * set is outside the range we are scanning. This reults in dangling tags and
881  * can lead to problems with later tag operations (e.g. livelocks on lookups).
882  *
883  * The function returns number of leaves where the tag was set and sets
884  * *first_indexp to the first unscanned index.
885  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
886  * be prepared to handle that.
887  */
888 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
889 		unsigned long *first_indexp, unsigned long last_index,
890 		unsigned long nr_to_tag,
891 		unsigned int iftag, unsigned int settag)
892 {
893 	unsigned int height = root->height;
894 	struct radix_tree_node *node = NULL;
895 	struct radix_tree_node *slot;
896 	unsigned int shift;
897 	unsigned long tagged = 0;
898 	unsigned long index = *first_indexp;
899 
900 	last_index = min(last_index, radix_tree_maxindex(height));
901 	if (index > last_index)
902 		return 0;
903 	if (!nr_to_tag)
904 		return 0;
905 	if (!root_tag_get(root, iftag)) {
906 		*first_indexp = last_index + 1;
907 		return 0;
908 	}
909 	if (height == 0) {
910 		*first_indexp = last_index + 1;
911 		root_tag_set(root, settag);
912 		return 1;
913 	}
914 
915 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
916 	slot = indirect_to_ptr(root->rnode);
917 
918 	for (;;) {
919 		unsigned long upindex;
920 		int offset;
921 
922 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
923 		if (!slot->slots[offset])
924 			goto next;
925 		if (!tag_get(slot, iftag, offset))
926 			goto next;
927 		if (shift) {
928 			/* Go down one level */
929 			shift -= RADIX_TREE_MAP_SHIFT;
930 			node = slot;
931 			slot = slot->slots[offset];
932 			continue;
933 		}
934 
935 		/* tag the leaf */
936 		tagged++;
937 		tag_set(slot, settag, offset);
938 
939 		/* walk back up the path tagging interior nodes */
940 		upindex = index;
941 		while (node) {
942 			upindex >>= RADIX_TREE_MAP_SHIFT;
943 			offset = upindex & RADIX_TREE_MAP_MASK;
944 
945 			/* stop if we find a node with the tag already set */
946 			if (tag_get(node, settag, offset))
947 				break;
948 			tag_set(node, settag, offset);
949 			node = node->parent;
950 		}
951 
952 		/*
953 		 * Small optimization: now clear that node pointer.
954 		 * Since all of this slot's ancestors now have the tag set
955 		 * from setting it above, we have no further need to walk
956 		 * back up the tree setting tags, until we update slot to
957 		 * point to another radix_tree_node.
958 		 */
959 		node = NULL;
960 
961 next:
962 		/* Go to next item at level determined by 'shift' */
963 		index = ((index >> shift) + 1) << shift;
964 		/* Overflow can happen when last_index is ~0UL... */
965 		if (index > last_index || !index)
966 			break;
967 		if (tagged >= nr_to_tag)
968 			break;
969 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
970 			/*
971 			 * We've fully scanned this node. Go up. Because
972 			 * last_index is guaranteed to be in the tree, what
973 			 * we do below cannot wander astray.
974 			 */
975 			slot = slot->parent;
976 			shift += RADIX_TREE_MAP_SHIFT;
977 		}
978 	}
979 	/*
980 	 * We need not to tag the root tag if there is no tag which is set with
981 	 * settag within the range from *first_indexp to last_index.
982 	 */
983 	if (tagged > 0)
984 		root_tag_set(root, settag);
985 	*first_indexp = index;
986 
987 	return tagged;
988 }
989 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
990 
991 /**
992  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
993  *	@root:		radix tree root
994  *	@results:	where the results of the lookup are placed
995  *	@first_index:	start the lookup from this key
996  *	@max_items:	place up to this many items at *results
997  *
998  *	Performs an index-ascending scan of the tree for present items.  Places
999  *	them at *@results and returns the number of items which were placed at
1000  *	*@results.
1001  *
1002  *	The implementation is naive.
1003  *
1004  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1005  *	rcu_read_lock. In this case, rather than the returned results being
1006  *	an atomic snapshot of the tree at a single point in time, the semantics
1007  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
1008  *	have been issued in individual locks, and results stored in 'results'.
1009  */
1010 unsigned int
1011 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1012 			unsigned long first_index, unsigned int max_items)
1013 {
1014 	struct radix_tree_iter iter;
1015 	void **slot;
1016 	unsigned int ret = 0;
1017 
1018 	if (unlikely(!max_items))
1019 		return 0;
1020 
1021 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1022 		results[ret] = rcu_dereference_raw(*slot);
1023 		if (!results[ret])
1024 			continue;
1025 		if (radix_tree_is_indirect_ptr(results[ret])) {
1026 			slot = radix_tree_iter_retry(&iter);
1027 			continue;
1028 		}
1029 		if (++ret == max_items)
1030 			break;
1031 	}
1032 
1033 	return ret;
1034 }
1035 EXPORT_SYMBOL(radix_tree_gang_lookup);
1036 
1037 /**
1038  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1039  *	@root:		radix tree root
1040  *	@results:	where the results of the lookup are placed
1041  *	@indices:	where their indices should be placed (but usually NULL)
1042  *	@first_index:	start the lookup from this key
1043  *	@max_items:	place up to this many items at *results
1044  *
1045  *	Performs an index-ascending scan of the tree for present items.  Places
1046  *	their slots at *@results and returns the number of items which were
1047  *	placed at *@results.
1048  *
1049  *	The implementation is naive.
1050  *
1051  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1052  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1053  *	protection, radix_tree_deref_slot may fail requiring a retry.
1054  */
1055 unsigned int
1056 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1057 			void ***results, unsigned long *indices,
1058 			unsigned long first_index, unsigned int max_items)
1059 {
1060 	struct radix_tree_iter iter;
1061 	void **slot;
1062 	unsigned int ret = 0;
1063 
1064 	if (unlikely(!max_items))
1065 		return 0;
1066 
1067 	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1068 		results[ret] = slot;
1069 		if (indices)
1070 			indices[ret] = iter.index;
1071 		if (++ret == max_items)
1072 			break;
1073 	}
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1078 
1079 /**
1080  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1081  *	                             based on a tag
1082  *	@root:		radix tree root
1083  *	@results:	where the results of the lookup are placed
1084  *	@first_index:	start the lookup from this key
1085  *	@max_items:	place up to this many items at *results
1086  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1087  *
1088  *	Performs an index-ascending scan of the tree for present items which
1089  *	have the tag indexed by @tag set.  Places the items at *@results and
1090  *	returns the number of items which were placed at *@results.
1091  */
1092 unsigned int
1093 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1094 		unsigned long first_index, unsigned int max_items,
1095 		unsigned int tag)
1096 {
1097 	struct radix_tree_iter iter;
1098 	void **slot;
1099 	unsigned int ret = 0;
1100 
1101 	if (unlikely(!max_items))
1102 		return 0;
1103 
1104 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1105 		results[ret] = rcu_dereference_raw(*slot);
1106 		if (!results[ret])
1107 			continue;
1108 		if (radix_tree_is_indirect_ptr(results[ret])) {
1109 			slot = radix_tree_iter_retry(&iter);
1110 			continue;
1111 		}
1112 		if (++ret == max_items)
1113 			break;
1114 	}
1115 
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1119 
1120 /**
1121  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1122  *					  radix tree based on a tag
1123  *	@root:		radix tree root
1124  *	@results:	where the results of the lookup are placed
1125  *	@first_index:	start the lookup from this key
1126  *	@max_items:	place up to this many items at *results
1127  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1128  *
1129  *	Performs an index-ascending scan of the tree for present items which
1130  *	have the tag indexed by @tag set.  Places the slots at *@results and
1131  *	returns the number of slots which were placed at *@results.
1132  */
1133 unsigned int
1134 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1135 		unsigned long first_index, unsigned int max_items,
1136 		unsigned int tag)
1137 {
1138 	struct radix_tree_iter iter;
1139 	void **slot;
1140 	unsigned int ret = 0;
1141 
1142 	if (unlikely(!max_items))
1143 		return 0;
1144 
1145 	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1146 		results[ret] = slot;
1147 		if (++ret == max_items)
1148 			break;
1149 	}
1150 
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1154 
1155 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1156 #include <linux/sched.h> /* for cond_resched() */
1157 
1158 /*
1159  * This linear search is at present only useful to shmem_unuse_inode().
1160  */
1161 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1162 			      unsigned long index, unsigned long *found_index)
1163 {
1164 	unsigned int shift, height;
1165 	unsigned long i;
1166 
1167 	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1168 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1169 
1170 	for ( ; height > 1; height--) {
1171 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1172 		for (;;) {
1173 			if (slot->slots[i] != NULL)
1174 				break;
1175 			index &= ~((1UL << shift) - 1);
1176 			index += 1UL << shift;
1177 			if (index == 0)
1178 				goto out;	/* 32-bit wraparound */
1179 			i++;
1180 			if (i == RADIX_TREE_MAP_SIZE)
1181 				goto out;
1182 		}
1183 
1184 		shift -= RADIX_TREE_MAP_SHIFT;
1185 		slot = rcu_dereference_raw(slot->slots[i]);
1186 		if (slot == NULL)
1187 			goto out;
1188 	}
1189 
1190 	/* Bottom level: check items */
1191 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1192 		if (slot->slots[i] == item) {
1193 			*found_index = index + i;
1194 			index = 0;
1195 			goto out;
1196 		}
1197 	}
1198 	index += RADIX_TREE_MAP_SIZE;
1199 out:
1200 	return index;
1201 }
1202 
1203 /**
1204  *	radix_tree_locate_item - search through radix tree for item
1205  *	@root:		radix tree root
1206  *	@item:		item to be found
1207  *
1208  *	Returns index where item was found, or -1 if not found.
1209  *	Caller must hold no lock (since this time-consuming function needs
1210  *	to be preemptible), and must check afterwards if item is still there.
1211  */
1212 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1213 {
1214 	struct radix_tree_node *node;
1215 	unsigned long max_index;
1216 	unsigned long cur_index = 0;
1217 	unsigned long found_index = -1;
1218 
1219 	do {
1220 		rcu_read_lock();
1221 		node = rcu_dereference_raw(root->rnode);
1222 		if (!radix_tree_is_indirect_ptr(node)) {
1223 			rcu_read_unlock();
1224 			if (node == item)
1225 				found_index = 0;
1226 			break;
1227 		}
1228 
1229 		node = indirect_to_ptr(node);
1230 		max_index = radix_tree_maxindex(node->path &
1231 						RADIX_TREE_HEIGHT_MASK);
1232 		if (cur_index > max_index) {
1233 			rcu_read_unlock();
1234 			break;
1235 		}
1236 
1237 		cur_index = __locate(node, item, cur_index, &found_index);
1238 		rcu_read_unlock();
1239 		cond_resched();
1240 	} while (cur_index != 0 && cur_index <= max_index);
1241 
1242 	return found_index;
1243 }
1244 #else
1245 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1246 {
1247 	return -1;
1248 }
1249 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1250 
1251 /**
1252  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1253  *	@root		radix tree root
1254  */
1255 static inline void radix_tree_shrink(struct radix_tree_root *root)
1256 {
1257 	/* try to shrink tree height */
1258 	while (root->height > 0) {
1259 		struct radix_tree_node *to_free = root->rnode;
1260 		struct radix_tree_node *slot;
1261 
1262 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1263 		to_free = indirect_to_ptr(to_free);
1264 
1265 		/*
1266 		 * The candidate node has more than one child, or its child
1267 		 * is not at the leftmost slot, we cannot shrink.
1268 		 */
1269 		if (to_free->count != 1)
1270 			break;
1271 		if (!to_free->slots[0])
1272 			break;
1273 
1274 		/*
1275 		 * We don't need rcu_assign_pointer(), since we are simply
1276 		 * moving the node from one part of the tree to another: if it
1277 		 * was safe to dereference the old pointer to it
1278 		 * (to_free->slots[0]), it will be safe to dereference the new
1279 		 * one (root->rnode) as far as dependent read barriers go.
1280 		 */
1281 		slot = to_free->slots[0];
1282 		if (root->height > 1) {
1283 			slot->parent = NULL;
1284 			slot = ptr_to_indirect(slot);
1285 		}
1286 		root->rnode = slot;
1287 		root->height--;
1288 
1289 		/*
1290 		 * We have a dilemma here. The node's slot[0] must not be
1291 		 * NULLed in case there are concurrent lookups expecting to
1292 		 * find the item. However if this was a bottom-level node,
1293 		 * then it may be subject to the slot pointer being visible
1294 		 * to callers dereferencing it. If item corresponding to
1295 		 * slot[0] is subsequently deleted, these callers would expect
1296 		 * their slot to become empty sooner or later.
1297 		 *
1298 		 * For example, lockless pagecache will look up a slot, deref
1299 		 * the page pointer, and if the page is 0 refcount it means it
1300 		 * was concurrently deleted from pagecache so try the deref
1301 		 * again. Fortunately there is already a requirement for logic
1302 		 * to retry the entire slot lookup -- the indirect pointer
1303 		 * problem (replacing direct root node with an indirect pointer
1304 		 * also results in a stale slot). So tag the slot as indirect
1305 		 * to force callers to retry.
1306 		 */
1307 		if (root->height == 0)
1308 			*((unsigned long *)&to_free->slots[0]) |=
1309 						RADIX_TREE_INDIRECT_PTR;
1310 
1311 		radix_tree_node_free(to_free);
1312 	}
1313 }
1314 
1315 /**
1316  *	__radix_tree_delete_node    -    try to free node after clearing a slot
1317  *	@root:		radix tree root
1318  *	@node:		node containing @index
1319  *
1320  *	After clearing the slot at @index in @node from radix tree
1321  *	rooted at @root, call this function to attempt freeing the
1322  *	node and shrinking the tree.
1323  *
1324  *	Returns %true if @node was freed, %false otherwise.
1325  */
1326 bool __radix_tree_delete_node(struct radix_tree_root *root,
1327 			      struct radix_tree_node *node)
1328 {
1329 	bool deleted = false;
1330 
1331 	do {
1332 		struct radix_tree_node *parent;
1333 
1334 		if (node->count) {
1335 			if (node == indirect_to_ptr(root->rnode)) {
1336 				radix_tree_shrink(root);
1337 				if (root->height == 0)
1338 					deleted = true;
1339 			}
1340 			return deleted;
1341 		}
1342 
1343 		parent = node->parent;
1344 		if (parent) {
1345 			unsigned int offset;
1346 
1347 			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1348 			parent->slots[offset] = NULL;
1349 			parent->count--;
1350 		} else {
1351 			root_tag_clear_all(root);
1352 			root->height = 0;
1353 			root->rnode = NULL;
1354 		}
1355 
1356 		radix_tree_node_free(node);
1357 		deleted = true;
1358 
1359 		node = parent;
1360 	} while (node);
1361 
1362 	return deleted;
1363 }
1364 
1365 /**
1366  *	radix_tree_delete_item    -    delete an item from a radix tree
1367  *	@root:		radix tree root
1368  *	@index:		index key
1369  *	@item:		expected item
1370  *
1371  *	Remove @item at @index from the radix tree rooted at @root.
1372  *
1373  *	Returns the address of the deleted item, or NULL if it was not present
1374  *	or the entry at the given @index was not @item.
1375  */
1376 void *radix_tree_delete_item(struct radix_tree_root *root,
1377 			     unsigned long index, void *item)
1378 {
1379 	struct radix_tree_node *node;
1380 	unsigned int offset;
1381 	void **slot;
1382 	void *entry;
1383 	int tag;
1384 
1385 	entry = __radix_tree_lookup(root, index, &node, &slot);
1386 	if (!entry)
1387 		return NULL;
1388 
1389 	if (item && entry != item)
1390 		return NULL;
1391 
1392 	if (!node) {
1393 		root_tag_clear_all(root);
1394 		root->rnode = NULL;
1395 		return entry;
1396 	}
1397 
1398 	offset = index & RADIX_TREE_MAP_MASK;
1399 
1400 	/*
1401 	 * Clear all tags associated with the item to be deleted.
1402 	 * This way of doing it would be inefficient, but seldom is any set.
1403 	 */
1404 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1405 		if (tag_get(node, tag, offset))
1406 			radix_tree_tag_clear(root, index, tag);
1407 	}
1408 
1409 	node->slots[offset] = NULL;
1410 	node->count--;
1411 
1412 	__radix_tree_delete_node(root, node);
1413 
1414 	return entry;
1415 }
1416 EXPORT_SYMBOL(radix_tree_delete_item);
1417 
1418 /**
1419  *	radix_tree_delete    -    delete an item from a radix tree
1420  *	@root:		radix tree root
1421  *	@index:		index key
1422  *
1423  *	Remove the item at @index from the radix tree rooted at @root.
1424  *
1425  *	Returns the address of the deleted item, or NULL if it was not present.
1426  */
1427 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1428 {
1429 	return radix_tree_delete_item(root, index, NULL);
1430 }
1431 EXPORT_SYMBOL(radix_tree_delete);
1432 
1433 /**
1434  *	radix_tree_tagged - test whether any items in the tree are tagged
1435  *	@root:		radix tree root
1436  *	@tag:		tag to test
1437  */
1438 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1439 {
1440 	return root_tag_get(root, tag);
1441 }
1442 EXPORT_SYMBOL(radix_tree_tagged);
1443 
1444 static void
1445 radix_tree_node_ctor(void *arg)
1446 {
1447 	struct radix_tree_node *node = arg;
1448 
1449 	memset(node, 0, sizeof(*node));
1450 	INIT_LIST_HEAD(&node->private_list);
1451 }
1452 
1453 static __init unsigned long __maxindex(unsigned int height)
1454 {
1455 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1456 	int shift = RADIX_TREE_INDEX_BITS - width;
1457 
1458 	if (shift < 0)
1459 		return ~0UL;
1460 	if (shift >= BITS_PER_LONG)
1461 		return 0UL;
1462 	return ~0UL >> shift;
1463 }
1464 
1465 static __init void radix_tree_init_maxindex(void)
1466 {
1467 	unsigned int i;
1468 
1469 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1470 		height_to_maxindex[i] = __maxindex(i);
1471 }
1472 
1473 static int radix_tree_callback(struct notifier_block *nfb,
1474                             unsigned long action,
1475                             void *hcpu)
1476 {
1477        int cpu = (long)hcpu;
1478        struct radix_tree_preload *rtp;
1479        struct radix_tree_node *node;
1480 
1481        /* Free per-cpu pool of perloaded nodes */
1482        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1483                rtp = &per_cpu(radix_tree_preloads, cpu);
1484                while (rtp->nr) {
1485 			node = rtp->nodes;
1486 			rtp->nodes = node->private_data;
1487 			kmem_cache_free(radix_tree_node_cachep, node);
1488 			rtp->nr--;
1489                }
1490        }
1491        return NOTIFY_OK;
1492 }
1493 
1494 void __init radix_tree_init(void)
1495 {
1496 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1497 			sizeof(struct radix_tree_node), 0,
1498 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1499 			radix_tree_node_ctor);
1500 	radix_tree_init_maxindex();
1501 	hotcpu_notifier(radix_tree_callback, 0);
1502 }
1503