1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2, or (at 11 * your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23 #include <linux/errno.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/export.h> 27 #include <linux/radix-tree.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/notifier.h> 31 #include <linux/cpu.h> 32 #include <linux/string.h> 33 #include <linux/bitops.h> 34 #include <linux/rcupdate.h> 35 36 37 #ifdef __KERNEL__ 38 #define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6) 39 #else 40 #define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */ 41 #endif 42 43 #define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT) 44 #define RADIX_TREE_MAP_MASK (RADIX_TREE_MAP_SIZE-1) 45 46 #define RADIX_TREE_TAG_LONGS \ 47 ((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG) 48 49 struct radix_tree_node { 50 unsigned int height; /* Height from the bottom */ 51 unsigned int count; 52 union { 53 struct radix_tree_node *parent; /* Used when ascending tree */ 54 struct rcu_head rcu_head; /* Used when freeing node */ 55 }; 56 void __rcu *slots[RADIX_TREE_MAP_SIZE]; 57 unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; 58 }; 59 60 #define RADIX_TREE_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(unsigned long)) 61 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \ 62 RADIX_TREE_MAP_SHIFT)) 63 64 /* 65 * The height_to_maxindex array needs to be one deeper than the maximum 66 * path as height 0 holds only 1 entry. 67 */ 68 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly; 69 70 /* 71 * Radix tree node cache. 72 */ 73 static struct kmem_cache *radix_tree_node_cachep; 74 75 /* 76 * The radix tree is variable-height, so an insert operation not only has 77 * to build the branch to its corresponding item, it also has to build the 78 * branch to existing items if the size has to be increased (by 79 * radix_tree_extend). 80 * 81 * The worst case is a zero height tree with just a single item at index 0, 82 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 83 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 84 * Hence: 85 */ 86 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 87 88 /* 89 * Per-cpu pool of preloaded nodes 90 */ 91 struct radix_tree_preload { 92 int nr; 93 struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE]; 94 }; 95 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 96 97 static inline void *ptr_to_indirect(void *ptr) 98 { 99 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR); 100 } 101 102 static inline void *indirect_to_ptr(void *ptr) 103 { 104 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR); 105 } 106 107 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 108 { 109 return root->gfp_mask & __GFP_BITS_MASK; 110 } 111 112 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 113 int offset) 114 { 115 __set_bit(offset, node->tags[tag]); 116 } 117 118 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 119 int offset) 120 { 121 __clear_bit(offset, node->tags[tag]); 122 } 123 124 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 125 int offset) 126 { 127 return test_bit(offset, node->tags[tag]); 128 } 129 130 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 131 { 132 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 133 } 134 135 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag) 136 { 137 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 138 } 139 140 static inline void root_tag_clear_all(struct radix_tree_root *root) 141 { 142 root->gfp_mask &= __GFP_BITS_MASK; 143 } 144 145 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 146 { 147 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 148 } 149 150 /* 151 * Returns 1 if any slot in the node has this tag set. 152 * Otherwise returns 0. 153 */ 154 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 155 { 156 int idx; 157 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 158 if (node->tags[tag][idx]) 159 return 1; 160 } 161 return 0; 162 } 163 164 /** 165 * radix_tree_find_next_bit - find the next set bit in a memory region 166 * 167 * @addr: The address to base the search on 168 * @size: The bitmap size in bits 169 * @offset: The bitnumber to start searching at 170 * 171 * Unrollable variant of find_next_bit() for constant size arrays. 172 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 173 * Returns next bit offset, or size if nothing found. 174 */ 175 static __always_inline unsigned long 176 radix_tree_find_next_bit(const unsigned long *addr, 177 unsigned long size, unsigned long offset) 178 { 179 if (!__builtin_constant_p(size)) 180 return find_next_bit(addr, size, offset); 181 182 if (offset < size) { 183 unsigned long tmp; 184 185 addr += offset / BITS_PER_LONG; 186 tmp = *addr >> (offset % BITS_PER_LONG); 187 if (tmp) 188 return __ffs(tmp) + offset; 189 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 190 while (offset < size) { 191 tmp = *++addr; 192 if (tmp) 193 return __ffs(tmp) + offset; 194 offset += BITS_PER_LONG; 195 } 196 } 197 return size; 198 } 199 200 /* 201 * This assumes that the caller has performed appropriate preallocation, and 202 * that the caller has pinned this thread of control to the current CPU. 203 */ 204 static struct radix_tree_node * 205 radix_tree_node_alloc(struct radix_tree_root *root) 206 { 207 struct radix_tree_node *ret = NULL; 208 gfp_t gfp_mask = root_gfp_mask(root); 209 210 if (!(gfp_mask & __GFP_WAIT)) { 211 struct radix_tree_preload *rtp; 212 213 /* 214 * Provided the caller has preloaded here, we will always 215 * succeed in getting a node here (and never reach 216 * kmem_cache_alloc) 217 */ 218 rtp = &__get_cpu_var(radix_tree_preloads); 219 if (rtp->nr) { 220 ret = rtp->nodes[rtp->nr - 1]; 221 rtp->nodes[rtp->nr - 1] = NULL; 222 rtp->nr--; 223 } 224 } 225 if (ret == NULL) 226 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 227 228 BUG_ON(radix_tree_is_indirect_ptr(ret)); 229 return ret; 230 } 231 232 static void radix_tree_node_rcu_free(struct rcu_head *head) 233 { 234 struct radix_tree_node *node = 235 container_of(head, struct radix_tree_node, rcu_head); 236 int i; 237 238 /* 239 * must only free zeroed nodes into the slab. radix_tree_shrink 240 * can leave us with a non-NULL entry in the first slot, so clear 241 * that here to make sure. 242 */ 243 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 244 tag_clear(node, i, 0); 245 246 node->slots[0] = NULL; 247 node->count = 0; 248 249 kmem_cache_free(radix_tree_node_cachep, node); 250 } 251 252 static inline void 253 radix_tree_node_free(struct radix_tree_node *node) 254 { 255 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 256 } 257 258 /* 259 * Load up this CPU's radix_tree_node buffer with sufficient objects to 260 * ensure that the addition of a single element in the tree cannot fail. On 261 * success, return zero, with preemption disabled. On error, return -ENOMEM 262 * with preemption not disabled. 263 * 264 * To make use of this facility, the radix tree must be initialised without 265 * __GFP_WAIT being passed to INIT_RADIX_TREE(). 266 */ 267 int radix_tree_preload(gfp_t gfp_mask) 268 { 269 struct radix_tree_preload *rtp; 270 struct radix_tree_node *node; 271 int ret = -ENOMEM; 272 273 preempt_disable(); 274 rtp = &__get_cpu_var(radix_tree_preloads); 275 while (rtp->nr < ARRAY_SIZE(rtp->nodes)) { 276 preempt_enable(); 277 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 278 if (node == NULL) 279 goto out; 280 preempt_disable(); 281 rtp = &__get_cpu_var(radix_tree_preloads); 282 if (rtp->nr < ARRAY_SIZE(rtp->nodes)) 283 rtp->nodes[rtp->nr++] = node; 284 else 285 kmem_cache_free(radix_tree_node_cachep, node); 286 } 287 ret = 0; 288 out: 289 return ret; 290 } 291 EXPORT_SYMBOL(radix_tree_preload); 292 293 /* 294 * Return the maximum key which can be store into a 295 * radix tree with height HEIGHT. 296 */ 297 static inline unsigned long radix_tree_maxindex(unsigned int height) 298 { 299 return height_to_maxindex[height]; 300 } 301 302 /* 303 * Extend a radix tree so it can store key @index. 304 */ 305 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index) 306 { 307 struct radix_tree_node *node; 308 struct radix_tree_node *slot; 309 unsigned int height; 310 int tag; 311 312 /* Figure out what the height should be. */ 313 height = root->height + 1; 314 while (index > radix_tree_maxindex(height)) 315 height++; 316 317 if (root->rnode == NULL) { 318 root->height = height; 319 goto out; 320 } 321 322 do { 323 unsigned int newheight; 324 if (!(node = radix_tree_node_alloc(root))) 325 return -ENOMEM; 326 327 /* Propagate the aggregated tag info into the new root */ 328 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 329 if (root_tag_get(root, tag)) 330 tag_set(node, tag, 0); 331 } 332 333 /* Increase the height. */ 334 newheight = root->height+1; 335 node->height = newheight; 336 node->count = 1; 337 node->parent = NULL; 338 slot = root->rnode; 339 if (newheight > 1) { 340 slot = indirect_to_ptr(slot); 341 slot->parent = node; 342 } 343 node->slots[0] = slot; 344 node = ptr_to_indirect(node); 345 rcu_assign_pointer(root->rnode, node); 346 root->height = newheight; 347 } while (height > root->height); 348 out: 349 return 0; 350 } 351 352 /** 353 * radix_tree_insert - insert into a radix tree 354 * @root: radix tree root 355 * @index: index key 356 * @item: item to insert 357 * 358 * Insert an item into the radix tree at position @index. 359 */ 360 int radix_tree_insert(struct radix_tree_root *root, 361 unsigned long index, void *item) 362 { 363 struct radix_tree_node *node = NULL, *slot; 364 unsigned int height, shift; 365 int offset; 366 int error; 367 368 BUG_ON(radix_tree_is_indirect_ptr(item)); 369 370 /* Make sure the tree is high enough. */ 371 if (index > radix_tree_maxindex(root->height)) { 372 error = radix_tree_extend(root, index); 373 if (error) 374 return error; 375 } 376 377 slot = indirect_to_ptr(root->rnode); 378 379 height = root->height; 380 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 381 382 offset = 0; /* uninitialised var warning */ 383 while (height > 0) { 384 if (slot == NULL) { 385 /* Have to add a child node. */ 386 if (!(slot = radix_tree_node_alloc(root))) 387 return -ENOMEM; 388 slot->height = height; 389 slot->parent = node; 390 if (node) { 391 rcu_assign_pointer(node->slots[offset], slot); 392 node->count++; 393 } else 394 rcu_assign_pointer(root->rnode, ptr_to_indirect(slot)); 395 } 396 397 /* Go a level down */ 398 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 399 node = slot; 400 slot = node->slots[offset]; 401 shift -= RADIX_TREE_MAP_SHIFT; 402 height--; 403 } 404 405 if (slot != NULL) 406 return -EEXIST; 407 408 if (node) { 409 node->count++; 410 rcu_assign_pointer(node->slots[offset], item); 411 BUG_ON(tag_get(node, 0, offset)); 412 BUG_ON(tag_get(node, 1, offset)); 413 } else { 414 rcu_assign_pointer(root->rnode, item); 415 BUG_ON(root_tag_get(root, 0)); 416 BUG_ON(root_tag_get(root, 1)); 417 } 418 419 return 0; 420 } 421 EXPORT_SYMBOL(radix_tree_insert); 422 423 /* 424 * is_slot == 1 : search for the slot. 425 * is_slot == 0 : search for the node. 426 */ 427 static void *radix_tree_lookup_element(struct radix_tree_root *root, 428 unsigned long index, int is_slot) 429 { 430 unsigned int height, shift; 431 struct radix_tree_node *node, **slot; 432 433 node = rcu_dereference_raw(root->rnode); 434 if (node == NULL) 435 return NULL; 436 437 if (!radix_tree_is_indirect_ptr(node)) { 438 if (index > 0) 439 return NULL; 440 return is_slot ? (void *)&root->rnode : node; 441 } 442 node = indirect_to_ptr(node); 443 444 height = node->height; 445 if (index > radix_tree_maxindex(height)) 446 return NULL; 447 448 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 449 450 do { 451 slot = (struct radix_tree_node **) 452 (node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK)); 453 node = rcu_dereference_raw(*slot); 454 if (node == NULL) 455 return NULL; 456 457 shift -= RADIX_TREE_MAP_SHIFT; 458 height--; 459 } while (height > 0); 460 461 return is_slot ? (void *)slot : indirect_to_ptr(node); 462 } 463 464 /** 465 * radix_tree_lookup_slot - lookup a slot in a radix tree 466 * @root: radix tree root 467 * @index: index key 468 * 469 * Returns: the slot corresponding to the position @index in the 470 * radix tree @root. This is useful for update-if-exists operations. 471 * 472 * This function can be called under rcu_read_lock iff the slot is not 473 * modified by radix_tree_replace_slot, otherwise it must be called 474 * exclusive from other writers. Any dereference of the slot must be done 475 * using radix_tree_deref_slot. 476 */ 477 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 478 { 479 return (void **)radix_tree_lookup_element(root, index, 1); 480 } 481 EXPORT_SYMBOL(radix_tree_lookup_slot); 482 483 /** 484 * radix_tree_lookup - perform lookup operation on a radix tree 485 * @root: radix tree root 486 * @index: index key 487 * 488 * Lookup the item at the position @index in the radix tree @root. 489 * 490 * This function can be called under rcu_read_lock, however the caller 491 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 492 * them safely). No RCU barriers are required to access or modify the 493 * returned item, however. 494 */ 495 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 496 { 497 return radix_tree_lookup_element(root, index, 0); 498 } 499 EXPORT_SYMBOL(radix_tree_lookup); 500 501 /** 502 * radix_tree_tag_set - set a tag on a radix tree node 503 * @root: radix tree root 504 * @index: index key 505 * @tag: tag index 506 * 507 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 508 * corresponding to @index in the radix tree. From 509 * the root all the way down to the leaf node. 510 * 511 * Returns the address of the tagged item. Setting a tag on a not-present 512 * item is a bug. 513 */ 514 void *radix_tree_tag_set(struct radix_tree_root *root, 515 unsigned long index, unsigned int tag) 516 { 517 unsigned int height, shift; 518 struct radix_tree_node *slot; 519 520 height = root->height; 521 BUG_ON(index > radix_tree_maxindex(height)); 522 523 slot = indirect_to_ptr(root->rnode); 524 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 525 526 while (height > 0) { 527 int offset; 528 529 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 530 if (!tag_get(slot, tag, offset)) 531 tag_set(slot, tag, offset); 532 slot = slot->slots[offset]; 533 BUG_ON(slot == NULL); 534 shift -= RADIX_TREE_MAP_SHIFT; 535 height--; 536 } 537 538 /* set the root's tag bit */ 539 if (slot && !root_tag_get(root, tag)) 540 root_tag_set(root, tag); 541 542 return slot; 543 } 544 EXPORT_SYMBOL(radix_tree_tag_set); 545 546 /** 547 * radix_tree_tag_clear - clear a tag on a radix tree node 548 * @root: radix tree root 549 * @index: index key 550 * @tag: tag index 551 * 552 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 553 * corresponding to @index in the radix tree. If 554 * this causes the leaf node to have no tags set then clear the tag in the 555 * next-to-leaf node, etc. 556 * 557 * Returns the address of the tagged item on success, else NULL. ie: 558 * has the same return value and semantics as radix_tree_lookup(). 559 */ 560 void *radix_tree_tag_clear(struct radix_tree_root *root, 561 unsigned long index, unsigned int tag) 562 { 563 struct radix_tree_node *node = NULL; 564 struct radix_tree_node *slot = NULL; 565 unsigned int height, shift; 566 int uninitialized_var(offset); 567 568 height = root->height; 569 if (index > radix_tree_maxindex(height)) 570 goto out; 571 572 shift = height * RADIX_TREE_MAP_SHIFT; 573 slot = indirect_to_ptr(root->rnode); 574 575 while (shift) { 576 if (slot == NULL) 577 goto out; 578 579 shift -= RADIX_TREE_MAP_SHIFT; 580 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 581 node = slot; 582 slot = slot->slots[offset]; 583 } 584 585 if (slot == NULL) 586 goto out; 587 588 while (node) { 589 if (!tag_get(node, tag, offset)) 590 goto out; 591 tag_clear(node, tag, offset); 592 if (any_tag_set(node, tag)) 593 goto out; 594 595 index >>= RADIX_TREE_MAP_SHIFT; 596 offset = index & RADIX_TREE_MAP_MASK; 597 node = node->parent; 598 } 599 600 /* clear the root's tag bit */ 601 if (root_tag_get(root, tag)) 602 root_tag_clear(root, tag); 603 604 out: 605 return slot; 606 } 607 EXPORT_SYMBOL(radix_tree_tag_clear); 608 609 /** 610 * radix_tree_tag_get - get a tag on a radix tree node 611 * @root: radix tree root 612 * @index: index key 613 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 614 * 615 * Return values: 616 * 617 * 0: tag not present or not set 618 * 1: tag set 619 * 620 * Note that the return value of this function may not be relied on, even if 621 * the RCU lock is held, unless tag modification and node deletion are excluded 622 * from concurrency. 623 */ 624 int radix_tree_tag_get(struct radix_tree_root *root, 625 unsigned long index, unsigned int tag) 626 { 627 unsigned int height, shift; 628 struct radix_tree_node *node; 629 630 /* check the root's tag bit */ 631 if (!root_tag_get(root, tag)) 632 return 0; 633 634 node = rcu_dereference_raw(root->rnode); 635 if (node == NULL) 636 return 0; 637 638 if (!radix_tree_is_indirect_ptr(node)) 639 return (index == 0); 640 node = indirect_to_ptr(node); 641 642 height = node->height; 643 if (index > radix_tree_maxindex(height)) 644 return 0; 645 646 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 647 648 for ( ; ; ) { 649 int offset; 650 651 if (node == NULL) 652 return 0; 653 654 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 655 if (!tag_get(node, tag, offset)) 656 return 0; 657 if (height == 1) 658 return 1; 659 node = rcu_dereference_raw(node->slots[offset]); 660 shift -= RADIX_TREE_MAP_SHIFT; 661 height--; 662 } 663 } 664 EXPORT_SYMBOL(radix_tree_tag_get); 665 666 /** 667 * radix_tree_next_chunk - find next chunk of slots for iteration 668 * 669 * @root: radix tree root 670 * @iter: iterator state 671 * @flags: RADIX_TREE_ITER_* flags and tag index 672 * Returns: pointer to chunk first slot, or NULL if iteration is over 673 */ 674 void **radix_tree_next_chunk(struct radix_tree_root *root, 675 struct radix_tree_iter *iter, unsigned flags) 676 { 677 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK; 678 struct radix_tree_node *rnode, *node; 679 unsigned long index, offset; 680 681 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 682 return NULL; 683 684 /* 685 * Catch next_index overflow after ~0UL. iter->index never overflows 686 * during iterating; it can be zero only at the beginning. 687 * And we cannot overflow iter->next_index in a single step, 688 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 689 * 690 * This condition also used by radix_tree_next_slot() to stop 691 * contiguous iterating, and forbid swithing to the next chunk. 692 */ 693 index = iter->next_index; 694 if (!index && iter->index) 695 return NULL; 696 697 rnode = rcu_dereference_raw(root->rnode); 698 if (radix_tree_is_indirect_ptr(rnode)) { 699 rnode = indirect_to_ptr(rnode); 700 } else if (rnode && !index) { 701 /* Single-slot tree */ 702 iter->index = 0; 703 iter->next_index = 1; 704 iter->tags = 1; 705 return (void **)&root->rnode; 706 } else 707 return NULL; 708 709 restart: 710 shift = (rnode->height - 1) * RADIX_TREE_MAP_SHIFT; 711 offset = index >> shift; 712 713 /* Index outside of the tree */ 714 if (offset >= RADIX_TREE_MAP_SIZE) 715 return NULL; 716 717 node = rnode; 718 while (1) { 719 if ((flags & RADIX_TREE_ITER_TAGGED) ? 720 !test_bit(offset, node->tags[tag]) : 721 !node->slots[offset]) { 722 /* Hole detected */ 723 if (flags & RADIX_TREE_ITER_CONTIG) 724 return NULL; 725 726 if (flags & RADIX_TREE_ITER_TAGGED) 727 offset = radix_tree_find_next_bit( 728 node->tags[tag], 729 RADIX_TREE_MAP_SIZE, 730 offset + 1); 731 else 732 while (++offset < RADIX_TREE_MAP_SIZE) { 733 if (node->slots[offset]) 734 break; 735 } 736 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1); 737 index += offset << shift; 738 /* Overflow after ~0UL */ 739 if (!index) 740 return NULL; 741 if (offset == RADIX_TREE_MAP_SIZE) 742 goto restart; 743 } 744 745 /* This is leaf-node */ 746 if (!shift) 747 break; 748 749 node = rcu_dereference_raw(node->slots[offset]); 750 if (node == NULL) 751 goto restart; 752 shift -= RADIX_TREE_MAP_SHIFT; 753 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 754 } 755 756 /* Update the iterator state */ 757 iter->index = index; 758 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1; 759 760 /* Construct iter->tags bit-mask from node->tags[tag] array */ 761 if (flags & RADIX_TREE_ITER_TAGGED) { 762 unsigned tag_long, tag_bit; 763 764 tag_long = offset / BITS_PER_LONG; 765 tag_bit = offset % BITS_PER_LONG; 766 iter->tags = node->tags[tag][tag_long] >> tag_bit; 767 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 768 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 769 /* Pick tags from next element */ 770 if (tag_bit) 771 iter->tags |= node->tags[tag][tag_long + 1] << 772 (BITS_PER_LONG - tag_bit); 773 /* Clip chunk size, here only BITS_PER_LONG tags */ 774 iter->next_index = index + BITS_PER_LONG; 775 } 776 } 777 778 return node->slots + offset; 779 } 780 EXPORT_SYMBOL(radix_tree_next_chunk); 781 782 /** 783 * radix_tree_range_tag_if_tagged - for each item in given range set given 784 * tag if item has another tag set 785 * @root: radix tree root 786 * @first_indexp: pointer to a starting index of a range to scan 787 * @last_index: last index of a range to scan 788 * @nr_to_tag: maximum number items to tag 789 * @iftag: tag index to test 790 * @settag: tag index to set if tested tag is set 791 * 792 * This function scans range of radix tree from first_index to last_index 793 * (inclusive). For each item in the range if iftag is set, the function sets 794 * also settag. The function stops either after tagging nr_to_tag items or 795 * after reaching last_index. 796 * 797 * The tags must be set from the leaf level only and propagated back up the 798 * path to the root. We must do this so that we resolve the full path before 799 * setting any tags on intermediate nodes. If we set tags as we descend, then 800 * we can get to the leaf node and find that the index that has the iftag 801 * set is outside the range we are scanning. This reults in dangling tags and 802 * can lead to problems with later tag operations (e.g. livelocks on lookups). 803 * 804 * The function returns number of leaves where the tag was set and sets 805 * *first_indexp to the first unscanned index. 806 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 807 * be prepared to handle that. 808 */ 809 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 810 unsigned long *first_indexp, unsigned long last_index, 811 unsigned long nr_to_tag, 812 unsigned int iftag, unsigned int settag) 813 { 814 unsigned int height = root->height; 815 struct radix_tree_node *node = NULL; 816 struct radix_tree_node *slot; 817 unsigned int shift; 818 unsigned long tagged = 0; 819 unsigned long index = *first_indexp; 820 821 last_index = min(last_index, radix_tree_maxindex(height)); 822 if (index > last_index) 823 return 0; 824 if (!nr_to_tag) 825 return 0; 826 if (!root_tag_get(root, iftag)) { 827 *first_indexp = last_index + 1; 828 return 0; 829 } 830 if (height == 0) { 831 *first_indexp = last_index + 1; 832 root_tag_set(root, settag); 833 return 1; 834 } 835 836 shift = (height - 1) * RADIX_TREE_MAP_SHIFT; 837 slot = indirect_to_ptr(root->rnode); 838 839 for (;;) { 840 unsigned long upindex; 841 int offset; 842 843 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 844 if (!slot->slots[offset]) 845 goto next; 846 if (!tag_get(slot, iftag, offset)) 847 goto next; 848 if (shift) { 849 /* Go down one level */ 850 shift -= RADIX_TREE_MAP_SHIFT; 851 node = slot; 852 slot = slot->slots[offset]; 853 continue; 854 } 855 856 /* tag the leaf */ 857 tagged++; 858 tag_set(slot, settag, offset); 859 860 /* walk back up the path tagging interior nodes */ 861 upindex = index; 862 while (node) { 863 upindex >>= RADIX_TREE_MAP_SHIFT; 864 offset = upindex & RADIX_TREE_MAP_MASK; 865 866 /* stop if we find a node with the tag already set */ 867 if (tag_get(node, settag, offset)) 868 break; 869 tag_set(node, settag, offset); 870 node = node->parent; 871 } 872 873 /* 874 * Small optimization: now clear that node pointer. 875 * Since all of this slot's ancestors now have the tag set 876 * from setting it above, we have no further need to walk 877 * back up the tree setting tags, until we update slot to 878 * point to another radix_tree_node. 879 */ 880 node = NULL; 881 882 next: 883 /* Go to next item at level determined by 'shift' */ 884 index = ((index >> shift) + 1) << shift; 885 /* Overflow can happen when last_index is ~0UL... */ 886 if (index > last_index || !index) 887 break; 888 if (tagged >= nr_to_tag) 889 break; 890 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) { 891 /* 892 * We've fully scanned this node. Go up. Because 893 * last_index is guaranteed to be in the tree, what 894 * we do below cannot wander astray. 895 */ 896 slot = slot->parent; 897 shift += RADIX_TREE_MAP_SHIFT; 898 } 899 } 900 /* 901 * We need not to tag the root tag if there is no tag which is set with 902 * settag within the range from *first_indexp to last_index. 903 */ 904 if (tagged > 0) 905 root_tag_set(root, settag); 906 *first_indexp = index; 907 908 return tagged; 909 } 910 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 911 912 913 /** 914 * radix_tree_next_hole - find the next hole (not-present entry) 915 * @root: tree root 916 * @index: index key 917 * @max_scan: maximum range to search 918 * 919 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest 920 * indexed hole. 921 * 922 * Returns: the index of the hole if found, otherwise returns an index 923 * outside of the set specified (in which case 'return - index >= max_scan' 924 * will be true). In rare cases of index wrap-around, 0 will be returned. 925 * 926 * radix_tree_next_hole may be called under rcu_read_lock. However, like 927 * radix_tree_gang_lookup, this will not atomically search a snapshot of 928 * the tree at a single point in time. For example, if a hole is created 929 * at index 5, then subsequently a hole is created at index 10, 930 * radix_tree_next_hole covering both indexes may return 10 if called 931 * under rcu_read_lock. 932 */ 933 unsigned long radix_tree_next_hole(struct radix_tree_root *root, 934 unsigned long index, unsigned long max_scan) 935 { 936 unsigned long i; 937 938 for (i = 0; i < max_scan; i++) { 939 if (!radix_tree_lookup(root, index)) 940 break; 941 index++; 942 if (index == 0) 943 break; 944 } 945 946 return index; 947 } 948 EXPORT_SYMBOL(radix_tree_next_hole); 949 950 /** 951 * radix_tree_prev_hole - find the prev hole (not-present entry) 952 * @root: tree root 953 * @index: index key 954 * @max_scan: maximum range to search 955 * 956 * Search backwards in the range [max(index-max_scan+1, 0), index] 957 * for the first hole. 958 * 959 * Returns: the index of the hole if found, otherwise returns an index 960 * outside of the set specified (in which case 'index - return >= max_scan' 961 * will be true). In rare cases of wrap-around, ULONG_MAX will be returned. 962 * 963 * radix_tree_next_hole may be called under rcu_read_lock. However, like 964 * radix_tree_gang_lookup, this will not atomically search a snapshot of 965 * the tree at a single point in time. For example, if a hole is created 966 * at index 10, then subsequently a hole is created at index 5, 967 * radix_tree_prev_hole covering both indexes may return 5 if called under 968 * rcu_read_lock. 969 */ 970 unsigned long radix_tree_prev_hole(struct radix_tree_root *root, 971 unsigned long index, unsigned long max_scan) 972 { 973 unsigned long i; 974 975 for (i = 0; i < max_scan; i++) { 976 if (!radix_tree_lookup(root, index)) 977 break; 978 index--; 979 if (index == ULONG_MAX) 980 break; 981 } 982 983 return index; 984 } 985 EXPORT_SYMBOL(radix_tree_prev_hole); 986 987 /** 988 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 989 * @root: radix tree root 990 * @results: where the results of the lookup are placed 991 * @first_index: start the lookup from this key 992 * @max_items: place up to this many items at *results 993 * 994 * Performs an index-ascending scan of the tree for present items. Places 995 * them at *@results and returns the number of items which were placed at 996 * *@results. 997 * 998 * The implementation is naive. 999 * 1000 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1001 * rcu_read_lock. In this case, rather than the returned results being 1002 * an atomic snapshot of the tree at a single point in time, the semantics 1003 * of an RCU protected gang lookup are as though multiple radix_tree_lookups 1004 * have been issued in individual locks, and results stored in 'results'. 1005 */ 1006 unsigned int 1007 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1008 unsigned long first_index, unsigned int max_items) 1009 { 1010 struct radix_tree_iter iter; 1011 void **slot; 1012 unsigned int ret = 0; 1013 1014 if (unlikely(!max_items)) 1015 return 0; 1016 1017 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1018 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1019 if (!results[ret]) 1020 continue; 1021 if (++ret == max_items) 1022 break; 1023 } 1024 1025 return ret; 1026 } 1027 EXPORT_SYMBOL(radix_tree_gang_lookup); 1028 1029 /** 1030 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1031 * @root: radix tree root 1032 * @results: where the results of the lookup are placed 1033 * @indices: where their indices should be placed (but usually NULL) 1034 * @first_index: start the lookup from this key 1035 * @max_items: place up to this many items at *results 1036 * 1037 * Performs an index-ascending scan of the tree for present items. Places 1038 * their slots at *@results and returns the number of items which were 1039 * placed at *@results. 1040 * 1041 * The implementation is naive. 1042 * 1043 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1044 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1045 * protection, radix_tree_deref_slot may fail requiring a retry. 1046 */ 1047 unsigned int 1048 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1049 void ***results, unsigned long *indices, 1050 unsigned long first_index, unsigned int max_items) 1051 { 1052 struct radix_tree_iter iter; 1053 void **slot; 1054 unsigned int ret = 0; 1055 1056 if (unlikely(!max_items)) 1057 return 0; 1058 1059 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1060 results[ret] = slot; 1061 if (indices) 1062 indices[ret] = iter.index; 1063 if (++ret == max_items) 1064 break; 1065 } 1066 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1070 1071 /** 1072 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1073 * based on a tag 1074 * @root: radix tree root 1075 * @results: where the results of the lookup are placed 1076 * @first_index: start the lookup from this key 1077 * @max_items: place up to this many items at *results 1078 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1079 * 1080 * Performs an index-ascending scan of the tree for present items which 1081 * have the tag indexed by @tag set. Places the items at *@results and 1082 * returns the number of items which were placed at *@results. 1083 */ 1084 unsigned int 1085 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1086 unsigned long first_index, unsigned int max_items, 1087 unsigned int tag) 1088 { 1089 struct radix_tree_iter iter; 1090 void **slot; 1091 unsigned int ret = 0; 1092 1093 if (unlikely(!max_items)) 1094 return 0; 1095 1096 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1097 results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot)); 1098 if (!results[ret]) 1099 continue; 1100 if (++ret == max_items) 1101 break; 1102 } 1103 1104 return ret; 1105 } 1106 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1107 1108 /** 1109 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1110 * radix tree based on a tag 1111 * @root: radix tree root 1112 * @results: where the results of the lookup are placed 1113 * @first_index: start the lookup from this key 1114 * @max_items: place up to this many items at *results 1115 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1116 * 1117 * Performs an index-ascending scan of the tree for present items which 1118 * have the tag indexed by @tag set. Places the slots at *@results and 1119 * returns the number of slots which were placed at *@results. 1120 */ 1121 unsigned int 1122 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1123 unsigned long first_index, unsigned int max_items, 1124 unsigned int tag) 1125 { 1126 struct radix_tree_iter iter; 1127 void **slot; 1128 unsigned int ret = 0; 1129 1130 if (unlikely(!max_items)) 1131 return 0; 1132 1133 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1134 results[ret] = slot; 1135 if (++ret == max_items) 1136 break; 1137 } 1138 1139 return ret; 1140 } 1141 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1142 1143 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1144 #include <linux/sched.h> /* for cond_resched() */ 1145 1146 /* 1147 * This linear search is at present only useful to shmem_unuse_inode(). 1148 */ 1149 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1150 unsigned long index, unsigned long *found_index) 1151 { 1152 unsigned int shift, height; 1153 unsigned long i; 1154 1155 height = slot->height; 1156 shift = (height-1) * RADIX_TREE_MAP_SHIFT; 1157 1158 for ( ; height > 1; height--) { 1159 i = (index >> shift) & RADIX_TREE_MAP_MASK; 1160 for (;;) { 1161 if (slot->slots[i] != NULL) 1162 break; 1163 index &= ~((1UL << shift) - 1); 1164 index += 1UL << shift; 1165 if (index == 0) 1166 goto out; /* 32-bit wraparound */ 1167 i++; 1168 if (i == RADIX_TREE_MAP_SIZE) 1169 goto out; 1170 } 1171 1172 shift -= RADIX_TREE_MAP_SHIFT; 1173 slot = rcu_dereference_raw(slot->slots[i]); 1174 if (slot == NULL) 1175 goto out; 1176 } 1177 1178 /* Bottom level: check items */ 1179 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 1180 if (slot->slots[i] == item) { 1181 *found_index = index + i; 1182 index = 0; 1183 goto out; 1184 } 1185 } 1186 index += RADIX_TREE_MAP_SIZE; 1187 out: 1188 return index; 1189 } 1190 1191 /** 1192 * radix_tree_locate_item - search through radix tree for item 1193 * @root: radix tree root 1194 * @item: item to be found 1195 * 1196 * Returns index where item was found, or -1 if not found. 1197 * Caller must hold no lock (since this time-consuming function needs 1198 * to be preemptible), and must check afterwards if item is still there. 1199 */ 1200 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1201 { 1202 struct radix_tree_node *node; 1203 unsigned long max_index; 1204 unsigned long cur_index = 0; 1205 unsigned long found_index = -1; 1206 1207 do { 1208 rcu_read_lock(); 1209 node = rcu_dereference_raw(root->rnode); 1210 if (!radix_tree_is_indirect_ptr(node)) { 1211 rcu_read_unlock(); 1212 if (node == item) 1213 found_index = 0; 1214 break; 1215 } 1216 1217 node = indirect_to_ptr(node); 1218 max_index = radix_tree_maxindex(node->height); 1219 if (cur_index > max_index) 1220 break; 1221 1222 cur_index = __locate(node, item, cur_index, &found_index); 1223 rcu_read_unlock(); 1224 cond_resched(); 1225 } while (cur_index != 0 && cur_index <= max_index); 1226 1227 return found_index; 1228 } 1229 #else 1230 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1231 { 1232 return -1; 1233 } 1234 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1235 1236 /** 1237 * radix_tree_shrink - shrink height of a radix tree to minimal 1238 * @root radix tree root 1239 */ 1240 static inline void radix_tree_shrink(struct radix_tree_root *root) 1241 { 1242 /* try to shrink tree height */ 1243 while (root->height > 0) { 1244 struct radix_tree_node *to_free = root->rnode; 1245 struct radix_tree_node *slot; 1246 1247 BUG_ON(!radix_tree_is_indirect_ptr(to_free)); 1248 to_free = indirect_to_ptr(to_free); 1249 1250 /* 1251 * The candidate node has more than one child, or its child 1252 * is not at the leftmost slot, we cannot shrink. 1253 */ 1254 if (to_free->count != 1) 1255 break; 1256 if (!to_free->slots[0]) 1257 break; 1258 1259 /* 1260 * We don't need rcu_assign_pointer(), since we are simply 1261 * moving the node from one part of the tree to another: if it 1262 * was safe to dereference the old pointer to it 1263 * (to_free->slots[0]), it will be safe to dereference the new 1264 * one (root->rnode) as far as dependent read barriers go. 1265 */ 1266 slot = to_free->slots[0]; 1267 if (root->height > 1) { 1268 slot->parent = NULL; 1269 slot = ptr_to_indirect(slot); 1270 } 1271 root->rnode = slot; 1272 root->height--; 1273 1274 /* 1275 * We have a dilemma here. The node's slot[0] must not be 1276 * NULLed in case there are concurrent lookups expecting to 1277 * find the item. However if this was a bottom-level node, 1278 * then it may be subject to the slot pointer being visible 1279 * to callers dereferencing it. If item corresponding to 1280 * slot[0] is subsequently deleted, these callers would expect 1281 * their slot to become empty sooner or later. 1282 * 1283 * For example, lockless pagecache will look up a slot, deref 1284 * the page pointer, and if the page is 0 refcount it means it 1285 * was concurrently deleted from pagecache so try the deref 1286 * again. Fortunately there is already a requirement for logic 1287 * to retry the entire slot lookup -- the indirect pointer 1288 * problem (replacing direct root node with an indirect pointer 1289 * also results in a stale slot). So tag the slot as indirect 1290 * to force callers to retry. 1291 */ 1292 if (root->height == 0) 1293 *((unsigned long *)&to_free->slots[0]) |= 1294 RADIX_TREE_INDIRECT_PTR; 1295 1296 radix_tree_node_free(to_free); 1297 } 1298 } 1299 1300 /** 1301 * radix_tree_delete - delete an item from a radix tree 1302 * @root: radix tree root 1303 * @index: index key 1304 * 1305 * Remove the item at @index from the radix tree rooted at @root. 1306 * 1307 * Returns the address of the deleted item, or NULL if it was not present. 1308 */ 1309 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1310 { 1311 struct radix_tree_node *node = NULL; 1312 struct radix_tree_node *slot = NULL; 1313 struct radix_tree_node *to_free; 1314 unsigned int height, shift; 1315 int tag; 1316 int uninitialized_var(offset); 1317 1318 height = root->height; 1319 if (index > radix_tree_maxindex(height)) 1320 goto out; 1321 1322 slot = root->rnode; 1323 if (height == 0) { 1324 root_tag_clear_all(root); 1325 root->rnode = NULL; 1326 goto out; 1327 } 1328 slot = indirect_to_ptr(slot); 1329 shift = height * RADIX_TREE_MAP_SHIFT; 1330 1331 do { 1332 if (slot == NULL) 1333 goto out; 1334 1335 shift -= RADIX_TREE_MAP_SHIFT; 1336 offset = (index >> shift) & RADIX_TREE_MAP_MASK; 1337 node = slot; 1338 slot = slot->slots[offset]; 1339 } while (shift); 1340 1341 if (slot == NULL) 1342 goto out; 1343 1344 /* 1345 * Clear all tags associated with the item to be deleted. 1346 * This way of doing it would be inefficient, but seldom is any set. 1347 */ 1348 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 1349 if (tag_get(node, tag, offset)) 1350 radix_tree_tag_clear(root, index, tag); 1351 } 1352 1353 to_free = NULL; 1354 /* Now free the nodes we do not need anymore */ 1355 while (node) { 1356 node->slots[offset] = NULL; 1357 node->count--; 1358 /* 1359 * Queue the node for deferred freeing after the 1360 * last reference to it disappears (set NULL, above). 1361 */ 1362 if (to_free) 1363 radix_tree_node_free(to_free); 1364 1365 if (node->count) { 1366 if (node == indirect_to_ptr(root->rnode)) 1367 radix_tree_shrink(root); 1368 goto out; 1369 } 1370 1371 /* Node with zero slots in use so free it */ 1372 to_free = node; 1373 1374 index >>= RADIX_TREE_MAP_SHIFT; 1375 offset = index & RADIX_TREE_MAP_MASK; 1376 node = node->parent; 1377 } 1378 1379 root_tag_clear_all(root); 1380 root->height = 0; 1381 root->rnode = NULL; 1382 if (to_free) 1383 radix_tree_node_free(to_free); 1384 1385 out: 1386 return slot; 1387 } 1388 EXPORT_SYMBOL(radix_tree_delete); 1389 1390 /** 1391 * radix_tree_tagged - test whether any items in the tree are tagged 1392 * @root: radix tree root 1393 * @tag: tag to test 1394 */ 1395 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1396 { 1397 return root_tag_get(root, tag); 1398 } 1399 EXPORT_SYMBOL(radix_tree_tagged); 1400 1401 static void 1402 radix_tree_node_ctor(void *node) 1403 { 1404 memset(node, 0, sizeof(struct radix_tree_node)); 1405 } 1406 1407 static __init unsigned long __maxindex(unsigned int height) 1408 { 1409 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1410 int shift = RADIX_TREE_INDEX_BITS - width; 1411 1412 if (shift < 0) 1413 return ~0UL; 1414 if (shift >= BITS_PER_LONG) 1415 return 0UL; 1416 return ~0UL >> shift; 1417 } 1418 1419 static __init void radix_tree_init_maxindex(void) 1420 { 1421 unsigned int i; 1422 1423 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1424 height_to_maxindex[i] = __maxindex(i); 1425 } 1426 1427 static int radix_tree_callback(struct notifier_block *nfb, 1428 unsigned long action, 1429 void *hcpu) 1430 { 1431 int cpu = (long)hcpu; 1432 struct radix_tree_preload *rtp; 1433 1434 /* Free per-cpu pool of perloaded nodes */ 1435 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1436 rtp = &per_cpu(radix_tree_preloads, cpu); 1437 while (rtp->nr) { 1438 kmem_cache_free(radix_tree_node_cachep, 1439 rtp->nodes[rtp->nr-1]); 1440 rtp->nodes[rtp->nr-1] = NULL; 1441 rtp->nr--; 1442 } 1443 } 1444 return NOTIFY_OK; 1445 } 1446 1447 void __init radix_tree_init(void) 1448 { 1449 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1450 sizeof(struct radix_tree_node), 0, 1451 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1452 radix_tree_node_ctor); 1453 radix_tree_init_maxindex(); 1454 hotcpu_notifier(radix_tree_callback, 0); 1455 } 1456