1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/export.h> 29 #include <linux/radix-tree.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/kmemleak.h> 33 #include <linux/notifier.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* 42 * Radix tree node cache. 43 */ 44 static struct kmem_cache *radix_tree_node_cachep; 45 46 /* 47 * The radix tree is variable-height, so an insert operation not only has 48 * to build the branch to its corresponding item, it also has to build the 49 * branch to existing items if the size has to be increased (by 50 * radix_tree_extend). 51 * 52 * The worst case is a zero height tree with just a single item at index 0, 53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 55 * Hence: 56 */ 57 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 58 59 /* 60 * Per-cpu pool of preloaded nodes 61 */ 62 struct radix_tree_preload { 63 unsigned nr; 64 /* nodes->private_data points to next preallocated node */ 65 struct radix_tree_node *nodes; 66 }; 67 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 68 69 static inline void *node_to_entry(void *ptr) 70 { 71 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 72 } 73 74 #define RADIX_TREE_RETRY node_to_entry(NULL) 75 76 #ifdef CONFIG_RADIX_TREE_MULTIORDER 77 /* Sibling slots point directly to another slot in the same node */ 78 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 79 { 80 void **ptr = node; 81 return (parent->slots <= ptr) && 82 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 83 } 84 #else 85 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 86 { 87 return false; 88 } 89 #endif 90 91 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 92 void **slot) 93 { 94 return slot - parent->slots; 95 } 96 97 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 98 struct radix_tree_node **nodep, unsigned long index) 99 { 100 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 101 void **entry = rcu_dereference_raw(parent->slots[offset]); 102 103 #ifdef CONFIG_RADIX_TREE_MULTIORDER 104 if (radix_tree_is_internal_node(entry)) { 105 unsigned long siboff = get_slot_offset(parent, entry); 106 if (siboff < RADIX_TREE_MAP_SIZE) { 107 offset = siboff; 108 entry = rcu_dereference_raw(parent->slots[offset]); 109 } 110 } 111 #endif 112 113 *nodep = (void *)entry; 114 return offset; 115 } 116 117 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 118 { 119 return root->gfp_mask & __GFP_BITS_MASK; 120 } 121 122 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 123 int offset) 124 { 125 __set_bit(offset, node->tags[tag]); 126 } 127 128 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 129 int offset) 130 { 131 __clear_bit(offset, node->tags[tag]); 132 } 133 134 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 135 int offset) 136 { 137 return test_bit(offset, node->tags[tag]); 138 } 139 140 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 141 { 142 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 143 } 144 145 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 146 { 147 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 148 } 149 150 static inline void root_tag_clear_all(struct radix_tree_root *root) 151 { 152 root->gfp_mask &= __GFP_BITS_MASK; 153 } 154 155 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 156 { 157 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 158 } 159 160 static inline unsigned root_tags_get(struct radix_tree_root *root) 161 { 162 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 163 } 164 165 /* 166 * Returns 1 if any slot in the node has this tag set. 167 * Otherwise returns 0. 168 */ 169 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 170 { 171 unsigned idx; 172 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 173 if (node->tags[tag][idx]) 174 return 1; 175 } 176 return 0; 177 } 178 179 /** 180 * radix_tree_find_next_bit - find the next set bit in a memory region 181 * 182 * @addr: The address to base the search on 183 * @size: The bitmap size in bits 184 * @offset: The bitnumber to start searching at 185 * 186 * Unrollable variant of find_next_bit() for constant size arrays. 187 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 188 * Returns next bit offset, or size if nothing found. 189 */ 190 static __always_inline unsigned long 191 radix_tree_find_next_bit(const unsigned long *addr, 192 unsigned long size, unsigned long offset) 193 { 194 if (!__builtin_constant_p(size)) 195 return find_next_bit(addr, size, offset); 196 197 if (offset < size) { 198 unsigned long tmp; 199 200 addr += offset / BITS_PER_LONG; 201 tmp = *addr >> (offset % BITS_PER_LONG); 202 if (tmp) 203 return __ffs(tmp) + offset; 204 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 205 while (offset < size) { 206 tmp = *++addr; 207 if (tmp) 208 return __ffs(tmp) + offset; 209 offset += BITS_PER_LONG; 210 } 211 } 212 return size; 213 } 214 215 #ifndef __KERNEL__ 216 static void dump_node(struct radix_tree_node *node, unsigned long index) 217 { 218 unsigned long i; 219 220 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n", 221 node, node->offset, 222 node->tags[0][0], node->tags[1][0], node->tags[2][0], 223 node->shift, node->count, node->parent); 224 225 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 226 unsigned long first = index | (i << node->shift); 227 unsigned long last = first | ((1UL << node->shift) - 1); 228 void *entry = node->slots[i]; 229 if (!entry) 230 continue; 231 if (is_sibling_entry(node, entry)) { 232 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", 233 entry, i, 234 *(void **)entry_to_node(entry), 235 first, last); 236 } else if (!radix_tree_is_internal_node(entry)) { 237 pr_debug("radix entry %p offset %ld indices %ld-%ld\n", 238 entry, i, first, last); 239 } else { 240 dump_node(entry_to_node(entry), first); 241 } 242 } 243 } 244 245 /* For debug */ 246 static void radix_tree_dump(struct radix_tree_root *root) 247 { 248 pr_debug("radix root: %p rnode %p tags %x\n", 249 root, root->rnode, 250 root->gfp_mask >> __GFP_BITS_SHIFT); 251 if (!radix_tree_is_internal_node(root->rnode)) 252 return; 253 dump_node(entry_to_node(root->rnode), 0); 254 } 255 #endif 256 257 /* 258 * This assumes that the caller has performed appropriate preallocation, and 259 * that the caller has pinned this thread of control to the current CPU. 260 */ 261 static struct radix_tree_node * 262 radix_tree_node_alloc(struct radix_tree_root *root) 263 { 264 struct radix_tree_node *ret = NULL; 265 gfp_t gfp_mask = root_gfp_mask(root); 266 267 /* 268 * Preload code isn't irq safe and it doesn't make sense to use 269 * preloading during an interrupt anyway as all the allocations have 270 * to be atomic. So just do normal allocation when in interrupt. 271 */ 272 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 273 struct radix_tree_preload *rtp; 274 275 /* 276 * Even if the caller has preloaded, try to allocate from the 277 * cache first for the new node to get accounted. 278 */ 279 ret = kmem_cache_alloc(radix_tree_node_cachep, 280 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN); 281 if (ret) 282 goto out; 283 284 /* 285 * Provided the caller has preloaded here, we will always 286 * succeed in getting a node here (and never reach 287 * kmem_cache_alloc) 288 */ 289 rtp = this_cpu_ptr(&radix_tree_preloads); 290 if (rtp->nr) { 291 ret = rtp->nodes; 292 rtp->nodes = ret->private_data; 293 ret->private_data = NULL; 294 rtp->nr--; 295 } 296 /* 297 * Update the allocation stack trace as this is more useful 298 * for debugging. 299 */ 300 kmemleak_update_trace(ret); 301 goto out; 302 } 303 ret = kmem_cache_alloc(radix_tree_node_cachep, 304 gfp_mask | __GFP_ACCOUNT); 305 out: 306 BUG_ON(radix_tree_is_internal_node(ret)); 307 return ret; 308 } 309 310 static void radix_tree_node_rcu_free(struct rcu_head *head) 311 { 312 struct radix_tree_node *node = 313 container_of(head, struct radix_tree_node, rcu_head); 314 int i; 315 316 /* 317 * must only free zeroed nodes into the slab. radix_tree_shrink 318 * can leave us with a non-NULL entry in the first slot, so clear 319 * that here to make sure. 320 */ 321 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 322 tag_clear(node, i, 0); 323 324 node->slots[0] = NULL; 325 node->count = 0; 326 327 kmem_cache_free(radix_tree_node_cachep, node); 328 } 329 330 static inline void 331 radix_tree_node_free(struct radix_tree_node *node) 332 { 333 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 334 } 335 336 /* 337 * Load up this CPU's radix_tree_node buffer with sufficient objects to 338 * ensure that the addition of a single element in the tree cannot fail. On 339 * success, return zero, with preemption disabled. On error, return -ENOMEM 340 * with preemption not disabled. 341 * 342 * To make use of this facility, the radix tree must be initialised without 343 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 344 */ 345 static int __radix_tree_preload(gfp_t gfp_mask) 346 { 347 struct radix_tree_preload *rtp; 348 struct radix_tree_node *node; 349 int ret = -ENOMEM; 350 351 preempt_disable(); 352 rtp = this_cpu_ptr(&radix_tree_preloads); 353 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { 354 preempt_enable(); 355 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 356 if (node == NULL) 357 goto out; 358 preempt_disable(); 359 rtp = this_cpu_ptr(&radix_tree_preloads); 360 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) { 361 node->private_data = rtp->nodes; 362 rtp->nodes = node; 363 rtp->nr++; 364 } else { 365 kmem_cache_free(radix_tree_node_cachep, node); 366 } 367 } 368 ret = 0; 369 out: 370 return ret; 371 } 372 373 /* 374 * Load up this CPU's radix_tree_node buffer with sufficient objects to 375 * ensure that the addition of a single element in the tree cannot fail. On 376 * success, return zero, with preemption disabled. On error, return -ENOMEM 377 * with preemption not disabled. 378 * 379 * To make use of this facility, the radix tree must be initialised without 380 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 381 */ 382 int radix_tree_preload(gfp_t gfp_mask) 383 { 384 /* Warn on non-sensical use... */ 385 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 386 return __radix_tree_preload(gfp_mask); 387 } 388 EXPORT_SYMBOL(radix_tree_preload); 389 390 /* 391 * The same as above function, except we don't guarantee preloading happens. 392 * We do it, if we decide it helps. On success, return zero with preemption 393 * disabled. On error, return -ENOMEM with preemption not disabled. 394 */ 395 int radix_tree_maybe_preload(gfp_t gfp_mask) 396 { 397 if (gfpflags_allow_blocking(gfp_mask)) 398 return __radix_tree_preload(gfp_mask); 399 /* Preloading doesn't help anything with this gfp mask, skip it */ 400 preempt_disable(); 401 return 0; 402 } 403 EXPORT_SYMBOL(radix_tree_maybe_preload); 404 405 /* 406 * The maximum index which can be stored in a radix tree 407 */ 408 static inline unsigned long shift_maxindex(unsigned int shift) 409 { 410 return (RADIX_TREE_MAP_SIZE << shift) - 1; 411 } 412 413 static inline unsigned long node_maxindex(struct radix_tree_node *node) 414 { 415 return shift_maxindex(node->shift); 416 } 417 418 static unsigned radix_tree_load_root(struct radix_tree_root *root, 419 struct radix_tree_node **nodep, unsigned long *maxindex) 420 { 421 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 422 423 *nodep = node; 424 425 if (likely(radix_tree_is_internal_node(node))) { 426 node = entry_to_node(node); 427 *maxindex = node_maxindex(node); 428 return node->shift + RADIX_TREE_MAP_SHIFT; 429 } 430 431 *maxindex = 0; 432 return 0; 433 } 434 435 /* 436 * Extend a radix tree so it can store key @index. 437 */ 438 static int radix_tree_extend(struct radix_tree_root *root, 439 unsigned long index, unsigned int shift) 440 { 441 struct radix_tree_node *slot; 442 unsigned int maxshift; 443 int tag; 444 445 /* Figure out what the shift should be. */ 446 maxshift = shift; 447 while (index > shift_maxindex(maxshift)) 448 maxshift += RADIX_TREE_MAP_SHIFT; 449 450 slot = root->rnode; 451 if (!slot) 452 goto out; 453 454 do { 455 struct radix_tree_node *node = radix_tree_node_alloc(root); 456 457 if (!node) 458 return -ENOMEM; 459 460 /* Propagate the aggregated tag info into the new root */ 461 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 462 if (root_tag_get(root, tag)) 463 tag_set(node, tag, 0); 464 } 465 466 BUG_ON(shift > BITS_PER_LONG); 467 node->shift = shift; 468 node->offset = 0; 469 node->count = 1; 470 node->parent = NULL; 471 if (radix_tree_is_internal_node(slot)) 472 entry_to_node(slot)->parent = node; 473 node->slots[0] = slot; 474 slot = node_to_entry(node); 475 rcu_assign_pointer(root->rnode, slot); 476 shift += RADIX_TREE_MAP_SHIFT; 477 } while (shift <= maxshift); 478 out: 479 return maxshift + RADIX_TREE_MAP_SHIFT; 480 } 481 482 /** 483 * __radix_tree_create - create a slot in a radix tree 484 * @root: radix tree root 485 * @index: index key 486 * @order: index occupies 2^order aligned slots 487 * @nodep: returns node 488 * @slotp: returns slot 489 * 490 * Create, if necessary, and return the node and slot for an item 491 * at position @index in the radix tree @root. 492 * 493 * Until there is more than one item in the tree, no nodes are 494 * allocated and @root->rnode is used as a direct slot instead of 495 * pointing to a node, in which case *@nodep will be NULL. 496 * 497 * Returns -ENOMEM, or 0 for success. 498 */ 499 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 500 unsigned order, struct radix_tree_node **nodep, 501 void ***slotp) 502 { 503 struct radix_tree_node *node = NULL, *child; 504 void **slot = (void **)&root->rnode; 505 unsigned long maxindex; 506 unsigned int shift, offset = 0; 507 unsigned long max = index | ((1UL << order) - 1); 508 509 shift = radix_tree_load_root(root, &child, &maxindex); 510 511 /* Make sure the tree is high enough. */ 512 if (max > maxindex) { 513 int error = radix_tree_extend(root, max, shift); 514 if (error < 0) 515 return error; 516 shift = error; 517 child = root->rnode; 518 if (order == shift) 519 shift += RADIX_TREE_MAP_SHIFT; 520 } 521 522 while (shift > order) { 523 shift -= RADIX_TREE_MAP_SHIFT; 524 if (child == NULL) { 525 /* Have to add a child node. */ 526 child = radix_tree_node_alloc(root); 527 if (!child) 528 return -ENOMEM; 529 child->shift = shift; 530 child->offset = offset; 531 child->parent = node; 532 rcu_assign_pointer(*slot, node_to_entry(child)); 533 if (node) 534 node->count++; 535 } else if (!radix_tree_is_internal_node(child)) 536 break; 537 538 /* Go a level down */ 539 node = entry_to_node(child); 540 offset = radix_tree_descend(node, &child, index); 541 slot = &node->slots[offset]; 542 } 543 544 #ifdef CONFIG_RADIX_TREE_MULTIORDER 545 /* Insert pointers to the canonical entry */ 546 if (order > shift) { 547 unsigned i, n = 1 << (order - shift); 548 offset = offset & ~(n - 1); 549 slot = &node->slots[offset]; 550 child = node_to_entry(slot); 551 for (i = 0; i < n; i++) { 552 if (slot[i]) 553 return -EEXIST; 554 } 555 556 for (i = 1; i < n; i++) { 557 rcu_assign_pointer(slot[i], child); 558 node->count++; 559 } 560 } 561 #endif 562 563 if (nodep) 564 *nodep = node; 565 if (slotp) 566 *slotp = slot; 567 return 0; 568 } 569 570 /** 571 * __radix_tree_insert - insert into a radix tree 572 * @root: radix tree root 573 * @index: index key 574 * @order: key covers the 2^order indices around index 575 * @item: item to insert 576 * 577 * Insert an item into the radix tree at position @index. 578 */ 579 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 580 unsigned order, void *item) 581 { 582 struct radix_tree_node *node; 583 void **slot; 584 int error; 585 586 BUG_ON(radix_tree_is_internal_node(item)); 587 588 error = __radix_tree_create(root, index, order, &node, &slot); 589 if (error) 590 return error; 591 if (*slot != NULL) 592 return -EEXIST; 593 rcu_assign_pointer(*slot, item); 594 595 if (node) { 596 unsigned offset = get_slot_offset(node, slot); 597 node->count++; 598 BUG_ON(tag_get(node, 0, offset)); 599 BUG_ON(tag_get(node, 1, offset)); 600 BUG_ON(tag_get(node, 2, offset)); 601 } else { 602 BUG_ON(root_tags_get(root)); 603 } 604 605 return 0; 606 } 607 EXPORT_SYMBOL(__radix_tree_insert); 608 609 /** 610 * __radix_tree_lookup - lookup an item in a radix tree 611 * @root: radix tree root 612 * @index: index key 613 * @nodep: returns node 614 * @slotp: returns slot 615 * 616 * Lookup and return the item at position @index in the radix 617 * tree @root. 618 * 619 * Until there is more than one item in the tree, no nodes are 620 * allocated and @root->rnode is used as a direct slot instead of 621 * pointing to a node, in which case *@nodep will be NULL. 622 */ 623 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 624 struct radix_tree_node **nodep, void ***slotp) 625 { 626 struct radix_tree_node *node, *parent; 627 unsigned long maxindex; 628 void **slot; 629 630 restart: 631 parent = NULL; 632 slot = (void **)&root->rnode; 633 radix_tree_load_root(root, &node, &maxindex); 634 if (index > maxindex) 635 return NULL; 636 637 while (radix_tree_is_internal_node(node)) { 638 unsigned offset; 639 640 if (node == RADIX_TREE_RETRY) 641 goto restart; 642 parent = entry_to_node(node); 643 offset = radix_tree_descend(parent, &node, index); 644 slot = parent->slots + offset; 645 } 646 647 if (nodep) 648 *nodep = parent; 649 if (slotp) 650 *slotp = slot; 651 return node; 652 } 653 654 /** 655 * radix_tree_lookup_slot - lookup a slot in a radix tree 656 * @root: radix tree root 657 * @index: index key 658 * 659 * Returns: the slot corresponding to the position @index in the 660 * radix tree @root. This is useful for update-if-exists operations. 661 * 662 * This function can be called under rcu_read_lock iff the slot is not 663 * modified by radix_tree_replace_slot, otherwise it must be called 664 * exclusive from other writers. Any dereference of the slot must be done 665 * using radix_tree_deref_slot. 666 */ 667 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 668 { 669 void **slot; 670 671 if (!__radix_tree_lookup(root, index, NULL, &slot)) 672 return NULL; 673 return slot; 674 } 675 EXPORT_SYMBOL(radix_tree_lookup_slot); 676 677 /** 678 * radix_tree_lookup - perform lookup operation on a radix tree 679 * @root: radix tree root 680 * @index: index key 681 * 682 * Lookup the item at the position @index in the radix tree @root. 683 * 684 * This function can be called under rcu_read_lock, however the caller 685 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 686 * them safely). No RCU barriers are required to access or modify the 687 * returned item, however. 688 */ 689 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 690 { 691 return __radix_tree_lookup(root, index, NULL, NULL); 692 } 693 EXPORT_SYMBOL(radix_tree_lookup); 694 695 /** 696 * radix_tree_tag_set - set a tag on a radix tree node 697 * @root: radix tree root 698 * @index: index key 699 * @tag: tag index 700 * 701 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 702 * corresponding to @index in the radix tree. From 703 * the root all the way down to the leaf node. 704 * 705 * Returns the address of the tagged item. Setting a tag on a not-present 706 * item is a bug. 707 */ 708 void *radix_tree_tag_set(struct radix_tree_root *root, 709 unsigned long index, unsigned int tag) 710 { 711 struct radix_tree_node *node, *parent; 712 unsigned long maxindex; 713 714 radix_tree_load_root(root, &node, &maxindex); 715 BUG_ON(index > maxindex); 716 717 while (radix_tree_is_internal_node(node)) { 718 unsigned offset; 719 720 parent = entry_to_node(node); 721 offset = radix_tree_descend(parent, &node, index); 722 BUG_ON(!node); 723 724 if (!tag_get(parent, tag, offset)) 725 tag_set(parent, tag, offset); 726 } 727 728 /* set the root's tag bit */ 729 if (!root_tag_get(root, tag)) 730 root_tag_set(root, tag); 731 732 return node; 733 } 734 EXPORT_SYMBOL(radix_tree_tag_set); 735 736 static void node_tag_clear(struct radix_tree_root *root, 737 struct radix_tree_node *node, 738 unsigned int tag, unsigned int offset) 739 { 740 while (node) { 741 if (!tag_get(node, tag, offset)) 742 return; 743 tag_clear(node, tag, offset); 744 if (any_tag_set(node, tag)) 745 return; 746 747 offset = node->offset; 748 node = node->parent; 749 } 750 751 /* clear the root's tag bit */ 752 if (root_tag_get(root, tag)) 753 root_tag_clear(root, tag); 754 } 755 756 /** 757 * radix_tree_tag_clear - clear a tag on a radix tree node 758 * @root: radix tree root 759 * @index: index key 760 * @tag: tag index 761 * 762 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 763 * corresponding to @index in the radix tree. If this causes 764 * the leaf node to have no tags set then clear the tag in the 765 * next-to-leaf node, etc. 766 * 767 * Returns the address of the tagged item on success, else NULL. ie: 768 * has the same return value and semantics as radix_tree_lookup(). 769 */ 770 void *radix_tree_tag_clear(struct radix_tree_root *root, 771 unsigned long index, unsigned int tag) 772 { 773 struct radix_tree_node *node, *parent; 774 unsigned long maxindex; 775 int uninitialized_var(offset); 776 777 radix_tree_load_root(root, &node, &maxindex); 778 if (index > maxindex) 779 return NULL; 780 781 parent = NULL; 782 783 while (radix_tree_is_internal_node(node)) { 784 parent = entry_to_node(node); 785 offset = radix_tree_descend(parent, &node, index); 786 } 787 788 if (node) 789 node_tag_clear(root, parent, tag, offset); 790 791 return node; 792 } 793 EXPORT_SYMBOL(radix_tree_tag_clear); 794 795 /** 796 * radix_tree_tag_get - get a tag on a radix tree node 797 * @root: radix tree root 798 * @index: index key 799 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 800 * 801 * Return values: 802 * 803 * 0: tag not present or not set 804 * 1: tag set 805 * 806 * Note that the return value of this function may not be relied on, even if 807 * the RCU lock is held, unless tag modification and node deletion are excluded 808 * from concurrency. 809 */ 810 int radix_tree_tag_get(struct radix_tree_root *root, 811 unsigned long index, unsigned int tag) 812 { 813 struct radix_tree_node *node, *parent; 814 unsigned long maxindex; 815 816 if (!root_tag_get(root, tag)) 817 return 0; 818 819 radix_tree_load_root(root, &node, &maxindex); 820 if (index > maxindex) 821 return 0; 822 if (node == NULL) 823 return 0; 824 825 while (radix_tree_is_internal_node(node)) { 826 unsigned offset; 827 828 parent = entry_to_node(node); 829 offset = radix_tree_descend(parent, &node, index); 830 831 if (!node) 832 return 0; 833 if (!tag_get(parent, tag, offset)) 834 return 0; 835 if (node == RADIX_TREE_RETRY) 836 break; 837 } 838 839 return 1; 840 } 841 EXPORT_SYMBOL(radix_tree_tag_get); 842 843 static inline void __set_iter_shift(struct radix_tree_iter *iter, 844 unsigned int shift) 845 { 846 #ifdef CONFIG_RADIX_TREE_MULTIORDER 847 iter->shift = shift; 848 #endif 849 } 850 851 /** 852 * radix_tree_next_chunk - find next chunk of slots for iteration 853 * 854 * @root: radix tree root 855 * @iter: iterator state 856 * @flags: RADIX_TREE_ITER_* flags and tag index 857 * Returns: pointer to chunk first slot, or NULL if iteration is over 858 */ 859 void **radix_tree_next_chunk(struct radix_tree_root *root, 860 struct radix_tree_iter *iter, unsigned flags) 861 { 862 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 863 struct radix_tree_node *node, *child; 864 unsigned long index, offset, maxindex; 865 866 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 867 return NULL; 868 869 /* 870 * Catch next_index overflow after ~0UL. iter->index never overflows 871 * during iterating; it can be zero only at the beginning. 872 * And we cannot overflow iter->next_index in a single step, 873 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 874 * 875 * This condition also used by radix_tree_next_slot() to stop 876 * contiguous iterating, and forbid swithing to the next chunk. 877 */ 878 index = iter->next_index; 879 if (!index && iter->index) 880 return NULL; 881 882 restart: 883 radix_tree_load_root(root, &child, &maxindex); 884 if (index > maxindex) 885 return NULL; 886 if (!child) 887 return NULL; 888 889 if (!radix_tree_is_internal_node(child)) { 890 /* Single-slot tree */ 891 iter->index = index; 892 iter->next_index = maxindex + 1; 893 iter->tags = 1; 894 __set_iter_shift(iter, 0); 895 return (void **)&root->rnode; 896 } 897 898 do { 899 node = entry_to_node(child); 900 offset = radix_tree_descend(node, &child, index); 901 902 if ((flags & RADIX_TREE_ITER_TAGGED) ? 903 !tag_get(node, tag, offset) : !child) { 904 /* Hole detected */ 905 if (flags & RADIX_TREE_ITER_CONTIG) 906 return NULL; 907 908 if (flags & RADIX_TREE_ITER_TAGGED) 909 offset = radix_tree_find_next_bit( 910 node->tags[tag], 911 RADIX_TREE_MAP_SIZE, 912 offset + 1); 913 else 914 while (++offset < RADIX_TREE_MAP_SIZE) { 915 void *slot = node->slots[offset]; 916 if (is_sibling_entry(node, slot)) 917 continue; 918 if (slot) 919 break; 920 } 921 index &= ~node_maxindex(node); 922 index += offset << node->shift; 923 /* Overflow after ~0UL */ 924 if (!index) 925 return NULL; 926 if (offset == RADIX_TREE_MAP_SIZE) 927 goto restart; 928 child = rcu_dereference_raw(node->slots[offset]); 929 } 930 931 if ((child == NULL) || (child == RADIX_TREE_RETRY)) 932 goto restart; 933 } while (radix_tree_is_internal_node(child)); 934 935 /* Update the iterator state */ 936 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 937 iter->next_index = (index | node_maxindex(node)) + 1; 938 __set_iter_shift(iter, node->shift); 939 940 /* Construct iter->tags bit-mask from node->tags[tag] array */ 941 if (flags & RADIX_TREE_ITER_TAGGED) { 942 unsigned tag_long, tag_bit; 943 944 tag_long = offset / BITS_PER_LONG; 945 tag_bit = offset % BITS_PER_LONG; 946 iter->tags = node->tags[tag][tag_long] >> tag_bit; 947 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 948 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 949 /* Pick tags from next element */ 950 if (tag_bit) 951 iter->tags |= node->tags[tag][tag_long + 1] << 952 (BITS_PER_LONG - tag_bit); 953 /* Clip chunk size, here only BITS_PER_LONG tags */ 954 iter->next_index = index + BITS_PER_LONG; 955 } 956 } 957 958 return node->slots + offset; 959 } 960 EXPORT_SYMBOL(radix_tree_next_chunk); 961 962 /** 963 * radix_tree_range_tag_if_tagged - for each item in given range set given 964 * tag if item has another tag set 965 * @root: radix tree root 966 * @first_indexp: pointer to a starting index of a range to scan 967 * @last_index: last index of a range to scan 968 * @nr_to_tag: maximum number items to tag 969 * @iftag: tag index to test 970 * @settag: tag index to set if tested tag is set 971 * 972 * This function scans range of radix tree from first_index to last_index 973 * (inclusive). For each item in the range if iftag is set, the function sets 974 * also settag. The function stops either after tagging nr_to_tag items or 975 * after reaching last_index. 976 * 977 * The tags must be set from the leaf level only and propagated back up the 978 * path to the root. We must do this so that we resolve the full path before 979 * setting any tags on intermediate nodes. If we set tags as we descend, then 980 * we can get to the leaf node and find that the index that has the iftag 981 * set is outside the range we are scanning. This reults in dangling tags and 982 * can lead to problems with later tag operations (e.g. livelocks on lookups). 983 * 984 * The function returns the number of leaves where the tag was set and sets 985 * *first_indexp to the first unscanned index. 986 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 987 * be prepared to handle that. 988 */ 989 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 990 unsigned long *first_indexp, unsigned long last_index, 991 unsigned long nr_to_tag, 992 unsigned int iftag, unsigned int settag) 993 { 994 struct radix_tree_node *parent, *node, *child; 995 unsigned long maxindex; 996 unsigned long tagged = 0; 997 unsigned long index = *first_indexp; 998 999 radix_tree_load_root(root, &child, &maxindex); 1000 last_index = min(last_index, maxindex); 1001 if (index > last_index) 1002 return 0; 1003 if (!nr_to_tag) 1004 return 0; 1005 if (!root_tag_get(root, iftag)) { 1006 *first_indexp = last_index + 1; 1007 return 0; 1008 } 1009 if (!radix_tree_is_internal_node(child)) { 1010 *first_indexp = last_index + 1; 1011 root_tag_set(root, settag); 1012 return 1; 1013 } 1014 1015 node = entry_to_node(child); 1016 1017 for (;;) { 1018 unsigned offset = radix_tree_descend(node, &child, index); 1019 if (!child) 1020 goto next; 1021 if (!tag_get(node, iftag, offset)) 1022 goto next; 1023 /* Sibling slots never have tags set on them */ 1024 if (radix_tree_is_internal_node(child)) { 1025 node = entry_to_node(child); 1026 continue; 1027 } 1028 1029 /* tag the leaf */ 1030 tagged++; 1031 tag_set(node, settag, offset); 1032 1033 /* walk back up the path tagging interior nodes */ 1034 parent = node; 1035 for (;;) { 1036 offset = parent->offset; 1037 parent = parent->parent; 1038 if (!parent) 1039 break; 1040 /* stop if we find a node with the tag already set */ 1041 if (tag_get(parent, settag, offset)) 1042 break; 1043 tag_set(parent, settag, offset); 1044 } 1045 next: 1046 /* Go to next entry in node */ 1047 index = ((index >> node->shift) + 1) << node->shift; 1048 /* Overflow can happen when last_index is ~0UL... */ 1049 if (index > last_index || !index) 1050 break; 1051 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1052 while (offset == 0) { 1053 /* 1054 * We've fully scanned this node. Go up. Because 1055 * last_index is guaranteed to be in the tree, what 1056 * we do below cannot wander astray. 1057 */ 1058 node = node->parent; 1059 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1060 } 1061 if (is_sibling_entry(node, node->slots[offset])) 1062 goto next; 1063 if (tagged >= nr_to_tag) 1064 break; 1065 } 1066 /* 1067 * We need not to tag the root tag if there is no tag which is set with 1068 * settag within the range from *first_indexp to last_index. 1069 */ 1070 if (tagged > 0) 1071 root_tag_set(root, settag); 1072 *first_indexp = index; 1073 1074 return tagged; 1075 } 1076 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 1077 1078 /** 1079 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1080 * @root: radix tree root 1081 * @results: where the results of the lookup are placed 1082 * @first_index: start the lookup from this key 1083 * @max_items: place up to this many items at *results 1084 * 1085 * Performs an index-ascending scan of the tree for present items. Places 1086 * them at *@results and returns the number of items which were placed at 1087 * *@results. 1088 * 1089 * The implementation is naive. 1090 * 1091 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1092 * rcu_read_lock. In this case, rather than the returned results being 1093 * an atomic snapshot of the tree at a single point in time, the 1094 * semantics of an RCU protected gang lookup are as though multiple 1095 * radix_tree_lookups have been issued in individual locks, and results 1096 * stored in 'results'. 1097 */ 1098 unsigned int 1099 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1100 unsigned long first_index, unsigned int max_items) 1101 { 1102 struct radix_tree_iter iter; 1103 void **slot; 1104 unsigned int ret = 0; 1105 1106 if (unlikely(!max_items)) 1107 return 0; 1108 1109 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1110 results[ret] = rcu_dereference_raw(*slot); 1111 if (!results[ret]) 1112 continue; 1113 if (radix_tree_is_internal_node(results[ret])) { 1114 slot = radix_tree_iter_retry(&iter); 1115 continue; 1116 } 1117 if (++ret == max_items) 1118 break; 1119 } 1120 1121 return ret; 1122 } 1123 EXPORT_SYMBOL(radix_tree_gang_lookup); 1124 1125 /** 1126 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1127 * @root: radix tree root 1128 * @results: where the results of the lookup are placed 1129 * @indices: where their indices should be placed (but usually NULL) 1130 * @first_index: start the lookup from this key 1131 * @max_items: place up to this many items at *results 1132 * 1133 * Performs an index-ascending scan of the tree for present items. Places 1134 * their slots at *@results and returns the number of items which were 1135 * placed at *@results. 1136 * 1137 * The implementation is naive. 1138 * 1139 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1140 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1141 * protection, radix_tree_deref_slot may fail requiring a retry. 1142 */ 1143 unsigned int 1144 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1145 void ***results, unsigned long *indices, 1146 unsigned long first_index, unsigned int max_items) 1147 { 1148 struct radix_tree_iter iter; 1149 void **slot; 1150 unsigned int ret = 0; 1151 1152 if (unlikely(!max_items)) 1153 return 0; 1154 1155 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1156 results[ret] = slot; 1157 if (indices) 1158 indices[ret] = iter.index; 1159 if (++ret == max_items) 1160 break; 1161 } 1162 1163 return ret; 1164 } 1165 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1166 1167 /** 1168 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1169 * based on a tag 1170 * @root: radix tree root 1171 * @results: where the results of the lookup are placed 1172 * @first_index: start the lookup from this key 1173 * @max_items: place up to this many items at *results 1174 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1175 * 1176 * Performs an index-ascending scan of the tree for present items which 1177 * have the tag indexed by @tag set. Places the items at *@results and 1178 * returns the number of items which were placed at *@results. 1179 */ 1180 unsigned int 1181 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1182 unsigned long first_index, unsigned int max_items, 1183 unsigned int tag) 1184 { 1185 struct radix_tree_iter iter; 1186 void **slot; 1187 unsigned int ret = 0; 1188 1189 if (unlikely(!max_items)) 1190 return 0; 1191 1192 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1193 results[ret] = rcu_dereference_raw(*slot); 1194 if (!results[ret]) 1195 continue; 1196 if (radix_tree_is_internal_node(results[ret])) { 1197 slot = radix_tree_iter_retry(&iter); 1198 continue; 1199 } 1200 if (++ret == max_items) 1201 break; 1202 } 1203 1204 return ret; 1205 } 1206 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1207 1208 /** 1209 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1210 * radix tree based on a tag 1211 * @root: radix tree root 1212 * @results: where the results of the lookup are placed 1213 * @first_index: start the lookup from this key 1214 * @max_items: place up to this many items at *results 1215 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1216 * 1217 * Performs an index-ascending scan of the tree for present items which 1218 * have the tag indexed by @tag set. Places the slots at *@results and 1219 * returns the number of slots which were placed at *@results. 1220 */ 1221 unsigned int 1222 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1223 unsigned long first_index, unsigned int max_items, 1224 unsigned int tag) 1225 { 1226 struct radix_tree_iter iter; 1227 void **slot; 1228 unsigned int ret = 0; 1229 1230 if (unlikely(!max_items)) 1231 return 0; 1232 1233 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1234 results[ret] = slot; 1235 if (++ret == max_items) 1236 break; 1237 } 1238 1239 return ret; 1240 } 1241 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1242 1243 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1244 #include <linux/sched.h> /* for cond_resched() */ 1245 1246 struct locate_info { 1247 unsigned long found_index; 1248 bool stop; 1249 }; 1250 1251 /* 1252 * This linear search is at present only useful to shmem_unuse_inode(). 1253 */ 1254 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1255 unsigned long index, struct locate_info *info) 1256 { 1257 unsigned long i; 1258 1259 do { 1260 unsigned int shift = slot->shift; 1261 1262 for (i = (index >> shift) & RADIX_TREE_MAP_MASK; 1263 i < RADIX_TREE_MAP_SIZE; 1264 i++, index += (1UL << shift)) { 1265 struct radix_tree_node *node = 1266 rcu_dereference_raw(slot->slots[i]); 1267 if (node == RADIX_TREE_RETRY) 1268 goto out; 1269 if (!radix_tree_is_internal_node(node)) { 1270 if (node == item) { 1271 info->found_index = index; 1272 info->stop = true; 1273 goto out; 1274 } 1275 continue; 1276 } 1277 node = entry_to_node(node); 1278 if (is_sibling_entry(slot, node)) 1279 continue; 1280 slot = node; 1281 break; 1282 } 1283 } while (i < RADIX_TREE_MAP_SIZE); 1284 1285 out: 1286 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) 1287 info->stop = true; 1288 return index; 1289 } 1290 1291 /** 1292 * radix_tree_locate_item - search through radix tree for item 1293 * @root: radix tree root 1294 * @item: item to be found 1295 * 1296 * Returns index where item was found, or -1 if not found. 1297 * Caller must hold no lock (since this time-consuming function needs 1298 * to be preemptible), and must check afterwards if item is still there. 1299 */ 1300 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1301 { 1302 struct radix_tree_node *node; 1303 unsigned long max_index; 1304 unsigned long cur_index = 0; 1305 struct locate_info info = { 1306 .found_index = -1, 1307 .stop = false, 1308 }; 1309 1310 do { 1311 rcu_read_lock(); 1312 node = rcu_dereference_raw(root->rnode); 1313 if (!radix_tree_is_internal_node(node)) { 1314 rcu_read_unlock(); 1315 if (node == item) 1316 info.found_index = 0; 1317 break; 1318 } 1319 1320 node = entry_to_node(node); 1321 1322 max_index = node_maxindex(node); 1323 if (cur_index > max_index) { 1324 rcu_read_unlock(); 1325 break; 1326 } 1327 1328 cur_index = __locate(node, item, cur_index, &info); 1329 rcu_read_unlock(); 1330 cond_resched(); 1331 } while (!info.stop && cur_index <= max_index); 1332 1333 return info.found_index; 1334 } 1335 #else 1336 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1337 { 1338 return -1; 1339 } 1340 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1341 1342 /** 1343 * radix_tree_shrink - shrink radix tree to minimum height 1344 * @root radix tree root 1345 */ 1346 static inline bool radix_tree_shrink(struct radix_tree_root *root) 1347 { 1348 bool shrunk = false; 1349 1350 for (;;) { 1351 struct radix_tree_node *node = root->rnode; 1352 struct radix_tree_node *child; 1353 1354 if (!radix_tree_is_internal_node(node)) 1355 break; 1356 node = entry_to_node(node); 1357 1358 /* 1359 * The candidate node has more than one child, or its child 1360 * is not at the leftmost slot, or the child is a multiorder 1361 * entry, we cannot shrink. 1362 */ 1363 if (node->count != 1) 1364 break; 1365 child = node->slots[0]; 1366 if (!child) 1367 break; 1368 if (!radix_tree_is_internal_node(child) && node->shift) 1369 break; 1370 1371 if (radix_tree_is_internal_node(child)) 1372 entry_to_node(child)->parent = NULL; 1373 1374 /* 1375 * We don't need rcu_assign_pointer(), since we are simply 1376 * moving the node from one part of the tree to another: if it 1377 * was safe to dereference the old pointer to it 1378 * (node->slots[0]), it will be safe to dereference the new 1379 * one (root->rnode) as far as dependent read barriers go. 1380 */ 1381 root->rnode = child; 1382 1383 /* 1384 * We have a dilemma here. The node's slot[0] must not be 1385 * NULLed in case there are concurrent lookups expecting to 1386 * find the item. However if this was a bottom-level node, 1387 * then it may be subject to the slot pointer being visible 1388 * to callers dereferencing it. If item corresponding to 1389 * slot[0] is subsequently deleted, these callers would expect 1390 * their slot to become empty sooner or later. 1391 * 1392 * For example, lockless pagecache will look up a slot, deref 1393 * the page pointer, and if the page has 0 refcount it means it 1394 * was concurrently deleted from pagecache so try the deref 1395 * again. Fortunately there is already a requirement for logic 1396 * to retry the entire slot lookup -- the indirect pointer 1397 * problem (replacing direct root node with an indirect pointer 1398 * also results in a stale slot). So tag the slot as indirect 1399 * to force callers to retry. 1400 */ 1401 if (!radix_tree_is_internal_node(child)) 1402 node->slots[0] = RADIX_TREE_RETRY; 1403 1404 radix_tree_node_free(node); 1405 shrunk = true; 1406 } 1407 1408 return shrunk; 1409 } 1410 1411 /** 1412 * __radix_tree_delete_node - try to free node after clearing a slot 1413 * @root: radix tree root 1414 * @node: node containing @index 1415 * 1416 * After clearing the slot at @index in @node from radix tree 1417 * rooted at @root, call this function to attempt freeing the 1418 * node and shrinking the tree. 1419 * 1420 * Returns %true if @node was freed, %false otherwise. 1421 */ 1422 bool __radix_tree_delete_node(struct radix_tree_root *root, 1423 struct radix_tree_node *node) 1424 { 1425 bool deleted = false; 1426 1427 do { 1428 struct radix_tree_node *parent; 1429 1430 if (node->count) { 1431 if (node == entry_to_node(root->rnode)) 1432 deleted |= radix_tree_shrink(root); 1433 return deleted; 1434 } 1435 1436 parent = node->parent; 1437 if (parent) { 1438 parent->slots[node->offset] = NULL; 1439 parent->count--; 1440 } else { 1441 root_tag_clear_all(root); 1442 root->rnode = NULL; 1443 } 1444 1445 radix_tree_node_free(node); 1446 deleted = true; 1447 1448 node = parent; 1449 } while (node); 1450 1451 return deleted; 1452 } 1453 1454 static inline void delete_sibling_entries(struct radix_tree_node *node, 1455 void *ptr, unsigned offset) 1456 { 1457 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1458 int i; 1459 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1460 if (node->slots[offset + i] != ptr) 1461 break; 1462 node->slots[offset + i] = NULL; 1463 node->count--; 1464 } 1465 #endif 1466 } 1467 1468 /** 1469 * radix_tree_delete_item - delete an item from a radix tree 1470 * @root: radix tree root 1471 * @index: index key 1472 * @item: expected item 1473 * 1474 * Remove @item at @index from the radix tree rooted at @root. 1475 * 1476 * Returns the address of the deleted item, or NULL if it was not present 1477 * or the entry at the given @index was not @item. 1478 */ 1479 void *radix_tree_delete_item(struct radix_tree_root *root, 1480 unsigned long index, void *item) 1481 { 1482 struct radix_tree_node *node; 1483 unsigned int offset; 1484 void **slot; 1485 void *entry; 1486 int tag; 1487 1488 entry = __radix_tree_lookup(root, index, &node, &slot); 1489 if (!entry) 1490 return NULL; 1491 1492 if (item && entry != item) 1493 return NULL; 1494 1495 if (!node) { 1496 root_tag_clear_all(root); 1497 root->rnode = NULL; 1498 return entry; 1499 } 1500 1501 offset = get_slot_offset(node, slot); 1502 1503 /* Clear all tags associated with the item to be deleted. */ 1504 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1505 node_tag_clear(root, node, tag, offset); 1506 1507 delete_sibling_entries(node, node_to_entry(slot), offset); 1508 node->slots[offset] = NULL; 1509 node->count--; 1510 1511 __radix_tree_delete_node(root, node); 1512 1513 return entry; 1514 } 1515 EXPORT_SYMBOL(radix_tree_delete_item); 1516 1517 /** 1518 * radix_tree_delete - delete an item from a radix tree 1519 * @root: radix tree root 1520 * @index: index key 1521 * 1522 * Remove the item at @index from the radix tree rooted at @root. 1523 * 1524 * Returns the address of the deleted item, or NULL if it was not present. 1525 */ 1526 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1527 { 1528 return radix_tree_delete_item(root, index, NULL); 1529 } 1530 EXPORT_SYMBOL(radix_tree_delete); 1531 1532 struct radix_tree_node *radix_tree_replace_clear_tags( 1533 struct radix_tree_root *root, 1534 unsigned long index, void *entry) 1535 { 1536 struct radix_tree_node *node; 1537 void **slot; 1538 1539 __radix_tree_lookup(root, index, &node, &slot); 1540 1541 if (node) { 1542 unsigned int tag, offset = get_slot_offset(node, slot); 1543 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1544 node_tag_clear(root, node, tag, offset); 1545 } else { 1546 /* Clear root node tags */ 1547 root->gfp_mask &= __GFP_BITS_MASK; 1548 } 1549 1550 radix_tree_replace_slot(slot, entry); 1551 return node; 1552 } 1553 1554 /** 1555 * radix_tree_tagged - test whether any items in the tree are tagged 1556 * @root: radix tree root 1557 * @tag: tag to test 1558 */ 1559 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1560 { 1561 return root_tag_get(root, tag); 1562 } 1563 EXPORT_SYMBOL(radix_tree_tagged); 1564 1565 static void 1566 radix_tree_node_ctor(void *arg) 1567 { 1568 struct radix_tree_node *node = arg; 1569 1570 memset(node, 0, sizeof(*node)); 1571 INIT_LIST_HEAD(&node->private_list); 1572 } 1573 1574 static int radix_tree_callback(struct notifier_block *nfb, 1575 unsigned long action, void *hcpu) 1576 { 1577 int cpu = (long)hcpu; 1578 struct radix_tree_preload *rtp; 1579 struct radix_tree_node *node; 1580 1581 /* Free per-cpu pool of preloaded nodes */ 1582 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1583 rtp = &per_cpu(radix_tree_preloads, cpu); 1584 while (rtp->nr) { 1585 node = rtp->nodes; 1586 rtp->nodes = node->private_data; 1587 kmem_cache_free(radix_tree_node_cachep, node); 1588 rtp->nr--; 1589 } 1590 } 1591 return NOTIFY_OK; 1592 } 1593 1594 void __init radix_tree_init(void) 1595 { 1596 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1597 sizeof(struct radix_tree_node), 0, 1598 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1599 radix_tree_node_ctor); 1600 hotcpu_notifier(radix_tree_callback, 0); 1601 } 1602