1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/export.h> 29 #include <linux/radix-tree.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/kmemleak.h> 33 #include <linux/notifier.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline void *node_to_entry(void *ptr) 73 { 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 75 } 76 77 #define RADIX_TREE_RETRY node_to_entry(NULL) 78 79 #ifdef CONFIG_RADIX_TREE_MULTIORDER 80 /* Sibling slots point directly to another slot in the same node */ 81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 82 { 83 void **ptr = node; 84 return (parent->slots <= ptr) && 85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 86 } 87 #else 88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 89 { 90 return false; 91 } 92 #endif 93 94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 95 void **slot) 96 { 97 return slot - parent->slots; 98 } 99 100 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 101 struct radix_tree_node **nodep, unsigned long index) 102 { 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 104 void **entry = rcu_dereference_raw(parent->slots[offset]); 105 106 #ifdef CONFIG_RADIX_TREE_MULTIORDER 107 if (radix_tree_is_internal_node(entry)) { 108 unsigned long siboff = get_slot_offset(parent, entry); 109 if (siboff < RADIX_TREE_MAP_SIZE) { 110 offset = siboff; 111 entry = rcu_dereference_raw(parent->slots[offset]); 112 } 113 } 114 #endif 115 116 *nodep = (void *)entry; 117 return offset; 118 } 119 120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 121 { 122 return root->gfp_mask & __GFP_BITS_MASK; 123 } 124 125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 126 int offset) 127 { 128 __set_bit(offset, node->tags[tag]); 129 } 130 131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 132 int offset) 133 { 134 __clear_bit(offset, node->tags[tag]); 135 } 136 137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 138 int offset) 139 { 140 return test_bit(offset, node->tags[tag]); 141 } 142 143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 144 { 145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 146 } 147 148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 149 { 150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear_all(struct radix_tree_root *root) 154 { 155 root->gfp_mask &= __GFP_BITS_MASK; 156 } 157 158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 159 { 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 161 } 162 163 static inline unsigned root_tags_get(struct radix_tree_root *root) 164 { 165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 166 } 167 168 /* 169 * Returns 1 if any slot in the node has this tag set. 170 * Otherwise returns 0. 171 */ 172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 173 { 174 unsigned idx; 175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 176 if (node->tags[tag][idx]) 177 return 1; 178 } 179 return 0; 180 } 181 182 /** 183 * radix_tree_find_next_bit - find the next set bit in a memory region 184 * 185 * @addr: The address to base the search on 186 * @size: The bitmap size in bits 187 * @offset: The bitnumber to start searching at 188 * 189 * Unrollable variant of find_next_bit() for constant size arrays. 190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 191 * Returns next bit offset, or size if nothing found. 192 */ 193 static __always_inline unsigned long 194 radix_tree_find_next_bit(const unsigned long *addr, 195 unsigned long size, unsigned long offset) 196 { 197 if (!__builtin_constant_p(size)) 198 return find_next_bit(addr, size, offset); 199 200 if (offset < size) { 201 unsigned long tmp; 202 203 addr += offset / BITS_PER_LONG; 204 tmp = *addr >> (offset % BITS_PER_LONG); 205 if (tmp) 206 return __ffs(tmp) + offset; 207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 208 while (offset < size) { 209 tmp = *++addr; 210 if (tmp) 211 return __ffs(tmp) + offset; 212 offset += BITS_PER_LONG; 213 } 214 } 215 return size; 216 } 217 218 #ifndef __KERNEL__ 219 static void dump_node(struct radix_tree_node *node, unsigned long index) 220 { 221 unsigned long i; 222 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n", 224 node, node->offset, 225 node->tags[0][0], node->tags[1][0], node->tags[2][0], 226 node->shift, node->count, node->parent); 227 228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 229 unsigned long first = index | (i << node->shift); 230 unsigned long last = first | ((1UL << node->shift) - 1); 231 void *entry = node->slots[i]; 232 if (!entry) 233 continue; 234 if (is_sibling_entry(node, entry)) { 235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", 236 entry, i, 237 *(void **)entry_to_node(entry), 238 first, last); 239 } else if (!radix_tree_is_internal_node(entry)) { 240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n", 241 entry, i, first, last); 242 } else { 243 dump_node(entry_to_node(entry), first); 244 } 245 } 246 } 247 248 /* For debug */ 249 static void radix_tree_dump(struct radix_tree_root *root) 250 { 251 pr_debug("radix root: %p rnode %p tags %x\n", 252 root, root->rnode, 253 root->gfp_mask >> __GFP_BITS_SHIFT); 254 if (!radix_tree_is_internal_node(root->rnode)) 255 return; 256 dump_node(entry_to_node(root->rnode), 0); 257 } 258 #endif 259 260 /* 261 * This assumes that the caller has performed appropriate preallocation, and 262 * that the caller has pinned this thread of control to the current CPU. 263 */ 264 static struct radix_tree_node * 265 radix_tree_node_alloc(struct radix_tree_root *root) 266 { 267 struct radix_tree_node *ret = NULL; 268 gfp_t gfp_mask = root_gfp_mask(root); 269 270 /* 271 * Preload code isn't irq safe and it doesn't make sense to use 272 * preloading during an interrupt anyway as all the allocations have 273 * to be atomic. So just do normal allocation when in interrupt. 274 */ 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 276 struct radix_tree_preload *rtp; 277 278 /* 279 * Even if the caller has preloaded, try to allocate from the 280 * cache first for the new node to get accounted. 281 */ 282 ret = kmem_cache_alloc(radix_tree_node_cachep, 283 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN); 284 if (ret) 285 goto out; 286 287 /* 288 * Provided the caller has preloaded here, we will always 289 * succeed in getting a node here (and never reach 290 * kmem_cache_alloc) 291 */ 292 rtp = this_cpu_ptr(&radix_tree_preloads); 293 if (rtp->nr) { 294 ret = rtp->nodes; 295 rtp->nodes = ret->private_data; 296 ret->private_data = NULL; 297 rtp->nr--; 298 } 299 /* 300 * Update the allocation stack trace as this is more useful 301 * for debugging. 302 */ 303 kmemleak_update_trace(ret); 304 goto out; 305 } 306 ret = kmem_cache_alloc(radix_tree_node_cachep, 307 gfp_mask | __GFP_ACCOUNT); 308 out: 309 BUG_ON(radix_tree_is_internal_node(ret)); 310 return ret; 311 } 312 313 static void radix_tree_node_rcu_free(struct rcu_head *head) 314 { 315 struct radix_tree_node *node = 316 container_of(head, struct radix_tree_node, rcu_head); 317 int i; 318 319 /* 320 * must only free zeroed nodes into the slab. radix_tree_shrink 321 * can leave us with a non-NULL entry in the first slot, so clear 322 * that here to make sure. 323 */ 324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 325 tag_clear(node, i, 0); 326 327 node->slots[0] = NULL; 328 node->count = 0; 329 330 kmem_cache_free(radix_tree_node_cachep, node); 331 } 332 333 static inline void 334 radix_tree_node_free(struct radix_tree_node *node) 335 { 336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 337 } 338 339 /* 340 * Load up this CPU's radix_tree_node buffer with sufficient objects to 341 * ensure that the addition of a single element in the tree cannot fail. On 342 * success, return zero, with preemption disabled. On error, return -ENOMEM 343 * with preemption not disabled. 344 * 345 * To make use of this facility, the radix tree must be initialised without 346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 347 */ 348 static int __radix_tree_preload(gfp_t gfp_mask, int nr) 349 { 350 struct radix_tree_preload *rtp; 351 struct radix_tree_node *node; 352 int ret = -ENOMEM; 353 354 preempt_disable(); 355 rtp = this_cpu_ptr(&radix_tree_preloads); 356 while (rtp->nr < nr) { 357 preempt_enable(); 358 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 359 if (node == NULL) 360 goto out; 361 preempt_disable(); 362 rtp = this_cpu_ptr(&radix_tree_preloads); 363 if (rtp->nr < nr) { 364 node->private_data = rtp->nodes; 365 rtp->nodes = node; 366 rtp->nr++; 367 } else { 368 kmem_cache_free(radix_tree_node_cachep, node); 369 } 370 } 371 ret = 0; 372 out: 373 return ret; 374 } 375 376 /* 377 * Load up this CPU's radix_tree_node buffer with sufficient objects to 378 * ensure that the addition of a single element in the tree cannot fail. On 379 * success, return zero, with preemption disabled. On error, return -ENOMEM 380 * with preemption not disabled. 381 * 382 * To make use of this facility, the radix tree must be initialised without 383 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 384 */ 385 int radix_tree_preload(gfp_t gfp_mask) 386 { 387 /* Warn on non-sensical use... */ 388 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 389 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 390 } 391 EXPORT_SYMBOL(radix_tree_preload); 392 393 /* 394 * The same as above function, except we don't guarantee preloading happens. 395 * We do it, if we decide it helps. On success, return zero with preemption 396 * disabled. On error, return -ENOMEM with preemption not disabled. 397 */ 398 int radix_tree_maybe_preload(gfp_t gfp_mask) 399 { 400 if (gfpflags_allow_blocking(gfp_mask)) 401 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 402 /* Preloading doesn't help anything with this gfp mask, skip it */ 403 preempt_disable(); 404 return 0; 405 } 406 EXPORT_SYMBOL(radix_tree_maybe_preload); 407 408 /* 409 * The same as function above, but preload number of nodes required to insert 410 * (1 << order) continuous naturally-aligned elements. 411 */ 412 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 413 { 414 unsigned long nr_subtrees; 415 int nr_nodes, subtree_height; 416 417 /* Preloading doesn't help anything with this gfp mask, skip it */ 418 if (!gfpflags_allow_blocking(gfp_mask)) { 419 preempt_disable(); 420 return 0; 421 } 422 423 /* 424 * Calculate number and height of fully populated subtrees it takes to 425 * store (1 << order) elements. 426 */ 427 nr_subtrees = 1 << order; 428 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 429 subtree_height++) 430 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 431 432 /* 433 * The worst case is zero height tree with a single item at index 0 and 434 * then inserting items starting at ULONG_MAX - (1 << order). 435 * 436 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 437 * 0-index item. 438 */ 439 nr_nodes = RADIX_TREE_MAX_PATH; 440 441 /* Plus branch to fully populated subtrees. */ 442 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 443 444 /* Root node is shared. */ 445 nr_nodes--; 446 447 /* Plus nodes required to build subtrees. */ 448 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 449 450 return __radix_tree_preload(gfp_mask, nr_nodes); 451 } 452 453 /* 454 * The maximum index which can be stored in a radix tree 455 */ 456 static inline unsigned long shift_maxindex(unsigned int shift) 457 { 458 return (RADIX_TREE_MAP_SIZE << shift) - 1; 459 } 460 461 static inline unsigned long node_maxindex(struct radix_tree_node *node) 462 { 463 return shift_maxindex(node->shift); 464 } 465 466 static unsigned radix_tree_load_root(struct radix_tree_root *root, 467 struct radix_tree_node **nodep, unsigned long *maxindex) 468 { 469 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 470 471 *nodep = node; 472 473 if (likely(radix_tree_is_internal_node(node))) { 474 node = entry_to_node(node); 475 *maxindex = node_maxindex(node); 476 return node->shift + RADIX_TREE_MAP_SHIFT; 477 } 478 479 *maxindex = 0; 480 return 0; 481 } 482 483 /* 484 * Extend a radix tree so it can store key @index. 485 */ 486 static int radix_tree_extend(struct radix_tree_root *root, 487 unsigned long index, unsigned int shift) 488 { 489 struct radix_tree_node *slot; 490 unsigned int maxshift; 491 int tag; 492 493 /* Figure out what the shift should be. */ 494 maxshift = shift; 495 while (index > shift_maxindex(maxshift)) 496 maxshift += RADIX_TREE_MAP_SHIFT; 497 498 slot = root->rnode; 499 if (!slot) 500 goto out; 501 502 do { 503 struct radix_tree_node *node = radix_tree_node_alloc(root); 504 505 if (!node) 506 return -ENOMEM; 507 508 /* Propagate the aggregated tag info into the new root */ 509 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 510 if (root_tag_get(root, tag)) 511 tag_set(node, tag, 0); 512 } 513 514 BUG_ON(shift > BITS_PER_LONG); 515 node->shift = shift; 516 node->offset = 0; 517 node->count = 1; 518 node->parent = NULL; 519 if (radix_tree_is_internal_node(slot)) 520 entry_to_node(slot)->parent = node; 521 node->slots[0] = slot; 522 slot = node_to_entry(node); 523 rcu_assign_pointer(root->rnode, slot); 524 shift += RADIX_TREE_MAP_SHIFT; 525 } while (shift <= maxshift); 526 out: 527 return maxshift + RADIX_TREE_MAP_SHIFT; 528 } 529 530 /** 531 * __radix_tree_create - create a slot in a radix tree 532 * @root: radix tree root 533 * @index: index key 534 * @order: index occupies 2^order aligned slots 535 * @nodep: returns node 536 * @slotp: returns slot 537 * 538 * Create, if necessary, and return the node and slot for an item 539 * at position @index in the radix tree @root. 540 * 541 * Until there is more than one item in the tree, no nodes are 542 * allocated and @root->rnode is used as a direct slot instead of 543 * pointing to a node, in which case *@nodep will be NULL. 544 * 545 * Returns -ENOMEM, or 0 for success. 546 */ 547 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 548 unsigned order, struct radix_tree_node **nodep, 549 void ***slotp) 550 { 551 struct radix_tree_node *node = NULL, *child; 552 void **slot = (void **)&root->rnode; 553 unsigned long maxindex; 554 unsigned int shift, offset = 0; 555 unsigned long max = index | ((1UL << order) - 1); 556 557 shift = radix_tree_load_root(root, &child, &maxindex); 558 559 /* Make sure the tree is high enough. */ 560 if (max > maxindex) { 561 int error = radix_tree_extend(root, max, shift); 562 if (error < 0) 563 return error; 564 shift = error; 565 child = root->rnode; 566 if (order == shift) 567 shift += RADIX_TREE_MAP_SHIFT; 568 } 569 570 while (shift > order) { 571 shift -= RADIX_TREE_MAP_SHIFT; 572 if (child == NULL) { 573 /* Have to add a child node. */ 574 child = radix_tree_node_alloc(root); 575 if (!child) 576 return -ENOMEM; 577 child->shift = shift; 578 child->offset = offset; 579 child->parent = node; 580 rcu_assign_pointer(*slot, node_to_entry(child)); 581 if (node) 582 node->count++; 583 } else if (!radix_tree_is_internal_node(child)) 584 break; 585 586 /* Go a level down */ 587 node = entry_to_node(child); 588 offset = radix_tree_descend(node, &child, index); 589 slot = &node->slots[offset]; 590 } 591 592 #ifdef CONFIG_RADIX_TREE_MULTIORDER 593 /* Insert pointers to the canonical entry */ 594 if (order > shift) { 595 unsigned i, n = 1 << (order - shift); 596 offset = offset & ~(n - 1); 597 slot = &node->slots[offset]; 598 child = node_to_entry(slot); 599 for (i = 0; i < n; i++) { 600 if (slot[i]) 601 return -EEXIST; 602 } 603 604 for (i = 1; i < n; i++) { 605 rcu_assign_pointer(slot[i], child); 606 node->count++; 607 } 608 } 609 #endif 610 611 if (nodep) 612 *nodep = node; 613 if (slotp) 614 *slotp = slot; 615 return 0; 616 } 617 618 /** 619 * __radix_tree_insert - insert into a radix tree 620 * @root: radix tree root 621 * @index: index key 622 * @order: key covers the 2^order indices around index 623 * @item: item to insert 624 * 625 * Insert an item into the radix tree at position @index. 626 */ 627 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 628 unsigned order, void *item) 629 { 630 struct radix_tree_node *node; 631 void **slot; 632 int error; 633 634 BUG_ON(radix_tree_is_internal_node(item)); 635 636 error = __radix_tree_create(root, index, order, &node, &slot); 637 if (error) 638 return error; 639 if (*slot != NULL) 640 return -EEXIST; 641 rcu_assign_pointer(*slot, item); 642 643 if (node) { 644 unsigned offset = get_slot_offset(node, slot); 645 node->count++; 646 BUG_ON(tag_get(node, 0, offset)); 647 BUG_ON(tag_get(node, 1, offset)); 648 BUG_ON(tag_get(node, 2, offset)); 649 } else { 650 BUG_ON(root_tags_get(root)); 651 } 652 653 return 0; 654 } 655 EXPORT_SYMBOL(__radix_tree_insert); 656 657 /** 658 * __radix_tree_lookup - lookup an item in a radix tree 659 * @root: radix tree root 660 * @index: index key 661 * @nodep: returns node 662 * @slotp: returns slot 663 * 664 * Lookup and return the item at position @index in the radix 665 * tree @root. 666 * 667 * Until there is more than one item in the tree, no nodes are 668 * allocated and @root->rnode is used as a direct slot instead of 669 * pointing to a node, in which case *@nodep will be NULL. 670 */ 671 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 672 struct radix_tree_node **nodep, void ***slotp) 673 { 674 struct radix_tree_node *node, *parent; 675 unsigned long maxindex; 676 void **slot; 677 678 restart: 679 parent = NULL; 680 slot = (void **)&root->rnode; 681 radix_tree_load_root(root, &node, &maxindex); 682 if (index > maxindex) 683 return NULL; 684 685 while (radix_tree_is_internal_node(node)) { 686 unsigned offset; 687 688 if (node == RADIX_TREE_RETRY) 689 goto restart; 690 parent = entry_to_node(node); 691 offset = radix_tree_descend(parent, &node, index); 692 slot = parent->slots + offset; 693 } 694 695 if (nodep) 696 *nodep = parent; 697 if (slotp) 698 *slotp = slot; 699 return node; 700 } 701 702 /** 703 * radix_tree_lookup_slot - lookup a slot in a radix tree 704 * @root: radix tree root 705 * @index: index key 706 * 707 * Returns: the slot corresponding to the position @index in the 708 * radix tree @root. This is useful for update-if-exists operations. 709 * 710 * This function can be called under rcu_read_lock iff the slot is not 711 * modified by radix_tree_replace_slot, otherwise it must be called 712 * exclusive from other writers. Any dereference of the slot must be done 713 * using radix_tree_deref_slot. 714 */ 715 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 716 { 717 void **slot; 718 719 if (!__radix_tree_lookup(root, index, NULL, &slot)) 720 return NULL; 721 return slot; 722 } 723 EXPORT_SYMBOL(radix_tree_lookup_slot); 724 725 /** 726 * radix_tree_lookup - perform lookup operation on a radix tree 727 * @root: radix tree root 728 * @index: index key 729 * 730 * Lookup the item at the position @index in the radix tree @root. 731 * 732 * This function can be called under rcu_read_lock, however the caller 733 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 734 * them safely). No RCU barriers are required to access or modify the 735 * returned item, however. 736 */ 737 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 738 { 739 return __radix_tree_lookup(root, index, NULL, NULL); 740 } 741 EXPORT_SYMBOL(radix_tree_lookup); 742 743 /** 744 * radix_tree_tag_set - set a tag on a radix tree node 745 * @root: radix tree root 746 * @index: index key 747 * @tag: tag index 748 * 749 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 750 * corresponding to @index in the radix tree. From 751 * the root all the way down to the leaf node. 752 * 753 * Returns the address of the tagged item. Setting a tag on a not-present 754 * item is a bug. 755 */ 756 void *radix_tree_tag_set(struct radix_tree_root *root, 757 unsigned long index, unsigned int tag) 758 { 759 struct radix_tree_node *node, *parent; 760 unsigned long maxindex; 761 762 radix_tree_load_root(root, &node, &maxindex); 763 BUG_ON(index > maxindex); 764 765 while (radix_tree_is_internal_node(node)) { 766 unsigned offset; 767 768 parent = entry_to_node(node); 769 offset = radix_tree_descend(parent, &node, index); 770 BUG_ON(!node); 771 772 if (!tag_get(parent, tag, offset)) 773 tag_set(parent, tag, offset); 774 } 775 776 /* set the root's tag bit */ 777 if (!root_tag_get(root, tag)) 778 root_tag_set(root, tag); 779 780 return node; 781 } 782 EXPORT_SYMBOL(radix_tree_tag_set); 783 784 static void node_tag_clear(struct radix_tree_root *root, 785 struct radix_tree_node *node, 786 unsigned int tag, unsigned int offset) 787 { 788 while (node) { 789 if (!tag_get(node, tag, offset)) 790 return; 791 tag_clear(node, tag, offset); 792 if (any_tag_set(node, tag)) 793 return; 794 795 offset = node->offset; 796 node = node->parent; 797 } 798 799 /* clear the root's tag bit */ 800 if (root_tag_get(root, tag)) 801 root_tag_clear(root, tag); 802 } 803 804 /** 805 * radix_tree_tag_clear - clear a tag on a radix tree node 806 * @root: radix tree root 807 * @index: index key 808 * @tag: tag index 809 * 810 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 811 * corresponding to @index in the radix tree. If this causes 812 * the leaf node to have no tags set then clear the tag in the 813 * next-to-leaf node, etc. 814 * 815 * Returns the address of the tagged item on success, else NULL. ie: 816 * has the same return value and semantics as radix_tree_lookup(). 817 */ 818 void *radix_tree_tag_clear(struct radix_tree_root *root, 819 unsigned long index, unsigned int tag) 820 { 821 struct radix_tree_node *node, *parent; 822 unsigned long maxindex; 823 int uninitialized_var(offset); 824 825 radix_tree_load_root(root, &node, &maxindex); 826 if (index > maxindex) 827 return NULL; 828 829 parent = NULL; 830 831 while (radix_tree_is_internal_node(node)) { 832 parent = entry_to_node(node); 833 offset = radix_tree_descend(parent, &node, index); 834 } 835 836 if (node) 837 node_tag_clear(root, parent, tag, offset); 838 839 return node; 840 } 841 EXPORT_SYMBOL(radix_tree_tag_clear); 842 843 /** 844 * radix_tree_tag_get - get a tag on a radix tree node 845 * @root: radix tree root 846 * @index: index key 847 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 848 * 849 * Return values: 850 * 851 * 0: tag not present or not set 852 * 1: tag set 853 * 854 * Note that the return value of this function may not be relied on, even if 855 * the RCU lock is held, unless tag modification and node deletion are excluded 856 * from concurrency. 857 */ 858 int radix_tree_tag_get(struct radix_tree_root *root, 859 unsigned long index, unsigned int tag) 860 { 861 struct radix_tree_node *node, *parent; 862 unsigned long maxindex; 863 864 if (!root_tag_get(root, tag)) 865 return 0; 866 867 radix_tree_load_root(root, &node, &maxindex); 868 if (index > maxindex) 869 return 0; 870 if (node == NULL) 871 return 0; 872 873 while (radix_tree_is_internal_node(node)) { 874 unsigned offset; 875 876 parent = entry_to_node(node); 877 offset = radix_tree_descend(parent, &node, index); 878 879 if (!node) 880 return 0; 881 if (!tag_get(parent, tag, offset)) 882 return 0; 883 if (node == RADIX_TREE_RETRY) 884 break; 885 } 886 887 return 1; 888 } 889 EXPORT_SYMBOL(radix_tree_tag_get); 890 891 static inline void __set_iter_shift(struct radix_tree_iter *iter, 892 unsigned int shift) 893 { 894 #ifdef CONFIG_RADIX_TREE_MULTIORDER 895 iter->shift = shift; 896 #endif 897 } 898 899 /** 900 * radix_tree_next_chunk - find next chunk of slots for iteration 901 * 902 * @root: radix tree root 903 * @iter: iterator state 904 * @flags: RADIX_TREE_ITER_* flags and tag index 905 * Returns: pointer to chunk first slot, or NULL if iteration is over 906 */ 907 void **radix_tree_next_chunk(struct radix_tree_root *root, 908 struct radix_tree_iter *iter, unsigned flags) 909 { 910 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 911 struct radix_tree_node *node, *child; 912 unsigned long index, offset, maxindex; 913 914 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 915 return NULL; 916 917 /* 918 * Catch next_index overflow after ~0UL. iter->index never overflows 919 * during iterating; it can be zero only at the beginning. 920 * And we cannot overflow iter->next_index in a single step, 921 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 922 * 923 * This condition also used by radix_tree_next_slot() to stop 924 * contiguous iterating, and forbid swithing to the next chunk. 925 */ 926 index = iter->next_index; 927 if (!index && iter->index) 928 return NULL; 929 930 restart: 931 radix_tree_load_root(root, &child, &maxindex); 932 if (index > maxindex) 933 return NULL; 934 if (!child) 935 return NULL; 936 937 if (!radix_tree_is_internal_node(child)) { 938 /* Single-slot tree */ 939 iter->index = index; 940 iter->next_index = maxindex + 1; 941 iter->tags = 1; 942 __set_iter_shift(iter, 0); 943 return (void **)&root->rnode; 944 } 945 946 do { 947 node = entry_to_node(child); 948 offset = radix_tree_descend(node, &child, index); 949 950 if ((flags & RADIX_TREE_ITER_TAGGED) ? 951 !tag_get(node, tag, offset) : !child) { 952 /* Hole detected */ 953 if (flags & RADIX_TREE_ITER_CONTIG) 954 return NULL; 955 956 if (flags & RADIX_TREE_ITER_TAGGED) 957 offset = radix_tree_find_next_bit( 958 node->tags[tag], 959 RADIX_TREE_MAP_SIZE, 960 offset + 1); 961 else 962 while (++offset < RADIX_TREE_MAP_SIZE) { 963 void *slot = node->slots[offset]; 964 if (is_sibling_entry(node, slot)) 965 continue; 966 if (slot) 967 break; 968 } 969 index &= ~node_maxindex(node); 970 index += offset << node->shift; 971 /* Overflow after ~0UL */ 972 if (!index) 973 return NULL; 974 if (offset == RADIX_TREE_MAP_SIZE) 975 goto restart; 976 child = rcu_dereference_raw(node->slots[offset]); 977 } 978 979 if ((child == NULL) || (child == RADIX_TREE_RETRY)) 980 goto restart; 981 } while (radix_tree_is_internal_node(child)); 982 983 /* Update the iterator state */ 984 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 985 iter->next_index = (index | node_maxindex(node)) + 1; 986 __set_iter_shift(iter, node->shift); 987 988 /* Construct iter->tags bit-mask from node->tags[tag] array */ 989 if (flags & RADIX_TREE_ITER_TAGGED) { 990 unsigned tag_long, tag_bit; 991 992 tag_long = offset / BITS_PER_LONG; 993 tag_bit = offset % BITS_PER_LONG; 994 iter->tags = node->tags[tag][tag_long] >> tag_bit; 995 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 996 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 997 /* Pick tags from next element */ 998 if (tag_bit) 999 iter->tags |= node->tags[tag][tag_long + 1] << 1000 (BITS_PER_LONG - tag_bit); 1001 /* Clip chunk size, here only BITS_PER_LONG tags */ 1002 iter->next_index = index + BITS_PER_LONG; 1003 } 1004 } 1005 1006 return node->slots + offset; 1007 } 1008 EXPORT_SYMBOL(radix_tree_next_chunk); 1009 1010 /** 1011 * radix_tree_range_tag_if_tagged - for each item in given range set given 1012 * tag if item has another tag set 1013 * @root: radix tree root 1014 * @first_indexp: pointer to a starting index of a range to scan 1015 * @last_index: last index of a range to scan 1016 * @nr_to_tag: maximum number items to tag 1017 * @iftag: tag index to test 1018 * @settag: tag index to set if tested tag is set 1019 * 1020 * This function scans range of radix tree from first_index to last_index 1021 * (inclusive). For each item in the range if iftag is set, the function sets 1022 * also settag. The function stops either after tagging nr_to_tag items or 1023 * after reaching last_index. 1024 * 1025 * The tags must be set from the leaf level only and propagated back up the 1026 * path to the root. We must do this so that we resolve the full path before 1027 * setting any tags on intermediate nodes. If we set tags as we descend, then 1028 * we can get to the leaf node and find that the index that has the iftag 1029 * set is outside the range we are scanning. This reults in dangling tags and 1030 * can lead to problems with later tag operations (e.g. livelocks on lookups). 1031 * 1032 * The function returns the number of leaves where the tag was set and sets 1033 * *first_indexp to the first unscanned index. 1034 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 1035 * be prepared to handle that. 1036 */ 1037 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 1038 unsigned long *first_indexp, unsigned long last_index, 1039 unsigned long nr_to_tag, 1040 unsigned int iftag, unsigned int settag) 1041 { 1042 struct radix_tree_node *parent, *node, *child; 1043 unsigned long maxindex; 1044 unsigned long tagged = 0; 1045 unsigned long index = *first_indexp; 1046 1047 radix_tree_load_root(root, &child, &maxindex); 1048 last_index = min(last_index, maxindex); 1049 if (index > last_index) 1050 return 0; 1051 if (!nr_to_tag) 1052 return 0; 1053 if (!root_tag_get(root, iftag)) { 1054 *first_indexp = last_index + 1; 1055 return 0; 1056 } 1057 if (!radix_tree_is_internal_node(child)) { 1058 *first_indexp = last_index + 1; 1059 root_tag_set(root, settag); 1060 return 1; 1061 } 1062 1063 node = entry_to_node(child); 1064 1065 for (;;) { 1066 unsigned offset = radix_tree_descend(node, &child, index); 1067 if (!child) 1068 goto next; 1069 if (!tag_get(node, iftag, offset)) 1070 goto next; 1071 /* Sibling slots never have tags set on them */ 1072 if (radix_tree_is_internal_node(child)) { 1073 node = entry_to_node(child); 1074 continue; 1075 } 1076 1077 /* tag the leaf */ 1078 tagged++; 1079 tag_set(node, settag, offset); 1080 1081 /* walk back up the path tagging interior nodes */ 1082 parent = node; 1083 for (;;) { 1084 offset = parent->offset; 1085 parent = parent->parent; 1086 if (!parent) 1087 break; 1088 /* stop if we find a node with the tag already set */ 1089 if (tag_get(parent, settag, offset)) 1090 break; 1091 tag_set(parent, settag, offset); 1092 } 1093 next: 1094 /* Go to next entry in node */ 1095 index = ((index >> node->shift) + 1) << node->shift; 1096 /* Overflow can happen when last_index is ~0UL... */ 1097 if (index > last_index || !index) 1098 break; 1099 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1100 while (offset == 0) { 1101 /* 1102 * We've fully scanned this node. Go up. Because 1103 * last_index is guaranteed to be in the tree, what 1104 * we do below cannot wander astray. 1105 */ 1106 node = node->parent; 1107 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1108 } 1109 if (is_sibling_entry(node, node->slots[offset])) 1110 goto next; 1111 if (tagged >= nr_to_tag) 1112 break; 1113 } 1114 /* 1115 * We need not to tag the root tag if there is no tag which is set with 1116 * settag within the range from *first_indexp to last_index. 1117 */ 1118 if (tagged > 0) 1119 root_tag_set(root, settag); 1120 *first_indexp = index; 1121 1122 return tagged; 1123 } 1124 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 1125 1126 /** 1127 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1128 * @root: radix tree root 1129 * @results: where the results of the lookup are placed 1130 * @first_index: start the lookup from this key 1131 * @max_items: place up to this many items at *results 1132 * 1133 * Performs an index-ascending scan of the tree for present items. Places 1134 * them at *@results and returns the number of items which were placed at 1135 * *@results. 1136 * 1137 * The implementation is naive. 1138 * 1139 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1140 * rcu_read_lock. In this case, rather than the returned results being 1141 * an atomic snapshot of the tree at a single point in time, the 1142 * semantics of an RCU protected gang lookup are as though multiple 1143 * radix_tree_lookups have been issued in individual locks, and results 1144 * stored in 'results'. 1145 */ 1146 unsigned int 1147 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1148 unsigned long first_index, unsigned int max_items) 1149 { 1150 struct radix_tree_iter iter; 1151 void **slot; 1152 unsigned int ret = 0; 1153 1154 if (unlikely(!max_items)) 1155 return 0; 1156 1157 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1158 results[ret] = rcu_dereference_raw(*slot); 1159 if (!results[ret]) 1160 continue; 1161 if (radix_tree_is_internal_node(results[ret])) { 1162 slot = radix_tree_iter_retry(&iter); 1163 continue; 1164 } 1165 if (++ret == max_items) 1166 break; 1167 } 1168 1169 return ret; 1170 } 1171 EXPORT_SYMBOL(radix_tree_gang_lookup); 1172 1173 /** 1174 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1175 * @root: radix tree root 1176 * @results: where the results of the lookup are placed 1177 * @indices: where their indices should be placed (but usually NULL) 1178 * @first_index: start the lookup from this key 1179 * @max_items: place up to this many items at *results 1180 * 1181 * Performs an index-ascending scan of the tree for present items. Places 1182 * their slots at *@results and returns the number of items which were 1183 * placed at *@results. 1184 * 1185 * The implementation is naive. 1186 * 1187 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1188 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1189 * protection, radix_tree_deref_slot may fail requiring a retry. 1190 */ 1191 unsigned int 1192 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1193 void ***results, unsigned long *indices, 1194 unsigned long first_index, unsigned int max_items) 1195 { 1196 struct radix_tree_iter iter; 1197 void **slot; 1198 unsigned int ret = 0; 1199 1200 if (unlikely(!max_items)) 1201 return 0; 1202 1203 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1204 results[ret] = slot; 1205 if (indices) 1206 indices[ret] = iter.index; 1207 if (++ret == max_items) 1208 break; 1209 } 1210 1211 return ret; 1212 } 1213 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1214 1215 /** 1216 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1217 * based on a tag 1218 * @root: radix tree root 1219 * @results: where the results of the lookup are placed 1220 * @first_index: start the lookup from this key 1221 * @max_items: place up to this many items at *results 1222 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1223 * 1224 * Performs an index-ascending scan of the tree for present items which 1225 * have the tag indexed by @tag set. Places the items at *@results and 1226 * returns the number of items which were placed at *@results. 1227 */ 1228 unsigned int 1229 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1230 unsigned long first_index, unsigned int max_items, 1231 unsigned int tag) 1232 { 1233 struct radix_tree_iter iter; 1234 void **slot; 1235 unsigned int ret = 0; 1236 1237 if (unlikely(!max_items)) 1238 return 0; 1239 1240 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1241 results[ret] = rcu_dereference_raw(*slot); 1242 if (!results[ret]) 1243 continue; 1244 if (radix_tree_is_internal_node(results[ret])) { 1245 slot = radix_tree_iter_retry(&iter); 1246 continue; 1247 } 1248 if (++ret == max_items) 1249 break; 1250 } 1251 1252 return ret; 1253 } 1254 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1255 1256 /** 1257 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1258 * radix tree based on a tag 1259 * @root: radix tree root 1260 * @results: where the results of the lookup are placed 1261 * @first_index: start the lookup from this key 1262 * @max_items: place up to this many items at *results 1263 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1264 * 1265 * Performs an index-ascending scan of the tree for present items which 1266 * have the tag indexed by @tag set. Places the slots at *@results and 1267 * returns the number of slots which were placed at *@results. 1268 */ 1269 unsigned int 1270 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1271 unsigned long first_index, unsigned int max_items, 1272 unsigned int tag) 1273 { 1274 struct radix_tree_iter iter; 1275 void **slot; 1276 unsigned int ret = 0; 1277 1278 if (unlikely(!max_items)) 1279 return 0; 1280 1281 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1282 results[ret] = slot; 1283 if (++ret == max_items) 1284 break; 1285 } 1286 1287 return ret; 1288 } 1289 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1290 1291 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1292 #include <linux/sched.h> /* for cond_resched() */ 1293 1294 struct locate_info { 1295 unsigned long found_index; 1296 bool stop; 1297 }; 1298 1299 /* 1300 * This linear search is at present only useful to shmem_unuse_inode(). 1301 */ 1302 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1303 unsigned long index, struct locate_info *info) 1304 { 1305 unsigned long i; 1306 1307 do { 1308 unsigned int shift = slot->shift; 1309 1310 for (i = (index >> shift) & RADIX_TREE_MAP_MASK; 1311 i < RADIX_TREE_MAP_SIZE; 1312 i++, index += (1UL << shift)) { 1313 struct radix_tree_node *node = 1314 rcu_dereference_raw(slot->slots[i]); 1315 if (node == RADIX_TREE_RETRY) 1316 goto out; 1317 if (!radix_tree_is_internal_node(node)) { 1318 if (node == item) { 1319 info->found_index = index; 1320 info->stop = true; 1321 goto out; 1322 } 1323 continue; 1324 } 1325 node = entry_to_node(node); 1326 if (is_sibling_entry(slot, node)) 1327 continue; 1328 slot = node; 1329 break; 1330 } 1331 } while (i < RADIX_TREE_MAP_SIZE); 1332 1333 out: 1334 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) 1335 info->stop = true; 1336 return index; 1337 } 1338 1339 /** 1340 * radix_tree_locate_item - search through radix tree for item 1341 * @root: radix tree root 1342 * @item: item to be found 1343 * 1344 * Returns index where item was found, or -1 if not found. 1345 * Caller must hold no lock (since this time-consuming function needs 1346 * to be preemptible), and must check afterwards if item is still there. 1347 */ 1348 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1349 { 1350 struct radix_tree_node *node; 1351 unsigned long max_index; 1352 unsigned long cur_index = 0; 1353 struct locate_info info = { 1354 .found_index = -1, 1355 .stop = false, 1356 }; 1357 1358 do { 1359 rcu_read_lock(); 1360 node = rcu_dereference_raw(root->rnode); 1361 if (!radix_tree_is_internal_node(node)) { 1362 rcu_read_unlock(); 1363 if (node == item) 1364 info.found_index = 0; 1365 break; 1366 } 1367 1368 node = entry_to_node(node); 1369 1370 max_index = node_maxindex(node); 1371 if (cur_index > max_index) { 1372 rcu_read_unlock(); 1373 break; 1374 } 1375 1376 cur_index = __locate(node, item, cur_index, &info); 1377 rcu_read_unlock(); 1378 cond_resched(); 1379 } while (!info.stop && cur_index <= max_index); 1380 1381 return info.found_index; 1382 } 1383 #else 1384 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1385 { 1386 return -1; 1387 } 1388 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1389 1390 /** 1391 * radix_tree_shrink - shrink radix tree to minimum height 1392 * @root radix tree root 1393 */ 1394 static inline bool radix_tree_shrink(struct radix_tree_root *root) 1395 { 1396 bool shrunk = false; 1397 1398 for (;;) { 1399 struct radix_tree_node *node = root->rnode; 1400 struct radix_tree_node *child; 1401 1402 if (!radix_tree_is_internal_node(node)) 1403 break; 1404 node = entry_to_node(node); 1405 1406 /* 1407 * The candidate node has more than one child, or its child 1408 * is not at the leftmost slot, or the child is a multiorder 1409 * entry, we cannot shrink. 1410 */ 1411 if (node->count != 1) 1412 break; 1413 child = node->slots[0]; 1414 if (!child) 1415 break; 1416 if (!radix_tree_is_internal_node(child) && node->shift) 1417 break; 1418 1419 if (radix_tree_is_internal_node(child)) 1420 entry_to_node(child)->parent = NULL; 1421 1422 /* 1423 * We don't need rcu_assign_pointer(), since we are simply 1424 * moving the node from one part of the tree to another: if it 1425 * was safe to dereference the old pointer to it 1426 * (node->slots[0]), it will be safe to dereference the new 1427 * one (root->rnode) as far as dependent read barriers go. 1428 */ 1429 root->rnode = child; 1430 1431 /* 1432 * We have a dilemma here. The node's slot[0] must not be 1433 * NULLed in case there are concurrent lookups expecting to 1434 * find the item. However if this was a bottom-level node, 1435 * then it may be subject to the slot pointer being visible 1436 * to callers dereferencing it. If item corresponding to 1437 * slot[0] is subsequently deleted, these callers would expect 1438 * their slot to become empty sooner or later. 1439 * 1440 * For example, lockless pagecache will look up a slot, deref 1441 * the page pointer, and if the page has 0 refcount it means it 1442 * was concurrently deleted from pagecache so try the deref 1443 * again. Fortunately there is already a requirement for logic 1444 * to retry the entire slot lookup -- the indirect pointer 1445 * problem (replacing direct root node with an indirect pointer 1446 * also results in a stale slot). So tag the slot as indirect 1447 * to force callers to retry. 1448 */ 1449 if (!radix_tree_is_internal_node(child)) 1450 node->slots[0] = RADIX_TREE_RETRY; 1451 1452 radix_tree_node_free(node); 1453 shrunk = true; 1454 } 1455 1456 return shrunk; 1457 } 1458 1459 /** 1460 * __radix_tree_delete_node - try to free node after clearing a slot 1461 * @root: radix tree root 1462 * @node: node containing @index 1463 * 1464 * After clearing the slot at @index in @node from radix tree 1465 * rooted at @root, call this function to attempt freeing the 1466 * node and shrinking the tree. 1467 * 1468 * Returns %true if @node was freed, %false otherwise. 1469 */ 1470 bool __radix_tree_delete_node(struct radix_tree_root *root, 1471 struct radix_tree_node *node) 1472 { 1473 bool deleted = false; 1474 1475 do { 1476 struct radix_tree_node *parent; 1477 1478 if (node->count) { 1479 if (node == entry_to_node(root->rnode)) 1480 deleted |= radix_tree_shrink(root); 1481 return deleted; 1482 } 1483 1484 parent = node->parent; 1485 if (parent) { 1486 parent->slots[node->offset] = NULL; 1487 parent->count--; 1488 } else { 1489 root_tag_clear_all(root); 1490 root->rnode = NULL; 1491 } 1492 1493 radix_tree_node_free(node); 1494 deleted = true; 1495 1496 node = parent; 1497 } while (node); 1498 1499 return deleted; 1500 } 1501 1502 static inline void delete_sibling_entries(struct radix_tree_node *node, 1503 void *ptr, unsigned offset) 1504 { 1505 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1506 int i; 1507 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1508 if (node->slots[offset + i] != ptr) 1509 break; 1510 node->slots[offset + i] = NULL; 1511 node->count--; 1512 } 1513 #endif 1514 } 1515 1516 /** 1517 * radix_tree_delete_item - delete an item from a radix tree 1518 * @root: radix tree root 1519 * @index: index key 1520 * @item: expected item 1521 * 1522 * Remove @item at @index from the radix tree rooted at @root. 1523 * 1524 * Returns the address of the deleted item, or NULL if it was not present 1525 * or the entry at the given @index was not @item. 1526 */ 1527 void *radix_tree_delete_item(struct radix_tree_root *root, 1528 unsigned long index, void *item) 1529 { 1530 struct radix_tree_node *node; 1531 unsigned int offset; 1532 void **slot; 1533 void *entry; 1534 int tag; 1535 1536 entry = __radix_tree_lookup(root, index, &node, &slot); 1537 if (!entry) 1538 return NULL; 1539 1540 if (item && entry != item) 1541 return NULL; 1542 1543 if (!node) { 1544 root_tag_clear_all(root); 1545 root->rnode = NULL; 1546 return entry; 1547 } 1548 1549 offset = get_slot_offset(node, slot); 1550 1551 /* Clear all tags associated with the item to be deleted. */ 1552 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1553 node_tag_clear(root, node, tag, offset); 1554 1555 delete_sibling_entries(node, node_to_entry(slot), offset); 1556 node->slots[offset] = NULL; 1557 node->count--; 1558 1559 __radix_tree_delete_node(root, node); 1560 1561 return entry; 1562 } 1563 EXPORT_SYMBOL(radix_tree_delete_item); 1564 1565 /** 1566 * radix_tree_delete - delete an item from a radix tree 1567 * @root: radix tree root 1568 * @index: index key 1569 * 1570 * Remove the item at @index from the radix tree rooted at @root. 1571 * 1572 * Returns the address of the deleted item, or NULL if it was not present. 1573 */ 1574 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1575 { 1576 return radix_tree_delete_item(root, index, NULL); 1577 } 1578 EXPORT_SYMBOL(radix_tree_delete); 1579 1580 struct radix_tree_node *radix_tree_replace_clear_tags( 1581 struct radix_tree_root *root, 1582 unsigned long index, void *entry) 1583 { 1584 struct radix_tree_node *node; 1585 void **slot; 1586 1587 __radix_tree_lookup(root, index, &node, &slot); 1588 1589 if (node) { 1590 unsigned int tag, offset = get_slot_offset(node, slot); 1591 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1592 node_tag_clear(root, node, tag, offset); 1593 } else { 1594 /* Clear root node tags */ 1595 root->gfp_mask &= __GFP_BITS_MASK; 1596 } 1597 1598 radix_tree_replace_slot(slot, entry); 1599 return node; 1600 } 1601 1602 /** 1603 * radix_tree_tagged - test whether any items in the tree are tagged 1604 * @root: radix tree root 1605 * @tag: tag to test 1606 */ 1607 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1608 { 1609 return root_tag_get(root, tag); 1610 } 1611 EXPORT_SYMBOL(radix_tree_tagged); 1612 1613 static void 1614 radix_tree_node_ctor(void *arg) 1615 { 1616 struct radix_tree_node *node = arg; 1617 1618 memset(node, 0, sizeof(*node)); 1619 INIT_LIST_HEAD(&node->private_list); 1620 } 1621 1622 static __init unsigned long __maxindex(unsigned int height) 1623 { 1624 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1625 int shift = RADIX_TREE_INDEX_BITS - width; 1626 1627 if (shift < 0) 1628 return ~0UL; 1629 if (shift >= BITS_PER_LONG) 1630 return 0UL; 1631 return ~0UL >> shift; 1632 } 1633 1634 static __init void radix_tree_init_maxnodes(void) 1635 { 1636 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1637 unsigned int i, j; 1638 1639 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1640 height_to_maxindex[i] = __maxindex(i); 1641 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1642 for (j = i; j > 0; j--) 1643 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1644 } 1645 } 1646 1647 static int radix_tree_callback(struct notifier_block *nfb, 1648 unsigned long action, void *hcpu) 1649 { 1650 int cpu = (long)hcpu; 1651 struct radix_tree_preload *rtp; 1652 struct radix_tree_node *node; 1653 1654 /* Free per-cpu pool of preloaded nodes */ 1655 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1656 rtp = &per_cpu(radix_tree_preloads, cpu); 1657 while (rtp->nr) { 1658 node = rtp->nodes; 1659 rtp->nodes = node->private_data; 1660 kmem_cache_free(radix_tree_node_cachep, node); 1661 rtp->nr--; 1662 } 1663 } 1664 return NOTIFY_OK; 1665 } 1666 1667 void __init radix_tree_init(void) 1668 { 1669 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1670 sizeof(struct radix_tree_node), 0, 1671 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1672 radix_tree_node_ctor); 1673 radix_tree_init_maxnodes(); 1674 hotcpu_notifier(radix_tree_callback, 0); 1675 } 1676