xref: /openbmc/linux/lib/radix-tree.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2005 SGI, Christoph Lameter
5  * Copyright (C) 2006 Nick Piggin
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/radix-tree.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/string.h>
32 #include <linux/bitops.h>
33 #include <linux/rcupdate.h>
34 
35 
36 #ifdef __KERNEL__
37 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
38 #else
39 #define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
40 #endif
41 
42 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
43 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
44 
45 #define RADIX_TREE_TAG_LONGS	\
46 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
47 
48 struct radix_tree_node {
49 	unsigned int	height;		/* Height from the bottom */
50 	unsigned int	count;
51 	struct rcu_head	rcu_head;
52 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
53 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
54 };
55 
56 struct radix_tree_path {
57 	struct radix_tree_node *node;
58 	int offset;
59 };
60 
61 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
62 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
63 					  RADIX_TREE_MAP_SHIFT))
64 
65 /*
66  * The height_to_maxindex array needs to be one deeper than the maximum
67  * path as height 0 holds only 1 entry.
68  */
69 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
70 
71 /*
72  * Radix tree node cache.
73  */
74 static struct kmem_cache *radix_tree_node_cachep;
75 
76 /*
77  * Per-cpu pool of preloaded nodes
78  */
79 struct radix_tree_preload {
80 	int nr;
81 	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
82 };
83 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
84 
85 static inline void *ptr_to_indirect(void *ptr)
86 {
87 	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
88 }
89 
90 static inline void *indirect_to_ptr(void *ptr)
91 {
92 	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
93 }
94 
95 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
96 {
97 	return root->gfp_mask & __GFP_BITS_MASK;
98 }
99 
100 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
101 		int offset)
102 {
103 	__set_bit(offset, node->tags[tag]);
104 }
105 
106 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
107 		int offset)
108 {
109 	__clear_bit(offset, node->tags[tag]);
110 }
111 
112 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
113 		int offset)
114 {
115 	return test_bit(offset, node->tags[tag]);
116 }
117 
118 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
119 {
120 	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
121 }
122 
123 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
124 {
125 	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
126 }
127 
128 static inline void root_tag_clear_all(struct radix_tree_root *root)
129 {
130 	root->gfp_mask &= __GFP_BITS_MASK;
131 }
132 
133 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
134 {
135 	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
136 }
137 
138 /*
139  * Returns 1 if any slot in the node has this tag set.
140  * Otherwise returns 0.
141  */
142 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
143 {
144 	int idx;
145 	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
146 		if (node->tags[tag][idx])
147 			return 1;
148 	}
149 	return 0;
150 }
151 /*
152  * This assumes that the caller has performed appropriate preallocation, and
153  * that the caller has pinned this thread of control to the current CPU.
154  */
155 static struct radix_tree_node *
156 radix_tree_node_alloc(struct radix_tree_root *root)
157 {
158 	struct radix_tree_node *ret = NULL;
159 	gfp_t gfp_mask = root_gfp_mask(root);
160 
161 	if (!(gfp_mask & __GFP_WAIT)) {
162 		struct radix_tree_preload *rtp;
163 
164 		/*
165 		 * Provided the caller has preloaded here, we will always
166 		 * succeed in getting a node here (and never reach
167 		 * kmem_cache_alloc)
168 		 */
169 		rtp = &__get_cpu_var(radix_tree_preloads);
170 		if (rtp->nr) {
171 			ret = rtp->nodes[rtp->nr - 1];
172 			rtp->nodes[rtp->nr - 1] = NULL;
173 			rtp->nr--;
174 		}
175 	}
176 	if (ret == NULL)
177 		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
178 
179 	BUG_ON(radix_tree_is_indirect_ptr(ret));
180 	return ret;
181 }
182 
183 static void radix_tree_node_rcu_free(struct rcu_head *head)
184 {
185 	struct radix_tree_node *node =
186 			container_of(head, struct radix_tree_node, rcu_head);
187 	int i;
188 
189 	/*
190 	 * must only free zeroed nodes into the slab. radix_tree_shrink
191 	 * can leave us with a non-NULL entry in the first slot, so clear
192 	 * that here to make sure.
193 	 */
194 	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
195 		tag_clear(node, i, 0);
196 
197 	node->slots[0] = NULL;
198 	node->count = 0;
199 
200 	kmem_cache_free(radix_tree_node_cachep, node);
201 }
202 
203 static inline void
204 radix_tree_node_free(struct radix_tree_node *node)
205 {
206 	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
207 }
208 
209 /*
210  * Load up this CPU's radix_tree_node buffer with sufficient objects to
211  * ensure that the addition of a single element in the tree cannot fail.  On
212  * success, return zero, with preemption disabled.  On error, return -ENOMEM
213  * with preemption not disabled.
214  *
215  * To make use of this facility, the radix tree must be initialised without
216  * __GFP_WAIT being passed to INIT_RADIX_TREE().
217  */
218 int radix_tree_preload(gfp_t gfp_mask)
219 {
220 	struct radix_tree_preload *rtp;
221 	struct radix_tree_node *node;
222 	int ret = -ENOMEM;
223 
224 	preempt_disable();
225 	rtp = &__get_cpu_var(radix_tree_preloads);
226 	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
227 		preempt_enable();
228 		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
229 		if (node == NULL)
230 			goto out;
231 		preempt_disable();
232 		rtp = &__get_cpu_var(radix_tree_preloads);
233 		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
234 			rtp->nodes[rtp->nr++] = node;
235 		else
236 			kmem_cache_free(radix_tree_node_cachep, node);
237 	}
238 	ret = 0;
239 out:
240 	return ret;
241 }
242 EXPORT_SYMBOL(radix_tree_preload);
243 
244 /*
245  *	Return the maximum key which can be store into a
246  *	radix tree with height HEIGHT.
247  */
248 static inline unsigned long radix_tree_maxindex(unsigned int height)
249 {
250 	return height_to_maxindex[height];
251 }
252 
253 /*
254  *	Extend a radix tree so it can store key @index.
255  */
256 static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
257 {
258 	struct radix_tree_node *node;
259 	unsigned int height;
260 	int tag;
261 
262 	/* Figure out what the height should be.  */
263 	height = root->height + 1;
264 	while (index > radix_tree_maxindex(height))
265 		height++;
266 
267 	if (root->rnode == NULL) {
268 		root->height = height;
269 		goto out;
270 	}
271 
272 	do {
273 		unsigned int newheight;
274 		if (!(node = radix_tree_node_alloc(root)))
275 			return -ENOMEM;
276 
277 		/* Increase the height.  */
278 		node->slots[0] = indirect_to_ptr(root->rnode);
279 
280 		/* Propagate the aggregated tag info into the new root */
281 		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
282 			if (root_tag_get(root, tag))
283 				tag_set(node, tag, 0);
284 		}
285 
286 		newheight = root->height+1;
287 		node->height = newheight;
288 		node->count = 1;
289 		node = ptr_to_indirect(node);
290 		rcu_assign_pointer(root->rnode, node);
291 		root->height = newheight;
292 	} while (height > root->height);
293 out:
294 	return 0;
295 }
296 
297 /**
298  *	radix_tree_insert    -    insert into a radix tree
299  *	@root:		radix tree root
300  *	@index:		index key
301  *	@item:		item to insert
302  *
303  *	Insert an item into the radix tree at position @index.
304  */
305 int radix_tree_insert(struct radix_tree_root *root,
306 			unsigned long index, void *item)
307 {
308 	struct radix_tree_node *node = NULL, *slot;
309 	unsigned int height, shift;
310 	int offset;
311 	int error;
312 
313 	BUG_ON(radix_tree_is_indirect_ptr(item));
314 
315 	/* Make sure the tree is high enough.  */
316 	if (index > radix_tree_maxindex(root->height)) {
317 		error = radix_tree_extend(root, index);
318 		if (error)
319 			return error;
320 	}
321 
322 	slot = indirect_to_ptr(root->rnode);
323 
324 	height = root->height;
325 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
326 
327 	offset = 0;			/* uninitialised var warning */
328 	while (height > 0) {
329 		if (slot == NULL) {
330 			/* Have to add a child node.  */
331 			if (!(slot = radix_tree_node_alloc(root)))
332 				return -ENOMEM;
333 			slot->height = height;
334 			if (node) {
335 				rcu_assign_pointer(node->slots[offset], slot);
336 				node->count++;
337 			} else
338 				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
339 		}
340 
341 		/* Go a level down */
342 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
343 		node = slot;
344 		slot = node->slots[offset];
345 		shift -= RADIX_TREE_MAP_SHIFT;
346 		height--;
347 	}
348 
349 	if (slot != NULL)
350 		return -EEXIST;
351 
352 	if (node) {
353 		node->count++;
354 		rcu_assign_pointer(node->slots[offset], item);
355 		BUG_ON(tag_get(node, 0, offset));
356 		BUG_ON(tag_get(node, 1, offset));
357 	} else {
358 		rcu_assign_pointer(root->rnode, item);
359 		BUG_ON(root_tag_get(root, 0));
360 		BUG_ON(root_tag_get(root, 1));
361 	}
362 
363 	return 0;
364 }
365 EXPORT_SYMBOL(radix_tree_insert);
366 
367 /*
368  * is_slot == 1 : search for the slot.
369  * is_slot == 0 : search for the node.
370  */
371 static void *radix_tree_lookup_element(struct radix_tree_root *root,
372 				unsigned long index, int is_slot)
373 {
374 	unsigned int height, shift;
375 	struct radix_tree_node *node, **slot;
376 
377 	node = rcu_dereference_raw(root->rnode);
378 	if (node == NULL)
379 		return NULL;
380 
381 	if (!radix_tree_is_indirect_ptr(node)) {
382 		if (index > 0)
383 			return NULL;
384 		return is_slot ? (void *)&root->rnode : node;
385 	}
386 	node = indirect_to_ptr(node);
387 
388 	height = node->height;
389 	if (index > radix_tree_maxindex(height))
390 		return NULL;
391 
392 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
393 
394 	do {
395 		slot = (struct radix_tree_node **)
396 			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
397 		node = rcu_dereference_raw(*slot);
398 		if (node == NULL)
399 			return NULL;
400 
401 		shift -= RADIX_TREE_MAP_SHIFT;
402 		height--;
403 	} while (height > 0);
404 
405 	return is_slot ? (void *)slot : indirect_to_ptr(node);
406 }
407 
408 /**
409  *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
410  *	@root:		radix tree root
411  *	@index:		index key
412  *
413  *	Returns:  the slot corresponding to the position @index in the
414  *	radix tree @root. This is useful for update-if-exists operations.
415  *
416  *	This function can be called under rcu_read_lock iff the slot is not
417  *	modified by radix_tree_replace_slot, otherwise it must be called
418  *	exclusive from other writers. Any dereference of the slot must be done
419  *	using radix_tree_deref_slot.
420  */
421 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
422 {
423 	return (void **)radix_tree_lookup_element(root, index, 1);
424 }
425 EXPORT_SYMBOL(radix_tree_lookup_slot);
426 
427 /**
428  *	radix_tree_lookup    -    perform lookup operation on a radix tree
429  *	@root:		radix tree root
430  *	@index:		index key
431  *
432  *	Lookup the item at the position @index in the radix tree @root.
433  *
434  *	This function can be called under rcu_read_lock, however the caller
435  *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
436  *	them safely). No RCU barriers are required to access or modify the
437  *	returned item, however.
438  */
439 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
440 {
441 	return radix_tree_lookup_element(root, index, 0);
442 }
443 EXPORT_SYMBOL(radix_tree_lookup);
444 
445 /**
446  *	radix_tree_tag_set - set a tag on a radix tree node
447  *	@root:		radix tree root
448  *	@index:		index key
449  *	@tag: 		tag index
450  *
451  *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
452  *	corresponding to @index in the radix tree.  From
453  *	the root all the way down to the leaf node.
454  *
455  *	Returns the address of the tagged item.   Setting a tag on a not-present
456  *	item is a bug.
457  */
458 void *radix_tree_tag_set(struct radix_tree_root *root,
459 			unsigned long index, unsigned int tag)
460 {
461 	unsigned int height, shift;
462 	struct radix_tree_node *slot;
463 
464 	height = root->height;
465 	BUG_ON(index > radix_tree_maxindex(height));
466 
467 	slot = indirect_to_ptr(root->rnode);
468 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
469 
470 	while (height > 0) {
471 		int offset;
472 
473 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
474 		if (!tag_get(slot, tag, offset))
475 			tag_set(slot, tag, offset);
476 		slot = slot->slots[offset];
477 		BUG_ON(slot == NULL);
478 		shift -= RADIX_TREE_MAP_SHIFT;
479 		height--;
480 	}
481 
482 	/* set the root's tag bit */
483 	if (slot && !root_tag_get(root, tag))
484 		root_tag_set(root, tag);
485 
486 	return slot;
487 }
488 EXPORT_SYMBOL(radix_tree_tag_set);
489 
490 /**
491  *	radix_tree_tag_clear - clear a tag on a radix tree node
492  *	@root:		radix tree root
493  *	@index:		index key
494  *	@tag: 		tag index
495  *
496  *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
497  *	corresponding to @index in the radix tree.  If
498  *	this causes the leaf node to have no tags set then clear the tag in the
499  *	next-to-leaf node, etc.
500  *
501  *	Returns the address of the tagged item on success, else NULL.  ie:
502  *	has the same return value and semantics as radix_tree_lookup().
503  */
504 void *radix_tree_tag_clear(struct radix_tree_root *root,
505 			unsigned long index, unsigned int tag)
506 {
507 	/*
508 	 * The radix tree path needs to be one longer than the maximum path
509 	 * since the "list" is null terminated.
510 	 */
511 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
512 	struct radix_tree_node *slot = NULL;
513 	unsigned int height, shift;
514 
515 	height = root->height;
516 	if (index > radix_tree_maxindex(height))
517 		goto out;
518 
519 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
520 	pathp->node = NULL;
521 	slot = indirect_to_ptr(root->rnode);
522 
523 	while (height > 0) {
524 		int offset;
525 
526 		if (slot == NULL)
527 			goto out;
528 
529 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
530 		pathp[1].offset = offset;
531 		pathp[1].node = slot;
532 		slot = slot->slots[offset];
533 		pathp++;
534 		shift -= RADIX_TREE_MAP_SHIFT;
535 		height--;
536 	}
537 
538 	if (slot == NULL)
539 		goto out;
540 
541 	while (pathp->node) {
542 		if (!tag_get(pathp->node, tag, pathp->offset))
543 			goto out;
544 		tag_clear(pathp->node, tag, pathp->offset);
545 		if (any_tag_set(pathp->node, tag))
546 			goto out;
547 		pathp--;
548 	}
549 
550 	/* clear the root's tag bit */
551 	if (root_tag_get(root, tag))
552 		root_tag_clear(root, tag);
553 
554 out:
555 	return slot;
556 }
557 EXPORT_SYMBOL(radix_tree_tag_clear);
558 
559 /**
560  * radix_tree_tag_get - get a tag on a radix tree node
561  * @root:		radix tree root
562  * @index:		index key
563  * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
564  *
565  * Return values:
566  *
567  *  0: tag not present or not set
568  *  1: tag set
569  *
570  * Note that the return value of this function may not be relied on, even if
571  * the RCU lock is held, unless tag modification and node deletion are excluded
572  * from concurrency.
573  */
574 int radix_tree_tag_get(struct radix_tree_root *root,
575 			unsigned long index, unsigned int tag)
576 {
577 	unsigned int height, shift;
578 	struct radix_tree_node *node;
579 	int saw_unset_tag = 0;
580 
581 	/* check the root's tag bit */
582 	if (!root_tag_get(root, tag))
583 		return 0;
584 
585 	node = rcu_dereference_raw(root->rnode);
586 	if (node == NULL)
587 		return 0;
588 
589 	if (!radix_tree_is_indirect_ptr(node))
590 		return (index == 0);
591 	node = indirect_to_ptr(node);
592 
593 	height = node->height;
594 	if (index > radix_tree_maxindex(height))
595 		return 0;
596 
597 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
598 
599 	for ( ; ; ) {
600 		int offset;
601 
602 		if (node == NULL)
603 			return 0;
604 
605 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
606 
607 		/*
608 		 * This is just a debug check.  Later, we can bale as soon as
609 		 * we see an unset tag.
610 		 */
611 		if (!tag_get(node, tag, offset))
612 			saw_unset_tag = 1;
613 		if (height == 1)
614 			return !!tag_get(node, tag, offset);
615 		node = rcu_dereference_raw(node->slots[offset]);
616 		shift -= RADIX_TREE_MAP_SHIFT;
617 		height--;
618 	}
619 }
620 EXPORT_SYMBOL(radix_tree_tag_get);
621 
622 /**
623  * radix_tree_range_tag_if_tagged - for each item in given range set given
624  *				   tag if item has another tag set
625  * @root:		radix tree root
626  * @first_indexp:	pointer to a starting index of a range to scan
627  * @last_index:		last index of a range to scan
628  * @nr_to_tag:		maximum number items to tag
629  * @iftag:		tag index to test
630  * @settag:		tag index to set if tested tag is set
631  *
632  * This function scans range of radix tree from first_index to last_index
633  * (inclusive).  For each item in the range if iftag is set, the function sets
634  * also settag. The function stops either after tagging nr_to_tag items or
635  * after reaching last_index.
636  *
637  * The tags must be set from the leaf level only and propagated back up the
638  * path to the root. We must do this so that we resolve the full path before
639  * setting any tags on intermediate nodes. If we set tags as we descend, then
640  * we can get to the leaf node and find that the index that has the iftag
641  * set is outside the range we are scanning. This reults in dangling tags and
642  * can lead to problems with later tag operations (e.g. livelocks on lookups).
643  *
644  * The function returns number of leaves where the tag was set and sets
645  * *first_indexp to the first unscanned index.
646  * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
647  * be prepared to handle that.
648  */
649 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
650 		unsigned long *first_indexp, unsigned long last_index,
651 		unsigned long nr_to_tag,
652 		unsigned int iftag, unsigned int settag)
653 {
654 	unsigned int height = root->height;
655 	struct radix_tree_path path[height];
656 	struct radix_tree_path *pathp = path;
657 	struct radix_tree_node *slot;
658 	unsigned int shift;
659 	unsigned long tagged = 0;
660 	unsigned long index = *first_indexp;
661 
662 	last_index = min(last_index, radix_tree_maxindex(height));
663 	if (index > last_index)
664 		return 0;
665 	if (!nr_to_tag)
666 		return 0;
667 	if (!root_tag_get(root, iftag)) {
668 		*first_indexp = last_index + 1;
669 		return 0;
670 	}
671 	if (height == 0) {
672 		*first_indexp = last_index + 1;
673 		root_tag_set(root, settag);
674 		return 1;
675 	}
676 
677 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
678 	slot = indirect_to_ptr(root->rnode);
679 
680 	/*
681 	 * we fill the path from (root->height - 2) to 0, leaving the index at
682 	 * (root->height - 1) as a terminator. Zero the node in the terminator
683 	 * so that we can use this to end walk loops back up the path.
684 	 */
685 	path[height - 1].node = NULL;
686 
687 	for (;;) {
688 		int offset;
689 
690 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
691 		if (!slot->slots[offset])
692 			goto next;
693 		if (!tag_get(slot, iftag, offset))
694 			goto next;
695 		if (height > 1) {
696 			/* Go down one level */
697 			height--;
698 			shift -= RADIX_TREE_MAP_SHIFT;
699 			path[height - 1].node = slot;
700 			path[height - 1].offset = offset;
701 			slot = slot->slots[offset];
702 			continue;
703 		}
704 
705 		/* tag the leaf */
706 		tagged++;
707 		tag_set(slot, settag, offset);
708 
709 		/* walk back up the path tagging interior nodes */
710 		pathp = &path[0];
711 		while (pathp->node) {
712 			/* stop if we find a node with the tag already set */
713 			if (tag_get(pathp->node, settag, pathp->offset))
714 				break;
715 			tag_set(pathp->node, settag, pathp->offset);
716 			pathp++;
717 		}
718 
719 next:
720 		/* Go to next item at level determined by 'shift' */
721 		index = ((index >> shift) + 1) << shift;
722 		/* Overflow can happen when last_index is ~0UL... */
723 		if (index > last_index || !index)
724 			break;
725 		if (tagged >= nr_to_tag)
726 			break;
727 		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
728 			/*
729 			 * We've fully scanned this node. Go up. Because
730 			 * last_index is guaranteed to be in the tree, what
731 			 * we do below cannot wander astray.
732 			 */
733 			slot = path[height - 1].node;
734 			height++;
735 			shift += RADIX_TREE_MAP_SHIFT;
736 		}
737 	}
738 	/*
739 	 * We need not to tag the root tag if there is no tag which is set with
740 	 * settag within the range from *first_indexp to last_index.
741 	 */
742 	if (tagged > 0)
743 		root_tag_set(root, settag);
744 	*first_indexp = index;
745 
746 	return tagged;
747 }
748 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
749 
750 
751 /**
752  *	radix_tree_next_hole    -    find the next hole (not-present entry)
753  *	@root:		tree root
754  *	@index:		index key
755  *	@max_scan:	maximum range to search
756  *
757  *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
758  *	indexed hole.
759  *
760  *	Returns: the index of the hole if found, otherwise returns an index
761  *	outside of the set specified (in which case 'return - index >= max_scan'
762  *	will be true). In rare cases of index wrap-around, 0 will be returned.
763  *
764  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
765  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
766  *	the tree at a single point in time. For example, if a hole is created
767  *	at index 5, then subsequently a hole is created at index 10,
768  *	radix_tree_next_hole covering both indexes may return 10 if called
769  *	under rcu_read_lock.
770  */
771 unsigned long radix_tree_next_hole(struct radix_tree_root *root,
772 				unsigned long index, unsigned long max_scan)
773 {
774 	unsigned long i;
775 
776 	for (i = 0; i < max_scan; i++) {
777 		if (!radix_tree_lookup(root, index))
778 			break;
779 		index++;
780 		if (index == 0)
781 			break;
782 	}
783 
784 	return index;
785 }
786 EXPORT_SYMBOL(radix_tree_next_hole);
787 
788 /**
789  *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
790  *	@root:		tree root
791  *	@index:		index key
792  *	@max_scan:	maximum range to search
793  *
794  *	Search backwards in the range [max(index-max_scan+1, 0), index]
795  *	for the first hole.
796  *
797  *	Returns: the index of the hole if found, otherwise returns an index
798  *	outside of the set specified (in which case 'index - return >= max_scan'
799  *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
800  *
801  *	radix_tree_next_hole may be called under rcu_read_lock. However, like
802  *	radix_tree_gang_lookup, this will not atomically search a snapshot of
803  *	the tree at a single point in time. For example, if a hole is created
804  *	at index 10, then subsequently a hole is created at index 5,
805  *	radix_tree_prev_hole covering both indexes may return 5 if called under
806  *	rcu_read_lock.
807  */
808 unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
809 				   unsigned long index, unsigned long max_scan)
810 {
811 	unsigned long i;
812 
813 	for (i = 0; i < max_scan; i++) {
814 		if (!radix_tree_lookup(root, index))
815 			break;
816 		index--;
817 		if (index == ULONG_MAX)
818 			break;
819 	}
820 
821 	return index;
822 }
823 EXPORT_SYMBOL(radix_tree_prev_hole);
824 
825 static unsigned int
826 __lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
827 	unsigned long index, unsigned int max_items, unsigned long *next_index)
828 {
829 	unsigned int nr_found = 0;
830 	unsigned int shift, height;
831 	unsigned long i;
832 
833 	height = slot->height;
834 	if (height == 0)
835 		goto out;
836 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
837 
838 	for ( ; height > 1; height--) {
839 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
840 		for (;;) {
841 			if (slot->slots[i] != NULL)
842 				break;
843 			index &= ~((1UL << shift) - 1);
844 			index += 1UL << shift;
845 			if (index == 0)
846 				goto out;	/* 32-bit wraparound */
847 			i++;
848 			if (i == RADIX_TREE_MAP_SIZE)
849 				goto out;
850 		}
851 
852 		shift -= RADIX_TREE_MAP_SHIFT;
853 		slot = rcu_dereference_raw(slot->slots[i]);
854 		if (slot == NULL)
855 			goto out;
856 	}
857 
858 	/* Bottom level: grab some items */
859 	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
860 		if (slot->slots[i]) {
861 			results[nr_found] = &(slot->slots[i]);
862 			if (indices)
863 				indices[nr_found] = index;
864 			if (++nr_found == max_items) {
865 				index++;
866 				goto out;
867 			}
868 		}
869 		index++;
870 	}
871 out:
872 	*next_index = index;
873 	return nr_found;
874 }
875 
876 /**
877  *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
878  *	@root:		radix tree root
879  *	@results:	where the results of the lookup are placed
880  *	@first_index:	start the lookup from this key
881  *	@max_items:	place up to this many items at *results
882  *
883  *	Performs an index-ascending scan of the tree for present items.  Places
884  *	them at *@results and returns the number of items which were placed at
885  *	*@results.
886  *
887  *	The implementation is naive.
888  *
889  *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
890  *	rcu_read_lock. In this case, rather than the returned results being
891  *	an atomic snapshot of the tree at a single point in time, the semantics
892  *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
893  *	have been issued in individual locks, and results stored in 'results'.
894  */
895 unsigned int
896 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
897 			unsigned long first_index, unsigned int max_items)
898 {
899 	unsigned long max_index;
900 	struct radix_tree_node *node;
901 	unsigned long cur_index = first_index;
902 	unsigned int ret;
903 
904 	node = rcu_dereference_raw(root->rnode);
905 	if (!node)
906 		return 0;
907 
908 	if (!radix_tree_is_indirect_ptr(node)) {
909 		if (first_index > 0)
910 			return 0;
911 		results[0] = node;
912 		return 1;
913 	}
914 	node = indirect_to_ptr(node);
915 
916 	max_index = radix_tree_maxindex(node->height);
917 
918 	ret = 0;
919 	while (ret < max_items) {
920 		unsigned int nr_found, slots_found, i;
921 		unsigned long next_index;	/* Index of next search */
922 
923 		if (cur_index > max_index)
924 			break;
925 		slots_found = __lookup(node, (void ***)results + ret, NULL,
926 				cur_index, max_items - ret, &next_index);
927 		nr_found = 0;
928 		for (i = 0; i < slots_found; i++) {
929 			struct radix_tree_node *slot;
930 			slot = *(((void ***)results)[ret + i]);
931 			if (!slot)
932 				continue;
933 			results[ret + nr_found] =
934 				indirect_to_ptr(rcu_dereference_raw(slot));
935 			nr_found++;
936 		}
937 		ret += nr_found;
938 		if (next_index == 0)
939 			break;
940 		cur_index = next_index;
941 	}
942 
943 	return ret;
944 }
945 EXPORT_SYMBOL(radix_tree_gang_lookup);
946 
947 /**
948  *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
949  *	@root:		radix tree root
950  *	@results:	where the results of the lookup are placed
951  *	@indices:	where their indices should be placed (but usually NULL)
952  *	@first_index:	start the lookup from this key
953  *	@max_items:	place up to this many items at *results
954  *
955  *	Performs an index-ascending scan of the tree for present items.  Places
956  *	their slots at *@results and returns the number of items which were
957  *	placed at *@results.
958  *
959  *	The implementation is naive.
960  *
961  *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
962  *	be dereferenced with radix_tree_deref_slot, and if using only RCU
963  *	protection, radix_tree_deref_slot may fail requiring a retry.
964  */
965 unsigned int
966 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
967 			void ***results, unsigned long *indices,
968 			unsigned long first_index, unsigned int max_items)
969 {
970 	unsigned long max_index;
971 	struct radix_tree_node *node;
972 	unsigned long cur_index = first_index;
973 	unsigned int ret;
974 
975 	node = rcu_dereference_raw(root->rnode);
976 	if (!node)
977 		return 0;
978 
979 	if (!radix_tree_is_indirect_ptr(node)) {
980 		if (first_index > 0)
981 			return 0;
982 		results[0] = (void **)&root->rnode;
983 		if (indices)
984 			indices[0] = 0;
985 		return 1;
986 	}
987 	node = indirect_to_ptr(node);
988 
989 	max_index = radix_tree_maxindex(node->height);
990 
991 	ret = 0;
992 	while (ret < max_items) {
993 		unsigned int slots_found;
994 		unsigned long next_index;	/* Index of next search */
995 
996 		if (cur_index > max_index)
997 			break;
998 		slots_found = __lookup(node, results + ret,
999 				indices ? indices + ret : NULL,
1000 				cur_index, max_items - ret, &next_index);
1001 		ret += slots_found;
1002 		if (next_index == 0)
1003 			break;
1004 		cur_index = next_index;
1005 	}
1006 
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1010 
1011 /*
1012  * FIXME: the two tag_get()s here should use find_next_bit() instead of
1013  * open-coding the search.
1014  */
1015 static unsigned int
1016 __lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1017 	unsigned int max_items, unsigned long *next_index, unsigned int tag)
1018 {
1019 	unsigned int nr_found = 0;
1020 	unsigned int shift, height;
1021 
1022 	height = slot->height;
1023 	if (height == 0)
1024 		goto out;
1025 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1026 
1027 	while (height > 0) {
1028 		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1029 
1030 		for (;;) {
1031 			if (tag_get(slot, tag, i))
1032 				break;
1033 			index &= ~((1UL << shift) - 1);
1034 			index += 1UL << shift;
1035 			if (index == 0)
1036 				goto out;	/* 32-bit wraparound */
1037 			i++;
1038 			if (i == RADIX_TREE_MAP_SIZE)
1039 				goto out;
1040 		}
1041 		height--;
1042 		if (height == 0) {	/* Bottom level: grab some items */
1043 			unsigned long j = index & RADIX_TREE_MAP_MASK;
1044 
1045 			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1046 				index++;
1047 				if (!tag_get(slot, tag, j))
1048 					continue;
1049 				/*
1050 				 * Even though the tag was found set, we need to
1051 				 * recheck that we have a non-NULL node, because
1052 				 * if this lookup is lockless, it may have been
1053 				 * subsequently deleted.
1054 				 *
1055 				 * Similar care must be taken in any place that
1056 				 * lookup ->slots[x] without a lock (ie. can't
1057 				 * rely on its value remaining the same).
1058 				 */
1059 				if (slot->slots[j]) {
1060 					results[nr_found++] = &(slot->slots[j]);
1061 					if (nr_found == max_items)
1062 						goto out;
1063 				}
1064 			}
1065 		}
1066 		shift -= RADIX_TREE_MAP_SHIFT;
1067 		slot = rcu_dereference_raw(slot->slots[i]);
1068 		if (slot == NULL)
1069 			break;
1070 	}
1071 out:
1072 	*next_index = index;
1073 	return nr_found;
1074 }
1075 
1076 /**
1077  *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1078  *	                             based on a tag
1079  *	@root:		radix tree root
1080  *	@results:	where the results of the lookup are placed
1081  *	@first_index:	start the lookup from this key
1082  *	@max_items:	place up to this many items at *results
1083  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1084  *
1085  *	Performs an index-ascending scan of the tree for present items which
1086  *	have the tag indexed by @tag set.  Places the items at *@results and
1087  *	returns the number of items which were placed at *@results.
1088  */
1089 unsigned int
1090 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1091 		unsigned long first_index, unsigned int max_items,
1092 		unsigned int tag)
1093 {
1094 	struct radix_tree_node *node;
1095 	unsigned long max_index;
1096 	unsigned long cur_index = first_index;
1097 	unsigned int ret;
1098 
1099 	/* check the root's tag bit */
1100 	if (!root_tag_get(root, tag))
1101 		return 0;
1102 
1103 	node = rcu_dereference_raw(root->rnode);
1104 	if (!node)
1105 		return 0;
1106 
1107 	if (!radix_tree_is_indirect_ptr(node)) {
1108 		if (first_index > 0)
1109 			return 0;
1110 		results[0] = node;
1111 		return 1;
1112 	}
1113 	node = indirect_to_ptr(node);
1114 
1115 	max_index = radix_tree_maxindex(node->height);
1116 
1117 	ret = 0;
1118 	while (ret < max_items) {
1119 		unsigned int nr_found, slots_found, i;
1120 		unsigned long next_index;	/* Index of next search */
1121 
1122 		if (cur_index > max_index)
1123 			break;
1124 		slots_found = __lookup_tag(node, (void ***)results + ret,
1125 				cur_index, max_items - ret, &next_index, tag);
1126 		nr_found = 0;
1127 		for (i = 0; i < slots_found; i++) {
1128 			struct radix_tree_node *slot;
1129 			slot = *(((void ***)results)[ret + i]);
1130 			if (!slot)
1131 				continue;
1132 			results[ret + nr_found] =
1133 				indirect_to_ptr(rcu_dereference_raw(slot));
1134 			nr_found++;
1135 		}
1136 		ret += nr_found;
1137 		if (next_index == 0)
1138 			break;
1139 		cur_index = next_index;
1140 	}
1141 
1142 	return ret;
1143 }
1144 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1145 
1146 /**
1147  *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1148  *					  radix tree based on a tag
1149  *	@root:		radix tree root
1150  *	@results:	where the results of the lookup are placed
1151  *	@first_index:	start the lookup from this key
1152  *	@max_items:	place up to this many items at *results
1153  *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1154  *
1155  *	Performs an index-ascending scan of the tree for present items which
1156  *	have the tag indexed by @tag set.  Places the slots at *@results and
1157  *	returns the number of slots which were placed at *@results.
1158  */
1159 unsigned int
1160 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1161 		unsigned long first_index, unsigned int max_items,
1162 		unsigned int tag)
1163 {
1164 	struct radix_tree_node *node;
1165 	unsigned long max_index;
1166 	unsigned long cur_index = first_index;
1167 	unsigned int ret;
1168 
1169 	/* check the root's tag bit */
1170 	if (!root_tag_get(root, tag))
1171 		return 0;
1172 
1173 	node = rcu_dereference_raw(root->rnode);
1174 	if (!node)
1175 		return 0;
1176 
1177 	if (!radix_tree_is_indirect_ptr(node)) {
1178 		if (first_index > 0)
1179 			return 0;
1180 		results[0] = (void **)&root->rnode;
1181 		return 1;
1182 	}
1183 	node = indirect_to_ptr(node);
1184 
1185 	max_index = radix_tree_maxindex(node->height);
1186 
1187 	ret = 0;
1188 	while (ret < max_items) {
1189 		unsigned int slots_found;
1190 		unsigned long next_index;	/* Index of next search */
1191 
1192 		if (cur_index > max_index)
1193 			break;
1194 		slots_found = __lookup_tag(node, results + ret,
1195 				cur_index, max_items - ret, &next_index, tag);
1196 		ret += slots_found;
1197 		if (next_index == 0)
1198 			break;
1199 		cur_index = next_index;
1200 	}
1201 
1202 	return ret;
1203 }
1204 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1205 
1206 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1207 #include <linux/sched.h> /* for cond_resched() */
1208 
1209 /*
1210  * This linear search is at present only useful to shmem_unuse_inode().
1211  */
1212 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1213 			      unsigned long index, unsigned long *found_index)
1214 {
1215 	unsigned int shift, height;
1216 	unsigned long i;
1217 
1218 	height = slot->height;
1219 	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1220 
1221 	for ( ; height > 1; height--) {
1222 		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1223 		for (;;) {
1224 			if (slot->slots[i] != NULL)
1225 				break;
1226 			index &= ~((1UL << shift) - 1);
1227 			index += 1UL << shift;
1228 			if (index == 0)
1229 				goto out;	/* 32-bit wraparound */
1230 			i++;
1231 			if (i == RADIX_TREE_MAP_SIZE)
1232 				goto out;
1233 		}
1234 
1235 		shift -= RADIX_TREE_MAP_SHIFT;
1236 		slot = rcu_dereference_raw(slot->slots[i]);
1237 		if (slot == NULL)
1238 			goto out;
1239 	}
1240 
1241 	/* Bottom level: check items */
1242 	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1243 		if (slot->slots[i] == item) {
1244 			*found_index = index + i;
1245 			index = 0;
1246 			goto out;
1247 		}
1248 	}
1249 	index += RADIX_TREE_MAP_SIZE;
1250 out:
1251 	return index;
1252 }
1253 
1254 /**
1255  *	radix_tree_locate_item - search through radix tree for item
1256  *	@root:		radix tree root
1257  *	@item:		item to be found
1258  *
1259  *	Returns index where item was found, or -1 if not found.
1260  *	Caller must hold no lock (since this time-consuming function needs
1261  *	to be preemptible), and must check afterwards if item is still there.
1262  */
1263 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1264 {
1265 	struct radix_tree_node *node;
1266 	unsigned long max_index;
1267 	unsigned long cur_index = 0;
1268 	unsigned long found_index = -1;
1269 
1270 	do {
1271 		rcu_read_lock();
1272 		node = rcu_dereference_raw(root->rnode);
1273 		if (!radix_tree_is_indirect_ptr(node)) {
1274 			rcu_read_unlock();
1275 			if (node == item)
1276 				found_index = 0;
1277 			break;
1278 		}
1279 
1280 		node = indirect_to_ptr(node);
1281 		max_index = radix_tree_maxindex(node->height);
1282 		if (cur_index > max_index)
1283 			break;
1284 
1285 		cur_index = __locate(node, item, cur_index, &found_index);
1286 		rcu_read_unlock();
1287 		cond_resched();
1288 	} while (cur_index != 0 && cur_index <= max_index);
1289 
1290 	return found_index;
1291 }
1292 #else
1293 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1294 {
1295 	return -1;
1296 }
1297 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1298 
1299 /**
1300  *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1301  *	@root		radix tree root
1302  */
1303 static inline void radix_tree_shrink(struct radix_tree_root *root)
1304 {
1305 	/* try to shrink tree height */
1306 	while (root->height > 0) {
1307 		struct radix_tree_node *to_free = root->rnode;
1308 		void *newptr;
1309 
1310 		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1311 		to_free = indirect_to_ptr(to_free);
1312 
1313 		/*
1314 		 * The candidate node has more than one child, or its child
1315 		 * is not at the leftmost slot, we cannot shrink.
1316 		 */
1317 		if (to_free->count != 1)
1318 			break;
1319 		if (!to_free->slots[0])
1320 			break;
1321 
1322 		/*
1323 		 * We don't need rcu_assign_pointer(), since we are simply
1324 		 * moving the node from one part of the tree to another: if it
1325 		 * was safe to dereference the old pointer to it
1326 		 * (to_free->slots[0]), it will be safe to dereference the new
1327 		 * one (root->rnode) as far as dependent read barriers go.
1328 		 */
1329 		newptr = to_free->slots[0];
1330 		if (root->height > 1)
1331 			newptr = ptr_to_indirect(newptr);
1332 		root->rnode = newptr;
1333 		root->height--;
1334 
1335 		/*
1336 		 * We have a dilemma here. The node's slot[0] must not be
1337 		 * NULLed in case there are concurrent lookups expecting to
1338 		 * find the item. However if this was a bottom-level node,
1339 		 * then it may be subject to the slot pointer being visible
1340 		 * to callers dereferencing it. If item corresponding to
1341 		 * slot[0] is subsequently deleted, these callers would expect
1342 		 * their slot to become empty sooner or later.
1343 		 *
1344 		 * For example, lockless pagecache will look up a slot, deref
1345 		 * the page pointer, and if the page is 0 refcount it means it
1346 		 * was concurrently deleted from pagecache so try the deref
1347 		 * again. Fortunately there is already a requirement for logic
1348 		 * to retry the entire slot lookup -- the indirect pointer
1349 		 * problem (replacing direct root node with an indirect pointer
1350 		 * also results in a stale slot). So tag the slot as indirect
1351 		 * to force callers to retry.
1352 		 */
1353 		if (root->height == 0)
1354 			*((unsigned long *)&to_free->slots[0]) |=
1355 						RADIX_TREE_INDIRECT_PTR;
1356 
1357 		radix_tree_node_free(to_free);
1358 	}
1359 }
1360 
1361 /**
1362  *	radix_tree_delete    -    delete an item from a radix tree
1363  *	@root:		radix tree root
1364  *	@index:		index key
1365  *
1366  *	Remove the item at @index from the radix tree rooted at @root.
1367  *
1368  *	Returns the address of the deleted item, or NULL if it was not present.
1369  */
1370 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1371 {
1372 	/*
1373 	 * The radix tree path needs to be one longer than the maximum path
1374 	 * since the "list" is null terminated.
1375 	 */
1376 	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1377 	struct radix_tree_node *slot = NULL;
1378 	struct radix_tree_node *to_free;
1379 	unsigned int height, shift;
1380 	int tag;
1381 	int offset;
1382 
1383 	height = root->height;
1384 	if (index > radix_tree_maxindex(height))
1385 		goto out;
1386 
1387 	slot = root->rnode;
1388 	if (height == 0) {
1389 		root_tag_clear_all(root);
1390 		root->rnode = NULL;
1391 		goto out;
1392 	}
1393 	slot = indirect_to_ptr(slot);
1394 
1395 	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1396 	pathp->node = NULL;
1397 
1398 	do {
1399 		if (slot == NULL)
1400 			goto out;
1401 
1402 		pathp++;
1403 		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1404 		pathp->offset = offset;
1405 		pathp->node = slot;
1406 		slot = slot->slots[offset];
1407 		shift -= RADIX_TREE_MAP_SHIFT;
1408 		height--;
1409 	} while (height > 0);
1410 
1411 	if (slot == NULL)
1412 		goto out;
1413 
1414 	/*
1415 	 * Clear all tags associated with the just-deleted item
1416 	 */
1417 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1418 		if (tag_get(pathp->node, tag, pathp->offset))
1419 			radix_tree_tag_clear(root, index, tag);
1420 	}
1421 
1422 	to_free = NULL;
1423 	/* Now free the nodes we do not need anymore */
1424 	while (pathp->node) {
1425 		pathp->node->slots[pathp->offset] = NULL;
1426 		pathp->node->count--;
1427 		/*
1428 		 * Queue the node for deferred freeing after the
1429 		 * last reference to it disappears (set NULL, above).
1430 		 */
1431 		if (to_free)
1432 			radix_tree_node_free(to_free);
1433 
1434 		if (pathp->node->count) {
1435 			if (pathp->node == indirect_to_ptr(root->rnode))
1436 				radix_tree_shrink(root);
1437 			goto out;
1438 		}
1439 
1440 		/* Node with zero slots in use so free it */
1441 		to_free = pathp->node;
1442 		pathp--;
1443 
1444 	}
1445 	root_tag_clear_all(root);
1446 	root->height = 0;
1447 	root->rnode = NULL;
1448 	if (to_free)
1449 		radix_tree_node_free(to_free);
1450 
1451 out:
1452 	return slot;
1453 }
1454 EXPORT_SYMBOL(radix_tree_delete);
1455 
1456 /**
1457  *	radix_tree_tagged - test whether any items in the tree are tagged
1458  *	@root:		radix tree root
1459  *	@tag:		tag to test
1460  */
1461 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1462 {
1463 	return root_tag_get(root, tag);
1464 }
1465 EXPORT_SYMBOL(radix_tree_tagged);
1466 
1467 static void
1468 radix_tree_node_ctor(void *node)
1469 {
1470 	memset(node, 0, sizeof(struct radix_tree_node));
1471 }
1472 
1473 static __init unsigned long __maxindex(unsigned int height)
1474 {
1475 	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1476 	int shift = RADIX_TREE_INDEX_BITS - width;
1477 
1478 	if (shift < 0)
1479 		return ~0UL;
1480 	if (shift >= BITS_PER_LONG)
1481 		return 0UL;
1482 	return ~0UL >> shift;
1483 }
1484 
1485 static __init void radix_tree_init_maxindex(void)
1486 {
1487 	unsigned int i;
1488 
1489 	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1490 		height_to_maxindex[i] = __maxindex(i);
1491 }
1492 
1493 static int radix_tree_callback(struct notifier_block *nfb,
1494                             unsigned long action,
1495                             void *hcpu)
1496 {
1497        int cpu = (long)hcpu;
1498        struct radix_tree_preload *rtp;
1499 
1500        /* Free per-cpu pool of perloaded nodes */
1501        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1502                rtp = &per_cpu(radix_tree_preloads, cpu);
1503                while (rtp->nr) {
1504                        kmem_cache_free(radix_tree_node_cachep,
1505                                        rtp->nodes[rtp->nr-1]);
1506                        rtp->nodes[rtp->nr-1] = NULL;
1507                        rtp->nr--;
1508                }
1509        }
1510        return NOTIFY_OK;
1511 }
1512 
1513 void __init radix_tree_init(void)
1514 {
1515 	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1516 			sizeof(struct radix_tree_node), 0,
1517 			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1518 			radix_tree_node_ctor);
1519 	radix_tree_init_maxindex();
1520 	hotcpu_notifier(radix_tree_callback, 0);
1521 }
1522