1 /* 2 * Copyright (C) 2001 Momchil Velikov 3 * Portions Copyright (C) 2001 Christoph Hellwig 4 * Copyright (C) 2005 SGI, Christoph Lameter 5 * Copyright (C) 2006 Nick Piggin 6 * Copyright (C) 2012 Konstantin Khlebnikov 7 * Copyright (C) 2016 Intel, Matthew Wilcox 8 * Copyright (C) 2016 Intel, Ross Zwisler 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 18 * General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 23 */ 24 25 #include <linux/errno.h> 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/export.h> 29 #include <linux/radix-tree.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/kmemleak.h> 33 #include <linux/notifier.h> 34 #include <linux/cpu.h> 35 #include <linux/string.h> 36 #include <linux/bitops.h> 37 #include <linux/rcupdate.h> 38 #include <linux/preempt.h> /* in_interrupt() */ 39 40 41 /* Number of nodes in fully populated tree of given height */ 42 static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly; 43 44 /* 45 * Radix tree node cache. 46 */ 47 static struct kmem_cache *radix_tree_node_cachep; 48 49 /* 50 * The radix tree is variable-height, so an insert operation not only has 51 * to build the branch to its corresponding item, it also has to build the 52 * branch to existing items if the size has to be increased (by 53 * radix_tree_extend). 54 * 55 * The worst case is a zero height tree with just a single item at index 0, 56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches 57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared. 58 * Hence: 59 */ 60 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) 61 62 /* 63 * Per-cpu pool of preloaded nodes 64 */ 65 struct radix_tree_preload { 66 unsigned nr; 67 /* nodes->private_data points to next preallocated node */ 68 struct radix_tree_node *nodes; 69 }; 70 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, }; 71 72 static inline void *node_to_entry(void *ptr) 73 { 74 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE); 75 } 76 77 #define RADIX_TREE_RETRY node_to_entry(NULL) 78 79 #ifdef CONFIG_RADIX_TREE_MULTIORDER 80 /* Sibling slots point directly to another slot in the same node */ 81 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 82 { 83 void **ptr = node; 84 return (parent->slots <= ptr) && 85 (ptr < parent->slots + RADIX_TREE_MAP_SIZE); 86 } 87 #else 88 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node) 89 { 90 return false; 91 } 92 #endif 93 94 static inline unsigned long get_slot_offset(struct radix_tree_node *parent, 95 void **slot) 96 { 97 return slot - parent->slots; 98 } 99 100 static unsigned int radix_tree_descend(struct radix_tree_node *parent, 101 struct radix_tree_node **nodep, unsigned long index) 102 { 103 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK; 104 void **entry = rcu_dereference_raw(parent->slots[offset]); 105 106 #ifdef CONFIG_RADIX_TREE_MULTIORDER 107 if (radix_tree_is_internal_node(entry)) { 108 if (is_sibling_entry(parent, entry)) { 109 void **sibentry = (void **) entry_to_node(entry); 110 offset = get_slot_offset(parent, sibentry); 111 entry = rcu_dereference_raw(*sibentry); 112 } 113 } 114 #endif 115 116 *nodep = (void *)entry; 117 return offset; 118 } 119 120 static inline gfp_t root_gfp_mask(struct radix_tree_root *root) 121 { 122 return root->gfp_mask & __GFP_BITS_MASK; 123 } 124 125 static inline void tag_set(struct radix_tree_node *node, unsigned int tag, 126 int offset) 127 { 128 __set_bit(offset, node->tags[tag]); 129 } 130 131 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag, 132 int offset) 133 { 134 __clear_bit(offset, node->tags[tag]); 135 } 136 137 static inline int tag_get(struct radix_tree_node *node, unsigned int tag, 138 int offset) 139 { 140 return test_bit(offset, node->tags[tag]); 141 } 142 143 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) 144 { 145 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); 146 } 147 148 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) 149 { 150 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); 151 } 152 153 static inline void root_tag_clear_all(struct radix_tree_root *root) 154 { 155 root->gfp_mask &= __GFP_BITS_MASK; 156 } 157 158 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) 159 { 160 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); 161 } 162 163 static inline unsigned root_tags_get(struct radix_tree_root *root) 164 { 165 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; 166 } 167 168 /* 169 * Returns 1 if any slot in the node has this tag set. 170 * Otherwise returns 0. 171 */ 172 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag) 173 { 174 unsigned idx; 175 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) { 176 if (node->tags[tag][idx]) 177 return 1; 178 } 179 return 0; 180 } 181 182 /** 183 * radix_tree_find_next_bit - find the next set bit in a memory region 184 * 185 * @addr: The address to base the search on 186 * @size: The bitmap size in bits 187 * @offset: The bitnumber to start searching at 188 * 189 * Unrollable variant of find_next_bit() for constant size arrays. 190 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero. 191 * Returns next bit offset, or size if nothing found. 192 */ 193 static __always_inline unsigned long 194 radix_tree_find_next_bit(const unsigned long *addr, 195 unsigned long size, unsigned long offset) 196 { 197 if (!__builtin_constant_p(size)) 198 return find_next_bit(addr, size, offset); 199 200 if (offset < size) { 201 unsigned long tmp; 202 203 addr += offset / BITS_PER_LONG; 204 tmp = *addr >> (offset % BITS_PER_LONG); 205 if (tmp) 206 return __ffs(tmp) + offset; 207 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1); 208 while (offset < size) { 209 tmp = *++addr; 210 if (tmp) 211 return __ffs(tmp) + offset; 212 offset += BITS_PER_LONG; 213 } 214 } 215 return size; 216 } 217 218 #ifndef __KERNEL__ 219 static void dump_node(struct radix_tree_node *node, unsigned long index) 220 { 221 unsigned long i; 222 223 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n", 224 node, node->offset, 225 node->tags[0][0], node->tags[1][0], node->tags[2][0], 226 node->shift, node->count, node->parent); 227 228 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) { 229 unsigned long first = index | (i << node->shift); 230 unsigned long last = first | ((1UL << node->shift) - 1); 231 void *entry = node->slots[i]; 232 if (!entry) 233 continue; 234 if (is_sibling_entry(node, entry)) { 235 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n", 236 entry, i, 237 *(void **)entry_to_node(entry), 238 first, last); 239 } else if (!radix_tree_is_internal_node(entry)) { 240 pr_debug("radix entry %p offset %ld indices %ld-%ld\n", 241 entry, i, first, last); 242 } else { 243 dump_node(entry_to_node(entry), first); 244 } 245 } 246 } 247 248 /* For debug */ 249 static void radix_tree_dump(struct radix_tree_root *root) 250 { 251 pr_debug("radix root: %p rnode %p tags %x\n", 252 root, root->rnode, 253 root->gfp_mask >> __GFP_BITS_SHIFT); 254 if (!radix_tree_is_internal_node(root->rnode)) 255 return; 256 dump_node(entry_to_node(root->rnode), 0); 257 } 258 #endif 259 260 /* 261 * This assumes that the caller has performed appropriate preallocation, and 262 * that the caller has pinned this thread of control to the current CPU. 263 */ 264 static struct radix_tree_node * 265 radix_tree_node_alloc(struct radix_tree_root *root) 266 { 267 struct radix_tree_node *ret = NULL; 268 gfp_t gfp_mask = root_gfp_mask(root); 269 270 /* 271 * Preload code isn't irq safe and it doesn't make sense to use 272 * preloading during an interrupt anyway as all the allocations have 273 * to be atomic. So just do normal allocation when in interrupt. 274 */ 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) { 276 struct radix_tree_preload *rtp; 277 278 /* 279 * Even if the caller has preloaded, try to allocate from the 280 * cache first for the new node to get accounted to the memory 281 * cgroup. 282 */ 283 ret = kmem_cache_alloc(radix_tree_node_cachep, 284 gfp_mask | __GFP_NOWARN); 285 if (ret) 286 goto out; 287 288 /* 289 * Provided the caller has preloaded here, we will always 290 * succeed in getting a node here (and never reach 291 * kmem_cache_alloc) 292 */ 293 rtp = this_cpu_ptr(&radix_tree_preloads); 294 if (rtp->nr) { 295 ret = rtp->nodes; 296 rtp->nodes = ret->private_data; 297 ret->private_data = NULL; 298 rtp->nr--; 299 } 300 /* 301 * Update the allocation stack trace as this is more useful 302 * for debugging. 303 */ 304 kmemleak_update_trace(ret); 305 goto out; 306 } 307 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 308 out: 309 BUG_ON(radix_tree_is_internal_node(ret)); 310 return ret; 311 } 312 313 static void radix_tree_node_rcu_free(struct rcu_head *head) 314 { 315 struct radix_tree_node *node = 316 container_of(head, struct radix_tree_node, rcu_head); 317 int i; 318 319 /* 320 * must only free zeroed nodes into the slab. radix_tree_shrink 321 * can leave us with a non-NULL entry in the first slot, so clear 322 * that here to make sure. 323 */ 324 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++) 325 tag_clear(node, i, 0); 326 327 node->slots[0] = NULL; 328 node->count = 0; 329 330 kmem_cache_free(radix_tree_node_cachep, node); 331 } 332 333 static inline void 334 radix_tree_node_free(struct radix_tree_node *node) 335 { 336 call_rcu(&node->rcu_head, radix_tree_node_rcu_free); 337 } 338 339 /* 340 * Load up this CPU's radix_tree_node buffer with sufficient objects to 341 * ensure that the addition of a single element in the tree cannot fail. On 342 * success, return zero, with preemption disabled. On error, return -ENOMEM 343 * with preemption not disabled. 344 * 345 * To make use of this facility, the radix tree must be initialised without 346 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 347 */ 348 static int __radix_tree_preload(gfp_t gfp_mask, int nr) 349 { 350 struct radix_tree_preload *rtp; 351 struct radix_tree_node *node; 352 int ret = -ENOMEM; 353 354 /* 355 * Nodes preloaded by one cgroup can be be used by another cgroup, so 356 * they should never be accounted to any particular memory cgroup. 357 */ 358 gfp_mask &= ~__GFP_ACCOUNT; 359 360 preempt_disable(); 361 rtp = this_cpu_ptr(&radix_tree_preloads); 362 while (rtp->nr < nr) { 363 preempt_enable(); 364 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask); 365 if (node == NULL) 366 goto out; 367 preempt_disable(); 368 rtp = this_cpu_ptr(&radix_tree_preloads); 369 if (rtp->nr < nr) { 370 node->private_data = rtp->nodes; 371 rtp->nodes = node; 372 rtp->nr++; 373 } else { 374 kmem_cache_free(radix_tree_node_cachep, node); 375 } 376 } 377 ret = 0; 378 out: 379 return ret; 380 } 381 382 /* 383 * Load up this CPU's radix_tree_node buffer with sufficient objects to 384 * ensure that the addition of a single element in the tree cannot fail. On 385 * success, return zero, with preemption disabled. On error, return -ENOMEM 386 * with preemption not disabled. 387 * 388 * To make use of this facility, the radix tree must be initialised without 389 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE(). 390 */ 391 int radix_tree_preload(gfp_t gfp_mask) 392 { 393 /* Warn on non-sensical use... */ 394 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask)); 395 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 396 } 397 EXPORT_SYMBOL(radix_tree_preload); 398 399 /* 400 * The same as above function, except we don't guarantee preloading happens. 401 * We do it, if we decide it helps. On success, return zero with preemption 402 * disabled. On error, return -ENOMEM with preemption not disabled. 403 */ 404 int radix_tree_maybe_preload(gfp_t gfp_mask) 405 { 406 if (gfpflags_allow_blocking(gfp_mask)) 407 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE); 408 /* Preloading doesn't help anything with this gfp mask, skip it */ 409 preempt_disable(); 410 return 0; 411 } 412 EXPORT_SYMBOL(radix_tree_maybe_preload); 413 414 /* 415 * The same as function above, but preload number of nodes required to insert 416 * (1 << order) continuous naturally-aligned elements. 417 */ 418 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order) 419 { 420 unsigned long nr_subtrees; 421 int nr_nodes, subtree_height; 422 423 /* Preloading doesn't help anything with this gfp mask, skip it */ 424 if (!gfpflags_allow_blocking(gfp_mask)) { 425 preempt_disable(); 426 return 0; 427 } 428 429 /* 430 * Calculate number and height of fully populated subtrees it takes to 431 * store (1 << order) elements. 432 */ 433 nr_subtrees = 1 << order; 434 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE; 435 subtree_height++) 436 nr_subtrees >>= RADIX_TREE_MAP_SHIFT; 437 438 /* 439 * The worst case is zero height tree with a single item at index 0 and 440 * then inserting items starting at ULONG_MAX - (1 << order). 441 * 442 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to 443 * 0-index item. 444 */ 445 nr_nodes = RADIX_TREE_MAX_PATH; 446 447 /* Plus branch to fully populated subtrees. */ 448 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height; 449 450 /* Root node is shared. */ 451 nr_nodes--; 452 453 /* Plus nodes required to build subtrees. */ 454 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height]; 455 456 return __radix_tree_preload(gfp_mask, nr_nodes); 457 } 458 459 /* 460 * The maximum index which can be stored in a radix tree 461 */ 462 static inline unsigned long shift_maxindex(unsigned int shift) 463 { 464 return (RADIX_TREE_MAP_SIZE << shift) - 1; 465 } 466 467 static inline unsigned long node_maxindex(struct radix_tree_node *node) 468 { 469 return shift_maxindex(node->shift); 470 } 471 472 static unsigned radix_tree_load_root(struct radix_tree_root *root, 473 struct radix_tree_node **nodep, unsigned long *maxindex) 474 { 475 struct radix_tree_node *node = rcu_dereference_raw(root->rnode); 476 477 *nodep = node; 478 479 if (likely(radix_tree_is_internal_node(node))) { 480 node = entry_to_node(node); 481 *maxindex = node_maxindex(node); 482 return node->shift + RADIX_TREE_MAP_SHIFT; 483 } 484 485 *maxindex = 0; 486 return 0; 487 } 488 489 /* 490 * Extend a radix tree so it can store key @index. 491 */ 492 static int radix_tree_extend(struct radix_tree_root *root, 493 unsigned long index, unsigned int shift) 494 { 495 struct radix_tree_node *slot; 496 unsigned int maxshift; 497 int tag; 498 499 /* Figure out what the shift should be. */ 500 maxshift = shift; 501 while (index > shift_maxindex(maxshift)) 502 maxshift += RADIX_TREE_MAP_SHIFT; 503 504 slot = root->rnode; 505 if (!slot) 506 goto out; 507 508 do { 509 struct radix_tree_node *node = radix_tree_node_alloc(root); 510 511 if (!node) 512 return -ENOMEM; 513 514 /* Propagate the aggregated tag info into the new root */ 515 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 516 if (root_tag_get(root, tag)) 517 tag_set(node, tag, 0); 518 } 519 520 BUG_ON(shift > BITS_PER_LONG); 521 node->shift = shift; 522 node->offset = 0; 523 node->count = 1; 524 node->parent = NULL; 525 if (radix_tree_is_internal_node(slot)) 526 entry_to_node(slot)->parent = node; 527 node->slots[0] = slot; 528 slot = node_to_entry(node); 529 rcu_assign_pointer(root->rnode, slot); 530 shift += RADIX_TREE_MAP_SHIFT; 531 } while (shift <= maxshift); 532 out: 533 return maxshift + RADIX_TREE_MAP_SHIFT; 534 } 535 536 /** 537 * __radix_tree_create - create a slot in a radix tree 538 * @root: radix tree root 539 * @index: index key 540 * @order: index occupies 2^order aligned slots 541 * @nodep: returns node 542 * @slotp: returns slot 543 * 544 * Create, if necessary, and return the node and slot for an item 545 * at position @index in the radix tree @root. 546 * 547 * Until there is more than one item in the tree, no nodes are 548 * allocated and @root->rnode is used as a direct slot instead of 549 * pointing to a node, in which case *@nodep will be NULL. 550 * 551 * Returns -ENOMEM, or 0 for success. 552 */ 553 int __radix_tree_create(struct radix_tree_root *root, unsigned long index, 554 unsigned order, struct radix_tree_node **nodep, 555 void ***slotp) 556 { 557 struct radix_tree_node *node = NULL, *child; 558 void **slot = (void **)&root->rnode; 559 unsigned long maxindex; 560 unsigned int shift, offset = 0; 561 unsigned long max = index | ((1UL << order) - 1); 562 563 shift = radix_tree_load_root(root, &child, &maxindex); 564 565 /* Make sure the tree is high enough. */ 566 if (max > maxindex) { 567 int error = radix_tree_extend(root, max, shift); 568 if (error < 0) 569 return error; 570 shift = error; 571 child = root->rnode; 572 if (order == shift) 573 shift += RADIX_TREE_MAP_SHIFT; 574 } 575 576 while (shift > order) { 577 shift -= RADIX_TREE_MAP_SHIFT; 578 if (child == NULL) { 579 /* Have to add a child node. */ 580 child = radix_tree_node_alloc(root); 581 if (!child) 582 return -ENOMEM; 583 child->shift = shift; 584 child->offset = offset; 585 child->parent = node; 586 rcu_assign_pointer(*slot, node_to_entry(child)); 587 if (node) 588 node->count++; 589 } else if (!radix_tree_is_internal_node(child)) 590 break; 591 592 /* Go a level down */ 593 node = entry_to_node(child); 594 offset = radix_tree_descend(node, &child, index); 595 slot = &node->slots[offset]; 596 } 597 598 #ifdef CONFIG_RADIX_TREE_MULTIORDER 599 /* Insert pointers to the canonical entry */ 600 if (order > shift) { 601 unsigned i, n = 1 << (order - shift); 602 offset = offset & ~(n - 1); 603 slot = &node->slots[offset]; 604 child = node_to_entry(slot); 605 for (i = 0; i < n; i++) { 606 if (slot[i]) 607 return -EEXIST; 608 } 609 610 for (i = 1; i < n; i++) { 611 rcu_assign_pointer(slot[i], child); 612 node->count++; 613 } 614 } 615 #endif 616 617 if (nodep) 618 *nodep = node; 619 if (slotp) 620 *slotp = slot; 621 return 0; 622 } 623 624 /** 625 * __radix_tree_insert - insert into a radix tree 626 * @root: radix tree root 627 * @index: index key 628 * @order: key covers the 2^order indices around index 629 * @item: item to insert 630 * 631 * Insert an item into the radix tree at position @index. 632 */ 633 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index, 634 unsigned order, void *item) 635 { 636 struct radix_tree_node *node; 637 void **slot; 638 int error; 639 640 BUG_ON(radix_tree_is_internal_node(item)); 641 642 error = __radix_tree_create(root, index, order, &node, &slot); 643 if (error) 644 return error; 645 if (*slot != NULL) 646 return -EEXIST; 647 rcu_assign_pointer(*slot, item); 648 649 if (node) { 650 unsigned offset = get_slot_offset(node, slot); 651 node->count++; 652 BUG_ON(tag_get(node, 0, offset)); 653 BUG_ON(tag_get(node, 1, offset)); 654 BUG_ON(tag_get(node, 2, offset)); 655 } else { 656 BUG_ON(root_tags_get(root)); 657 } 658 659 return 0; 660 } 661 EXPORT_SYMBOL(__radix_tree_insert); 662 663 /** 664 * __radix_tree_lookup - lookup an item in a radix tree 665 * @root: radix tree root 666 * @index: index key 667 * @nodep: returns node 668 * @slotp: returns slot 669 * 670 * Lookup and return the item at position @index in the radix 671 * tree @root. 672 * 673 * Until there is more than one item in the tree, no nodes are 674 * allocated and @root->rnode is used as a direct slot instead of 675 * pointing to a node, in which case *@nodep will be NULL. 676 */ 677 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index, 678 struct radix_tree_node **nodep, void ***slotp) 679 { 680 struct radix_tree_node *node, *parent; 681 unsigned long maxindex; 682 void **slot; 683 684 restart: 685 parent = NULL; 686 slot = (void **)&root->rnode; 687 radix_tree_load_root(root, &node, &maxindex); 688 if (index > maxindex) 689 return NULL; 690 691 while (radix_tree_is_internal_node(node)) { 692 unsigned offset; 693 694 if (node == RADIX_TREE_RETRY) 695 goto restart; 696 parent = entry_to_node(node); 697 offset = radix_tree_descend(parent, &node, index); 698 slot = parent->slots + offset; 699 } 700 701 if (nodep) 702 *nodep = parent; 703 if (slotp) 704 *slotp = slot; 705 return node; 706 } 707 708 /** 709 * radix_tree_lookup_slot - lookup a slot in a radix tree 710 * @root: radix tree root 711 * @index: index key 712 * 713 * Returns: the slot corresponding to the position @index in the 714 * radix tree @root. This is useful for update-if-exists operations. 715 * 716 * This function can be called under rcu_read_lock iff the slot is not 717 * modified by radix_tree_replace_slot, otherwise it must be called 718 * exclusive from other writers. Any dereference of the slot must be done 719 * using radix_tree_deref_slot. 720 */ 721 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index) 722 { 723 void **slot; 724 725 if (!__radix_tree_lookup(root, index, NULL, &slot)) 726 return NULL; 727 return slot; 728 } 729 EXPORT_SYMBOL(radix_tree_lookup_slot); 730 731 /** 732 * radix_tree_lookup - perform lookup operation on a radix tree 733 * @root: radix tree root 734 * @index: index key 735 * 736 * Lookup the item at the position @index in the radix tree @root. 737 * 738 * This function can be called under rcu_read_lock, however the caller 739 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free 740 * them safely). No RCU barriers are required to access or modify the 741 * returned item, however. 742 */ 743 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index) 744 { 745 return __radix_tree_lookup(root, index, NULL, NULL); 746 } 747 EXPORT_SYMBOL(radix_tree_lookup); 748 749 /** 750 * radix_tree_tag_set - set a tag on a radix tree node 751 * @root: radix tree root 752 * @index: index key 753 * @tag: tag index 754 * 755 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS) 756 * corresponding to @index in the radix tree. From 757 * the root all the way down to the leaf node. 758 * 759 * Returns the address of the tagged item. Setting a tag on a not-present 760 * item is a bug. 761 */ 762 void *radix_tree_tag_set(struct radix_tree_root *root, 763 unsigned long index, unsigned int tag) 764 { 765 struct radix_tree_node *node, *parent; 766 unsigned long maxindex; 767 768 radix_tree_load_root(root, &node, &maxindex); 769 BUG_ON(index > maxindex); 770 771 while (radix_tree_is_internal_node(node)) { 772 unsigned offset; 773 774 parent = entry_to_node(node); 775 offset = radix_tree_descend(parent, &node, index); 776 BUG_ON(!node); 777 778 if (!tag_get(parent, tag, offset)) 779 tag_set(parent, tag, offset); 780 } 781 782 /* set the root's tag bit */ 783 if (!root_tag_get(root, tag)) 784 root_tag_set(root, tag); 785 786 return node; 787 } 788 EXPORT_SYMBOL(radix_tree_tag_set); 789 790 static void node_tag_clear(struct radix_tree_root *root, 791 struct radix_tree_node *node, 792 unsigned int tag, unsigned int offset) 793 { 794 while (node) { 795 if (!tag_get(node, tag, offset)) 796 return; 797 tag_clear(node, tag, offset); 798 if (any_tag_set(node, tag)) 799 return; 800 801 offset = node->offset; 802 node = node->parent; 803 } 804 805 /* clear the root's tag bit */ 806 if (root_tag_get(root, tag)) 807 root_tag_clear(root, tag); 808 } 809 810 /** 811 * radix_tree_tag_clear - clear a tag on a radix tree node 812 * @root: radix tree root 813 * @index: index key 814 * @tag: tag index 815 * 816 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS) 817 * corresponding to @index in the radix tree. If this causes 818 * the leaf node to have no tags set then clear the tag in the 819 * next-to-leaf node, etc. 820 * 821 * Returns the address of the tagged item on success, else NULL. ie: 822 * has the same return value and semantics as radix_tree_lookup(). 823 */ 824 void *radix_tree_tag_clear(struct radix_tree_root *root, 825 unsigned long index, unsigned int tag) 826 { 827 struct radix_tree_node *node, *parent; 828 unsigned long maxindex; 829 int uninitialized_var(offset); 830 831 radix_tree_load_root(root, &node, &maxindex); 832 if (index > maxindex) 833 return NULL; 834 835 parent = NULL; 836 837 while (radix_tree_is_internal_node(node)) { 838 parent = entry_to_node(node); 839 offset = radix_tree_descend(parent, &node, index); 840 } 841 842 if (node) 843 node_tag_clear(root, parent, tag, offset); 844 845 return node; 846 } 847 EXPORT_SYMBOL(radix_tree_tag_clear); 848 849 /** 850 * radix_tree_tag_get - get a tag on a radix tree node 851 * @root: radix tree root 852 * @index: index key 853 * @tag: tag index (< RADIX_TREE_MAX_TAGS) 854 * 855 * Return values: 856 * 857 * 0: tag not present or not set 858 * 1: tag set 859 * 860 * Note that the return value of this function may not be relied on, even if 861 * the RCU lock is held, unless tag modification and node deletion are excluded 862 * from concurrency. 863 */ 864 int radix_tree_tag_get(struct radix_tree_root *root, 865 unsigned long index, unsigned int tag) 866 { 867 struct radix_tree_node *node, *parent; 868 unsigned long maxindex; 869 870 if (!root_tag_get(root, tag)) 871 return 0; 872 873 radix_tree_load_root(root, &node, &maxindex); 874 if (index > maxindex) 875 return 0; 876 if (node == NULL) 877 return 0; 878 879 while (radix_tree_is_internal_node(node)) { 880 unsigned offset; 881 882 parent = entry_to_node(node); 883 offset = radix_tree_descend(parent, &node, index); 884 885 if (!node) 886 return 0; 887 if (!tag_get(parent, tag, offset)) 888 return 0; 889 if (node == RADIX_TREE_RETRY) 890 break; 891 } 892 893 return 1; 894 } 895 EXPORT_SYMBOL(radix_tree_tag_get); 896 897 static inline void __set_iter_shift(struct radix_tree_iter *iter, 898 unsigned int shift) 899 { 900 #ifdef CONFIG_RADIX_TREE_MULTIORDER 901 iter->shift = shift; 902 #endif 903 } 904 905 /** 906 * radix_tree_next_chunk - find next chunk of slots for iteration 907 * 908 * @root: radix tree root 909 * @iter: iterator state 910 * @flags: RADIX_TREE_ITER_* flags and tag index 911 * Returns: pointer to chunk first slot, or NULL if iteration is over 912 */ 913 void **radix_tree_next_chunk(struct radix_tree_root *root, 914 struct radix_tree_iter *iter, unsigned flags) 915 { 916 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK; 917 struct radix_tree_node *node, *child; 918 unsigned long index, offset, maxindex; 919 920 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag)) 921 return NULL; 922 923 /* 924 * Catch next_index overflow after ~0UL. iter->index never overflows 925 * during iterating; it can be zero only at the beginning. 926 * And we cannot overflow iter->next_index in a single step, 927 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG. 928 * 929 * This condition also used by radix_tree_next_slot() to stop 930 * contiguous iterating, and forbid swithing to the next chunk. 931 */ 932 index = iter->next_index; 933 if (!index && iter->index) 934 return NULL; 935 936 restart: 937 radix_tree_load_root(root, &child, &maxindex); 938 if (index > maxindex) 939 return NULL; 940 if (!child) 941 return NULL; 942 943 if (!radix_tree_is_internal_node(child)) { 944 /* Single-slot tree */ 945 iter->index = index; 946 iter->next_index = maxindex + 1; 947 iter->tags = 1; 948 __set_iter_shift(iter, 0); 949 return (void **)&root->rnode; 950 } 951 952 do { 953 node = entry_to_node(child); 954 offset = radix_tree_descend(node, &child, index); 955 956 if ((flags & RADIX_TREE_ITER_TAGGED) ? 957 !tag_get(node, tag, offset) : !child) { 958 /* Hole detected */ 959 if (flags & RADIX_TREE_ITER_CONTIG) 960 return NULL; 961 962 if (flags & RADIX_TREE_ITER_TAGGED) 963 offset = radix_tree_find_next_bit( 964 node->tags[tag], 965 RADIX_TREE_MAP_SIZE, 966 offset + 1); 967 else 968 while (++offset < RADIX_TREE_MAP_SIZE) { 969 void *slot = node->slots[offset]; 970 if (is_sibling_entry(node, slot)) 971 continue; 972 if (slot) 973 break; 974 } 975 index &= ~node_maxindex(node); 976 index += offset << node->shift; 977 /* Overflow after ~0UL */ 978 if (!index) 979 return NULL; 980 if (offset == RADIX_TREE_MAP_SIZE) 981 goto restart; 982 child = rcu_dereference_raw(node->slots[offset]); 983 } 984 985 if ((child == NULL) || (child == RADIX_TREE_RETRY)) 986 goto restart; 987 } while (radix_tree_is_internal_node(child)); 988 989 /* Update the iterator state */ 990 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift); 991 iter->next_index = (index | node_maxindex(node)) + 1; 992 __set_iter_shift(iter, node->shift); 993 994 /* Construct iter->tags bit-mask from node->tags[tag] array */ 995 if (flags & RADIX_TREE_ITER_TAGGED) { 996 unsigned tag_long, tag_bit; 997 998 tag_long = offset / BITS_PER_LONG; 999 tag_bit = offset % BITS_PER_LONG; 1000 iter->tags = node->tags[tag][tag_long] >> tag_bit; 1001 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */ 1002 if (tag_long < RADIX_TREE_TAG_LONGS - 1) { 1003 /* Pick tags from next element */ 1004 if (tag_bit) 1005 iter->tags |= node->tags[tag][tag_long + 1] << 1006 (BITS_PER_LONG - tag_bit); 1007 /* Clip chunk size, here only BITS_PER_LONG tags */ 1008 iter->next_index = index + BITS_PER_LONG; 1009 } 1010 } 1011 1012 return node->slots + offset; 1013 } 1014 EXPORT_SYMBOL(radix_tree_next_chunk); 1015 1016 /** 1017 * radix_tree_range_tag_if_tagged - for each item in given range set given 1018 * tag if item has another tag set 1019 * @root: radix tree root 1020 * @first_indexp: pointer to a starting index of a range to scan 1021 * @last_index: last index of a range to scan 1022 * @nr_to_tag: maximum number items to tag 1023 * @iftag: tag index to test 1024 * @settag: tag index to set if tested tag is set 1025 * 1026 * This function scans range of radix tree from first_index to last_index 1027 * (inclusive). For each item in the range if iftag is set, the function sets 1028 * also settag. The function stops either after tagging nr_to_tag items or 1029 * after reaching last_index. 1030 * 1031 * The tags must be set from the leaf level only and propagated back up the 1032 * path to the root. We must do this so that we resolve the full path before 1033 * setting any tags on intermediate nodes. If we set tags as we descend, then 1034 * we can get to the leaf node and find that the index that has the iftag 1035 * set is outside the range we are scanning. This reults in dangling tags and 1036 * can lead to problems with later tag operations (e.g. livelocks on lookups). 1037 * 1038 * The function returns the number of leaves where the tag was set and sets 1039 * *first_indexp to the first unscanned index. 1040 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must 1041 * be prepared to handle that. 1042 */ 1043 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root, 1044 unsigned long *first_indexp, unsigned long last_index, 1045 unsigned long nr_to_tag, 1046 unsigned int iftag, unsigned int settag) 1047 { 1048 struct radix_tree_node *parent, *node, *child; 1049 unsigned long maxindex; 1050 unsigned long tagged = 0; 1051 unsigned long index = *first_indexp; 1052 1053 radix_tree_load_root(root, &child, &maxindex); 1054 last_index = min(last_index, maxindex); 1055 if (index > last_index) 1056 return 0; 1057 if (!nr_to_tag) 1058 return 0; 1059 if (!root_tag_get(root, iftag)) { 1060 *first_indexp = last_index + 1; 1061 return 0; 1062 } 1063 if (!radix_tree_is_internal_node(child)) { 1064 *first_indexp = last_index + 1; 1065 root_tag_set(root, settag); 1066 return 1; 1067 } 1068 1069 node = entry_to_node(child); 1070 1071 for (;;) { 1072 unsigned offset = radix_tree_descend(node, &child, index); 1073 if (!child) 1074 goto next; 1075 if (!tag_get(node, iftag, offset)) 1076 goto next; 1077 /* Sibling slots never have tags set on them */ 1078 if (radix_tree_is_internal_node(child)) { 1079 node = entry_to_node(child); 1080 continue; 1081 } 1082 1083 /* tag the leaf */ 1084 tagged++; 1085 tag_set(node, settag, offset); 1086 1087 /* walk back up the path tagging interior nodes */ 1088 parent = node; 1089 for (;;) { 1090 offset = parent->offset; 1091 parent = parent->parent; 1092 if (!parent) 1093 break; 1094 /* stop if we find a node with the tag already set */ 1095 if (tag_get(parent, settag, offset)) 1096 break; 1097 tag_set(parent, settag, offset); 1098 } 1099 next: 1100 /* Go to next entry in node */ 1101 index = ((index >> node->shift) + 1) << node->shift; 1102 /* Overflow can happen when last_index is ~0UL... */ 1103 if (index > last_index || !index) 1104 break; 1105 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1106 while (offset == 0) { 1107 /* 1108 * We've fully scanned this node. Go up. Because 1109 * last_index is guaranteed to be in the tree, what 1110 * we do below cannot wander astray. 1111 */ 1112 node = node->parent; 1113 offset = (index >> node->shift) & RADIX_TREE_MAP_MASK; 1114 } 1115 if (is_sibling_entry(node, node->slots[offset])) 1116 goto next; 1117 if (tagged >= nr_to_tag) 1118 break; 1119 } 1120 /* 1121 * We need not to tag the root tag if there is no tag which is set with 1122 * settag within the range from *first_indexp to last_index. 1123 */ 1124 if (tagged > 0) 1125 root_tag_set(root, settag); 1126 *first_indexp = index; 1127 1128 return tagged; 1129 } 1130 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged); 1131 1132 /** 1133 * radix_tree_gang_lookup - perform multiple lookup on a radix tree 1134 * @root: radix tree root 1135 * @results: where the results of the lookup are placed 1136 * @first_index: start the lookup from this key 1137 * @max_items: place up to this many items at *results 1138 * 1139 * Performs an index-ascending scan of the tree for present items. Places 1140 * them at *@results and returns the number of items which were placed at 1141 * *@results. 1142 * 1143 * The implementation is naive. 1144 * 1145 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under 1146 * rcu_read_lock. In this case, rather than the returned results being 1147 * an atomic snapshot of the tree at a single point in time, the 1148 * semantics of an RCU protected gang lookup are as though multiple 1149 * radix_tree_lookups have been issued in individual locks, and results 1150 * stored in 'results'. 1151 */ 1152 unsigned int 1153 radix_tree_gang_lookup(struct radix_tree_root *root, void **results, 1154 unsigned long first_index, unsigned int max_items) 1155 { 1156 struct radix_tree_iter iter; 1157 void **slot; 1158 unsigned int ret = 0; 1159 1160 if (unlikely(!max_items)) 1161 return 0; 1162 1163 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1164 results[ret] = rcu_dereference_raw(*slot); 1165 if (!results[ret]) 1166 continue; 1167 if (radix_tree_is_internal_node(results[ret])) { 1168 slot = radix_tree_iter_retry(&iter); 1169 continue; 1170 } 1171 if (++ret == max_items) 1172 break; 1173 } 1174 1175 return ret; 1176 } 1177 EXPORT_SYMBOL(radix_tree_gang_lookup); 1178 1179 /** 1180 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree 1181 * @root: radix tree root 1182 * @results: where the results of the lookup are placed 1183 * @indices: where their indices should be placed (but usually NULL) 1184 * @first_index: start the lookup from this key 1185 * @max_items: place up to this many items at *results 1186 * 1187 * Performs an index-ascending scan of the tree for present items. Places 1188 * their slots at *@results and returns the number of items which were 1189 * placed at *@results. 1190 * 1191 * The implementation is naive. 1192 * 1193 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must 1194 * be dereferenced with radix_tree_deref_slot, and if using only RCU 1195 * protection, radix_tree_deref_slot may fail requiring a retry. 1196 */ 1197 unsigned int 1198 radix_tree_gang_lookup_slot(struct radix_tree_root *root, 1199 void ***results, unsigned long *indices, 1200 unsigned long first_index, unsigned int max_items) 1201 { 1202 struct radix_tree_iter iter; 1203 void **slot; 1204 unsigned int ret = 0; 1205 1206 if (unlikely(!max_items)) 1207 return 0; 1208 1209 radix_tree_for_each_slot(slot, root, &iter, first_index) { 1210 results[ret] = slot; 1211 if (indices) 1212 indices[ret] = iter.index; 1213 if (++ret == max_items) 1214 break; 1215 } 1216 1217 return ret; 1218 } 1219 EXPORT_SYMBOL(radix_tree_gang_lookup_slot); 1220 1221 /** 1222 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree 1223 * based on a tag 1224 * @root: radix tree root 1225 * @results: where the results of the lookup are placed 1226 * @first_index: start the lookup from this key 1227 * @max_items: place up to this many items at *results 1228 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1229 * 1230 * Performs an index-ascending scan of the tree for present items which 1231 * have the tag indexed by @tag set. Places the items at *@results and 1232 * returns the number of items which were placed at *@results. 1233 */ 1234 unsigned int 1235 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results, 1236 unsigned long first_index, unsigned int max_items, 1237 unsigned int tag) 1238 { 1239 struct radix_tree_iter iter; 1240 void **slot; 1241 unsigned int ret = 0; 1242 1243 if (unlikely(!max_items)) 1244 return 0; 1245 1246 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1247 results[ret] = rcu_dereference_raw(*slot); 1248 if (!results[ret]) 1249 continue; 1250 if (radix_tree_is_internal_node(results[ret])) { 1251 slot = radix_tree_iter_retry(&iter); 1252 continue; 1253 } 1254 if (++ret == max_items) 1255 break; 1256 } 1257 1258 return ret; 1259 } 1260 EXPORT_SYMBOL(radix_tree_gang_lookup_tag); 1261 1262 /** 1263 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a 1264 * radix tree based on a tag 1265 * @root: radix tree root 1266 * @results: where the results of the lookup are placed 1267 * @first_index: start the lookup from this key 1268 * @max_items: place up to this many items at *results 1269 * @tag: the tag index (< RADIX_TREE_MAX_TAGS) 1270 * 1271 * Performs an index-ascending scan of the tree for present items which 1272 * have the tag indexed by @tag set. Places the slots at *@results and 1273 * returns the number of slots which were placed at *@results. 1274 */ 1275 unsigned int 1276 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results, 1277 unsigned long first_index, unsigned int max_items, 1278 unsigned int tag) 1279 { 1280 struct radix_tree_iter iter; 1281 void **slot; 1282 unsigned int ret = 0; 1283 1284 if (unlikely(!max_items)) 1285 return 0; 1286 1287 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) { 1288 results[ret] = slot; 1289 if (++ret == max_items) 1290 break; 1291 } 1292 1293 return ret; 1294 } 1295 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot); 1296 1297 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP) 1298 #include <linux/sched.h> /* for cond_resched() */ 1299 1300 struct locate_info { 1301 unsigned long found_index; 1302 bool stop; 1303 }; 1304 1305 /* 1306 * This linear search is at present only useful to shmem_unuse_inode(). 1307 */ 1308 static unsigned long __locate(struct radix_tree_node *slot, void *item, 1309 unsigned long index, struct locate_info *info) 1310 { 1311 unsigned long i; 1312 1313 do { 1314 unsigned int shift = slot->shift; 1315 1316 for (i = (index >> shift) & RADIX_TREE_MAP_MASK; 1317 i < RADIX_TREE_MAP_SIZE; 1318 i++, index += (1UL << shift)) { 1319 struct radix_tree_node *node = 1320 rcu_dereference_raw(slot->slots[i]); 1321 if (node == RADIX_TREE_RETRY) 1322 goto out; 1323 if (!radix_tree_is_internal_node(node)) { 1324 if (node == item) { 1325 info->found_index = index; 1326 info->stop = true; 1327 goto out; 1328 } 1329 continue; 1330 } 1331 node = entry_to_node(node); 1332 if (is_sibling_entry(slot, node)) 1333 continue; 1334 slot = node; 1335 break; 1336 } 1337 } while (i < RADIX_TREE_MAP_SIZE); 1338 1339 out: 1340 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE)) 1341 info->stop = true; 1342 return index; 1343 } 1344 1345 /** 1346 * radix_tree_locate_item - search through radix tree for item 1347 * @root: radix tree root 1348 * @item: item to be found 1349 * 1350 * Returns index where item was found, or -1 if not found. 1351 * Caller must hold no lock (since this time-consuming function needs 1352 * to be preemptible), and must check afterwards if item is still there. 1353 */ 1354 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1355 { 1356 struct radix_tree_node *node; 1357 unsigned long max_index; 1358 unsigned long cur_index = 0; 1359 struct locate_info info = { 1360 .found_index = -1, 1361 .stop = false, 1362 }; 1363 1364 do { 1365 rcu_read_lock(); 1366 node = rcu_dereference_raw(root->rnode); 1367 if (!radix_tree_is_internal_node(node)) { 1368 rcu_read_unlock(); 1369 if (node == item) 1370 info.found_index = 0; 1371 break; 1372 } 1373 1374 node = entry_to_node(node); 1375 1376 max_index = node_maxindex(node); 1377 if (cur_index > max_index) { 1378 rcu_read_unlock(); 1379 break; 1380 } 1381 1382 cur_index = __locate(node, item, cur_index, &info); 1383 rcu_read_unlock(); 1384 cond_resched(); 1385 } while (!info.stop && cur_index <= max_index); 1386 1387 return info.found_index; 1388 } 1389 #else 1390 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item) 1391 { 1392 return -1; 1393 } 1394 #endif /* CONFIG_SHMEM && CONFIG_SWAP */ 1395 1396 /** 1397 * radix_tree_shrink - shrink radix tree to minimum height 1398 * @root radix tree root 1399 */ 1400 static inline bool radix_tree_shrink(struct radix_tree_root *root) 1401 { 1402 bool shrunk = false; 1403 1404 for (;;) { 1405 struct radix_tree_node *node = root->rnode; 1406 struct radix_tree_node *child; 1407 1408 if (!radix_tree_is_internal_node(node)) 1409 break; 1410 node = entry_to_node(node); 1411 1412 /* 1413 * The candidate node has more than one child, or its child 1414 * is not at the leftmost slot, or the child is a multiorder 1415 * entry, we cannot shrink. 1416 */ 1417 if (node->count != 1) 1418 break; 1419 child = node->slots[0]; 1420 if (!child) 1421 break; 1422 if (!radix_tree_is_internal_node(child) && node->shift) 1423 break; 1424 1425 if (radix_tree_is_internal_node(child)) 1426 entry_to_node(child)->parent = NULL; 1427 1428 /* 1429 * We don't need rcu_assign_pointer(), since we are simply 1430 * moving the node from one part of the tree to another: if it 1431 * was safe to dereference the old pointer to it 1432 * (node->slots[0]), it will be safe to dereference the new 1433 * one (root->rnode) as far as dependent read barriers go. 1434 */ 1435 root->rnode = child; 1436 1437 /* 1438 * We have a dilemma here. The node's slot[0] must not be 1439 * NULLed in case there are concurrent lookups expecting to 1440 * find the item. However if this was a bottom-level node, 1441 * then it may be subject to the slot pointer being visible 1442 * to callers dereferencing it. If item corresponding to 1443 * slot[0] is subsequently deleted, these callers would expect 1444 * their slot to become empty sooner or later. 1445 * 1446 * For example, lockless pagecache will look up a slot, deref 1447 * the page pointer, and if the page has 0 refcount it means it 1448 * was concurrently deleted from pagecache so try the deref 1449 * again. Fortunately there is already a requirement for logic 1450 * to retry the entire slot lookup -- the indirect pointer 1451 * problem (replacing direct root node with an indirect pointer 1452 * also results in a stale slot). So tag the slot as indirect 1453 * to force callers to retry. 1454 */ 1455 if (!radix_tree_is_internal_node(child)) 1456 node->slots[0] = RADIX_TREE_RETRY; 1457 1458 radix_tree_node_free(node); 1459 shrunk = true; 1460 } 1461 1462 return shrunk; 1463 } 1464 1465 /** 1466 * __radix_tree_delete_node - try to free node after clearing a slot 1467 * @root: radix tree root 1468 * @node: node containing @index 1469 * 1470 * After clearing the slot at @index in @node from radix tree 1471 * rooted at @root, call this function to attempt freeing the 1472 * node and shrinking the tree. 1473 * 1474 * Returns %true if @node was freed, %false otherwise. 1475 */ 1476 bool __radix_tree_delete_node(struct radix_tree_root *root, 1477 struct radix_tree_node *node) 1478 { 1479 bool deleted = false; 1480 1481 do { 1482 struct radix_tree_node *parent; 1483 1484 if (node->count) { 1485 if (node == entry_to_node(root->rnode)) 1486 deleted |= radix_tree_shrink(root); 1487 return deleted; 1488 } 1489 1490 parent = node->parent; 1491 if (parent) { 1492 parent->slots[node->offset] = NULL; 1493 parent->count--; 1494 } else { 1495 root_tag_clear_all(root); 1496 root->rnode = NULL; 1497 } 1498 1499 radix_tree_node_free(node); 1500 deleted = true; 1501 1502 node = parent; 1503 } while (node); 1504 1505 return deleted; 1506 } 1507 1508 static inline void delete_sibling_entries(struct radix_tree_node *node, 1509 void *ptr, unsigned offset) 1510 { 1511 #ifdef CONFIG_RADIX_TREE_MULTIORDER 1512 int i; 1513 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) { 1514 if (node->slots[offset + i] != ptr) 1515 break; 1516 node->slots[offset + i] = NULL; 1517 node->count--; 1518 } 1519 #endif 1520 } 1521 1522 /** 1523 * radix_tree_delete_item - delete an item from a radix tree 1524 * @root: radix tree root 1525 * @index: index key 1526 * @item: expected item 1527 * 1528 * Remove @item at @index from the radix tree rooted at @root. 1529 * 1530 * Returns the address of the deleted item, or NULL if it was not present 1531 * or the entry at the given @index was not @item. 1532 */ 1533 void *radix_tree_delete_item(struct radix_tree_root *root, 1534 unsigned long index, void *item) 1535 { 1536 struct radix_tree_node *node; 1537 unsigned int offset; 1538 void **slot; 1539 void *entry; 1540 int tag; 1541 1542 entry = __radix_tree_lookup(root, index, &node, &slot); 1543 if (!entry) 1544 return NULL; 1545 1546 if (item && entry != item) 1547 return NULL; 1548 1549 if (!node) { 1550 root_tag_clear_all(root); 1551 root->rnode = NULL; 1552 return entry; 1553 } 1554 1555 offset = get_slot_offset(node, slot); 1556 1557 /* Clear all tags associated with the item to be deleted. */ 1558 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1559 node_tag_clear(root, node, tag, offset); 1560 1561 delete_sibling_entries(node, node_to_entry(slot), offset); 1562 node->slots[offset] = NULL; 1563 node->count--; 1564 1565 __radix_tree_delete_node(root, node); 1566 1567 return entry; 1568 } 1569 EXPORT_SYMBOL(radix_tree_delete_item); 1570 1571 /** 1572 * radix_tree_delete - delete an item from a radix tree 1573 * @root: radix tree root 1574 * @index: index key 1575 * 1576 * Remove the item at @index from the radix tree rooted at @root. 1577 * 1578 * Returns the address of the deleted item, or NULL if it was not present. 1579 */ 1580 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) 1581 { 1582 return radix_tree_delete_item(root, index, NULL); 1583 } 1584 EXPORT_SYMBOL(radix_tree_delete); 1585 1586 void radix_tree_clear_tags(struct radix_tree_root *root, 1587 struct radix_tree_node *node, 1588 void **slot) 1589 { 1590 if (node) { 1591 unsigned int tag, offset = get_slot_offset(node, slot); 1592 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) 1593 node_tag_clear(root, node, tag, offset); 1594 } else { 1595 /* Clear root node tags */ 1596 root->gfp_mask &= __GFP_BITS_MASK; 1597 } 1598 } 1599 1600 /** 1601 * radix_tree_tagged - test whether any items in the tree are tagged 1602 * @root: radix tree root 1603 * @tag: tag to test 1604 */ 1605 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) 1606 { 1607 return root_tag_get(root, tag); 1608 } 1609 EXPORT_SYMBOL(radix_tree_tagged); 1610 1611 static void 1612 radix_tree_node_ctor(void *arg) 1613 { 1614 struct radix_tree_node *node = arg; 1615 1616 memset(node, 0, sizeof(*node)); 1617 INIT_LIST_HEAD(&node->private_list); 1618 } 1619 1620 static __init unsigned long __maxindex(unsigned int height) 1621 { 1622 unsigned int width = height * RADIX_TREE_MAP_SHIFT; 1623 int shift = RADIX_TREE_INDEX_BITS - width; 1624 1625 if (shift < 0) 1626 return ~0UL; 1627 if (shift >= BITS_PER_LONG) 1628 return 0UL; 1629 return ~0UL >> shift; 1630 } 1631 1632 static __init void radix_tree_init_maxnodes(void) 1633 { 1634 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1]; 1635 unsigned int i, j; 1636 1637 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++) 1638 height_to_maxindex[i] = __maxindex(i); 1639 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) { 1640 for (j = i; j > 0; j--) 1641 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1; 1642 } 1643 } 1644 1645 static int radix_tree_callback(struct notifier_block *nfb, 1646 unsigned long action, void *hcpu) 1647 { 1648 int cpu = (long)hcpu; 1649 struct radix_tree_preload *rtp; 1650 struct radix_tree_node *node; 1651 1652 /* Free per-cpu pool of preloaded nodes */ 1653 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1654 rtp = &per_cpu(radix_tree_preloads, cpu); 1655 while (rtp->nr) { 1656 node = rtp->nodes; 1657 rtp->nodes = node->private_data; 1658 kmem_cache_free(radix_tree_node_cachep, node); 1659 rtp->nr--; 1660 } 1661 } 1662 return NOTIFY_OK; 1663 } 1664 1665 void __init radix_tree_init(void) 1666 { 1667 radix_tree_node_cachep = kmem_cache_create("radix_tree_node", 1668 sizeof(struct radix_tree_node), 0, 1669 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT, 1670 radix_tree_node_ctor); 1671 radix_tree_init_maxnodes(); 1672 hotcpu_notifier(radix_tree_callback, 0); 1673 } 1674